首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membranes from the human hepatoma cell line HepG2 mediate the phosphorylation on tyrosine of the asialoglycoprotein receptor. Manganese was the preferred divalent for phosphorylation although magnesium was effective at an 8-fold higher concentration. Calcium was ineffective at promoting phosphorylation and zinc was inhibitory. The protein kinase inhibitor staurosporine blocked asialoglycoprotein receptor phosphorylation on tyrosine in nanomolar concentrations (IC50 = 70 nM). In contrast another protein kinase C inhibitor, H7, was not inhibitory, suggesting that the effect of staurosporine was not mediated by protein kinase C inhibition. Concentrations of staurosporine that inhibit receptor phosphorylation by greater than 90% did not inhibit the phosphorylation of other protein substrates identified on SDS-polyacrylamide gels. These data suggest that staurosporine selectively and directly inhibits a membrane-associated tyrosine protein kinase.  相似文献   

2.
Binding of [3H]-staurosporine to different protein kinases was time-dependent, reversible and saturable. Scatchard analysis of saturation isotherms indicated one class of binding sites for [3H]-staurosporine with dissociation constants (KD) of 9.6, 2.0, 3.0 and 7.4 nM for protein kinase C, cAMP-dependent protein kinase, tyrosine protein kinase and calcium/calmodulin-dependent protein kinase respectively. [3H]-staurosporine binding was fully displaced by unlabelled staurosporine or the related compound K-252a whereas other protein kinase inhibitors (H-7, H-8 and W-7) did not compete with [3H]-staurosporine. These data confirm that sataurosporine shows no selectivity for different protein kinases and suggest the putative existence of distinct, specific binding sites for [3H]-staurosporine on these enzymes.  相似文献   

3.
M Ohmichi  S J Decker  L Pang  A R Saltiel 《Biochemistry》1992,31(16):4034-4039
The protein kinase inhibitors staurosporine and K252A inhibit some of the cellular actions of nerve growth factor (NGF). To explore the molecular mechanisms involved, we test the ability of these agents to block one of the earliest cellular responses to NGF, protein tyrosine phosphorylation. Concentrations of 10-100 nM staurosporine and K252A inhibit NGF-dependent tyrosine phosphorylation in PC12 cells and inhibit trk oncogene-dependent tyrosine phosphorylation in trk-transformed NIH3T3 (trk-3T3 cells). In contrast, these compounds are without effect on epidermal growth factor (EGF)-stimulated tyrosine phosphorylation in PC12 cells. NGF-stimulated tyrosine phosphorylation of the pp140c-trk NGF receptor and tyrosine phosphorylation of pp70trk are also inhibited by similar concentrations of staurosporine and K252A, whereas tyrosine phosphorylation of the EGF receptor, insulin receptor, and v-src is not affected. Both staurosporine and K252A inhibit the autophosphorylation of pp70trk on tyrosine residues in an in vitro immune complex kinase reaction. Incubation of trk-3T3 cells with 10 nM staurosporine causes rounded transformed cells to revert to a normal flattened phenotype, whereas src-transformed cells are unaffected by this agent. These data suggest that staurosporine and K252A specifically inhibit the trk tyrosine kinase activity through a direct mechanism, probably accounting for the attenuation by these agents of the cellular actions of NGF.  相似文献   

4.
The tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) induces insulin secretion from isolated pancreatic islets, and this suggests a potential role for protein kinase C in the regulation of stimulus-secretion coupling in islets. In the present study, the hypothesis that the insulinotropic effect of TPA is mediated by activation of protein kinase C in pancreatic islets has been examined. TPA induced a gradual translocation of protein kinase C from the cytosol to a membrane-associated state which correlated with the gradual onset of insulin secretion. The pharmacologically inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not mimic this effect. TPA also induced a rapid time-dependent decline of total protein kinase C activity in islets and the appearance of a Ca2+- and phospholipid-independent protein kinase activity. Insulin secretion induced by TPA was completely suppressed (IC50 approximately 10 nM) by staurosporine, a potent protein kinase C inhibitor. Staurosporine also inhibited islet cytosolic protein kinase C activity at similar concentrations (IC50 approximately 2 nM). In addition, staurosporine partially (approximately 60%) inhibited glucose-induced insulin secretion at concentrations (IC50 approximately 10 nM) similar to those required to inhibit TPA-induced insulin secretion, suggesting that staurosporine may act at a step common to both mechanisms, possibly the activation of protein kinase C. However, stimulatory concentrations of glucose did not induce down-regulation of translocation of protein kinase C, and the inhibition of glucose-induced insulin release by staurosporine was incomplete. Significant questions therefore remain unresolved as to the possible involvement of protein kinase C in glucose-induced insulin secretion.  相似文献   

5.
Extracts of Brassica napus (oilseed rape) seeds contain type 1 and type 2A protein phosphatases whose properties are indistinguishable from the corresponding enzymes in mammalian tissues. The type 1 activity dephosphorylated the beta-subunit of phosphorylase kinase selectively and was inhibited by the same concentrations of okadaic acid [IC50 (concentration causing 50% inhibition) approximately 10 nM], mammalian inhibitor 1 (IC50 = 0.6 nM) and mammalian inhibitor 2 (IC50 = 2.0 nM) as the rabbit muscle type 1 phosphatase. The plant type 2A activity dephosphorylated the alpha-subunit of phosphorylase kinase preferentially, was exquisitely sensitive to okadaic acid (IC50 approximately 0.1 nM), and was unaffected by inhibitors 1 and 2. As in mammalian tissues, a substantial proportion of plant type 1 phosphatase activity (40%) was particulate, whereas plant type 2A phosphatase was cytosolic. The specific activities of the plant type 1 and type 2A phosphatases were as high as in mammalian tissue extracts, but no type 2B or type 2C phosphatase activity was detected. The results demonstrate that the improved procedure for identifying and quantifying protein phosphatases in animal cells is applicable to higher plants, and suggests that okadaic acid may provide a new method for identifying plant enzymes that are regulated by reversible phosphorylation.  相似文献   

6.
With an aim toward glycogenolysis control in Type 2 diabetes, we have investigated via kinetic experiments and computation the potential of indirubin (IC?? > 50 μM), indirubin-3'-oxime (IC?? = 144 nM), KT5720 (K(i) = 18.4 nM) and staurosporine (K(i) = 0.37 nM) as phosphorylase kinase (PhKγtrnc) ATP-binding site inhibitors, with the latter two revealed as potent inhibitors in the low nM range. Because of lack of structural information, we have exploited information from homologous kinase complexes to direct in silico calculations (docking, molecular dynamics, and MMGBSA) to predict the binding characteristics of the four ligands. All inhibitors are predicted to bind in the same active site area as the ATP adenine ring, with binding dominated by hinge region hydrogen bonds to Asp104:O and Met106:O (all four ligands) and also Met106:NH (for the indirubins). The PhKγtrnc-staurosporine complex has the greatest number of receptor-ligand hydrogen bonds, while for the indirubin-3'-oxime and KT5720 complexes there is an important network of interchanging water molecules bridging inhibitor-enzyme contacts. The MM-GBSA results revealed the source of staurosporine's low nM potency to be favorable electrostatic interactions, while KT5720 has strong van der Waals contributions. KT5720 interacts with the greatest number of protein residues either by direct or 1-water bridged hydrogen bond interactions, and the potential for more selective PhK inhibition based on a KT5720 analogue has been established. Including receptor flexibility in Schr?dinger induced-fit docking calculations in most cases correctly predicted the binding modes as compared with the molecular dynamics structures; the algorithm was less effective when there were key structural waters bridging receptor-ligand contacts.  相似文献   

7.
Staurosporine is the most potent inhibitor of protein kinase C (PKC) described in the literature with a half-maximal inhibitory concentration (IC50) of 10 nM. Nevertheless, this natural product is poorly selective when assayed against other protein kinases. In order to obtain specific PKC inhibitors, a series of bisindolylmaleimides has been synthesized. Structure-activity relationship studies allowed the determination of the substructure responsible for conferring high potency and lack of selectivity in the staurosporine molecule. Several aminoalkyl bisindolylmaleimides were found to be potent and selective PKC inhibitors (IC50 values from 5 to 70 nM). Among these compounds GF 109203X has been chosen for further studies aiming at the characterization of this chemical family. GF 109203X was a competitive inhibitor with respect to ATP (Ki = 14 +/- 3 NM) and displayed high selectivity for PKC as compared to five different protein kinases. We further determined the potency and specificity of GF 109203X in two cellular models: human platelets and Swiss 3T3 fibroblasts. GF 109203X efficiently prevented PKC-mediated phosphorylations of an Mr = 47,000 protein in platelets and of an Mr = 80,000 protein in Swiss 3T3 cells. In contrast, in the same models, the PKC inhibitor failed to prevent PKC-independent phosphorylations. GF 109203X inhibited collagen- and alpha-thrombin-induced platelet aggregation as well as collagen-triggered ATP secretion. However, ADP-dependent reversible aggregation was not modified. In Swiss 3T3 fibroblasts, GF 109203X reversed the inhibition of epidermal growth factor binding induced by phorbol 12,13-dibutyrate and prevented [3H] thymidine incorporation into DNA, only when this was elicited by growth promoting agents which activate PKC. Our results illustrate the potential of GF 109203X as a tool for studying the involvement of PKC in signal transduction pathways.  相似文献   

8.
A series of acrylamide analogues were designed and synthesized from Imatinib and Nilotinib as novel BCR-ABL inhibitors by application of the principle of nonclassical electronic isostere. All new compounds were evaluated for their inhibitory effects on the activity of BCR-ABL kinase and the proliferation of K562 leukemia cancer cells in vitro. The acrylamide analogues in which the substituent in C ring was trifluoromethyl group were identified as highly potent BCR-ABL kinase inhibitors. Compound 13f exhibited an IC(50) value as low as 20.6nM in ABL kinase inhibition and an IC(50) value of 32.3nM for antiproliferative activity, about 10.5-fold and 12-fold lower than those of Imatinib respectively. These results suggest that compound 13f is a promising candidate as a novel BCR-ABL kinase inhibitor for further development.  相似文献   

9.
The cGMP analogue 8-(2-carboxymethylthio)-cGMP (CMT-cGMP) was synthesized and its binding to cGMP-dependent protein kinase (cGMP kinase) was studied. CMT-cGMP bound at 4 degrees C with an over 1400-fold higher affinity to site 1 than to site 2 of the native enzyme with apparent Kd values of 4.1 nM and 5.9 microM, respectively. The apparent selectivity for site 1 was about threefold less with the autophosphorylated enzyme and about sixfold with the catalytically active fragment of cGMP kinase. The apparent selectivity was confirmed by determination of the dissociation of [3H]cGMP from cGMP kinase in the presence of 1 microM CMT-cGMP at 4 degrees C. The apparent site 1 selectivity was 250-fold at 30 degrees C under the conditions of the phosphotransferase assay. The apparent Kd values were 47 nM and 11.7 microM for site 1 and 2, respectively. CMT-cGMP stimulated the phosphotransferase activity of native and autophosphorylated cGMP kinase with Ka values of about 80 nM. About 60% of the total catalytic rate of cGMP kinase was obtained in the presence of 1 microM CMT-cGMP and 0.13 mM Kemptide. The apparent Km values for ATP and Kemptide were not affected. However, CMT-cGMP activated the enzyme to the same level as cGMP when 1.3 mM Kemptide was present. CMT-cGMP and cGMP inhibited cAMP-stimulated autophosphorylation of cGMP kinase with IC50 values of 0.7 microM and 2 microM, respectively. Neither compound stimulated autophosphorylation of cGMP kinase by itself. These results indicate that CMT-cGMP binds with high preference to site 1 of cGMP kinase and that occupation of site 1 may lead to expression of a partial enzyme activity.  相似文献   

10.
Effects of protein kinase inhibitors, K252a and its derivative KT5926, on Ca2+/calmodulin-dependent protein kinase II were examined. Both compounds potently inhibited Ca2+/calmodulin-dependent protein kinase II. Kinetic analyses indicated that the inhibitory effect of K252a and KT5926 was competitive with respect to ATP (Ki: 1.8 and 4.4 nM, respectively) and noncompetitive with respect to the substrates. Taken together with a previous report (Nakanishi et al. Mol. Pharmacol. 37, 482, 1990) concerning the Ki values of these compounds for ATP with various protein kinases, the results suggest that K252a and KT5926 are potent and preferential inhibitors of Ca2+/calmodulin-dependent protein kinase II.  相似文献   

11.
A central challenge in chemical biology is profiling the activity of a large number of chemical structures against hundreds of biological targets, such as kinases. Conventional 32P-incorporation or immunoassay of phosphorylated residues produces high-quality signals for monitoring kinase reactions but is difficult to use in high-throughput screening (HTS) because of cost and the need for well-plate washing. The authors report a method for densely archiving compounds in nanodroplets on peptide or protein substrate-coated microarrays for subsequent profiling by aerosol deposition of kinases. Each microarray contains over 6000 reaction centers (1.0 nL each) whose phosphorylation progress can be detected by immunofluorescence. For p60c-src, the microarray produced a signal-to-background ratio of 36.3 and Z' factor of 0.63 for HTS and accurate enzyme kinetic parameters (KmATP = 3.3 microM) and IC50 values for staurosporine (210 nM) and PP2 (326 nM) at 10 microM adenosine triphosphate (ATP). Similarly, B-Raf phosphorylation of MEK-coated microarrays was inhibited in the nanoliter reactions by GW5074 at the expected IC50 of 9 nM. Common kinase inhibitors were printed on microarrays, and their inhibitory activities were systematically profiled against B-Raf (V599E), KDR, Met, Flt-3 (D835Y), Lyn, EGFR, PDGFRbeta, and Tie2. All results indicate that this platform is well suited for kinetic analysis, HTS, large-scale IC50 determinations, and selectivity profiling.  相似文献   

12.
The motility of zoospores is critical in the disease cycles of Peronosporomycetes that cause devastating diseases in plants, fishes, vertebrates, and microbes. In the course of screening for secondary metabolites, we found that ethyl acetate extracts of a marine Streptomyces sp. strain B5136 rapidly impaired the motility of zoospores of the grapevine downy mildew pathogen Plasmopara viticola at 0.1 μg/ml. The active principle in the extracts was identified as staurosporine, a known broad-spectrum inhibitor of protein kinases, including protein kinase C (PKC). In the presence of staurosporine (2 nM), zoospores moved very slowly in their axis or spun in tight circles, instead of displaying straight swimming in a helical fashion. Compounds such as K-252a, K-252b, and K-252c structurally related to staurosporine also impaired the motility of zoospores in a similar manner but at varying doses. Among the 22 known kinase inhibitors tested, the PKC inhibitor chelerythrine was the most potent to arrest the motility of zoospores at concentrations starting from 5 nM. Inhibitors that targeted kinase pathways other than PKC pathways did not practically show any activity in impairing zoospore motility. Interestingly, both staurosporine (5 nM) and chelerythrine (10 nM) also inhibited the release of zoospores from the P. viticola sporangia in a dose-dependent manner. In addition, staurosporine completely suppressed downy mildew disease in grapevine leaves at 2 μM, suggesting the potential of small-molecule PKC inhibitors for the control of peronosporomycete phytopathogens. Taken together, these results suggest that PKC is likely to be a key signaling mediator associated with zoosporogenesis and the maintenance of flagellar motility in peronosporomycete zoospores.  相似文献   

13.
The ability of staurosporine, a potent inhibitor of protein kinase C, to block certain cellular events initiated by 12-O-tetradecanoylphorbol-13-acetate (TPA) and epidermal growth factor (EGF) was examined. Treatment of MDA468 breast cancer cells with TPA decreases EGF binding to the cell surface and this effect is blocked by pretreatment with staurosporine with an IC50 of 30 nM. Either 10(-9) M EGF or 100 ng/ml TPA stimulated the accumulation of both EGF receptor and TGF-alpha mRNA and staurosporine (50 nM) completely abolished these mRNA accumulations. Staurosporine did not block EGF-stimulated tyrosine phosphorylation of its receptor as measured by immunoblotting with anti-phosphotyrosine antibodies. The ability of staurosporine to block the mRNA responses of either EGF or TPA suggests that these two agents have common signaling pathways and it implies a role for protein kinase C in the control of EGF receptor and TGF-alpha expression.  相似文献   

14.
15.
Rudrabhatla P  Rajasekharan R 《Biochemistry》2004,43(38):12123-12132
Serine/threonine/tyrosine (STY) protein kinase from peanut is developmentally regulated and is induced by abiotic stresses. In addition, STY protein kinase activity is regulated by tyrosine phosphorylation. Kinetic mechanism of plant dual specificity protein kinases is not studied so far. Recombinant STY protein kinase occurs as a monomer in solution as shown by gel filtration chromatography. The relative phosphorylation rate of kinase against increasing enzyme concentrations follows a first-order kinetics indicating an intramolecular phosphorylation mechanism. Moreover, the active recombinant STY protein kinase could not transphosphorylate a kinase-deficient mutant of STY protein kinase. Molecular docking studies revealed that the tyrosine kinase inhibitors bind the protein kinase at the same region as ATP. STY protein kinase activity was inhibited by the tyrosine kinase inhibitors, and the inhibitor potency series against the recombinant STY protein kinase was tyrphostin > genistein > staurosporine. The inhibition constant (K(i)), and the IC(50) value of STY protein kinase for tyrosine kinase inhibitors with ATP and histone are discussed. All the inhibitors competed with ATP. Genistein was an uncompetitive inhibitor with histone, whereas staurosporine and tyrphostin were linear mixed type noncompetitive inhibitors with histone. Molecular docking and kinetic analysis revealed that Y148F mutant of the "ATP-binding loop" and Y297F mutant of the "activation loop" showed a dramatic increase in K(i) values for genistein and tyrphostin with respect to wild-type STY protein kinase. Data presented here provide the direct evidence on the mechanism of inhibition of plant protein kinases by tyrosine kinase inhibitors. This study also suggests that tyrosine kinase inhibitors may be useful in unraveling the plant tyrosine phosphorylation signaling cascades.  相似文献   

16.
The specific phosphoinositide 3-kinase (PI3K) inhibitors wortmannin and LY294002 have been invaluable tools for elucidating the roles of these enzymes in signal transduction pathways. The X-ray crystallographic structures of PI3Kgamma bound to these lipid kinase inhibitors and to the broad-spectrum protein kinase inhibitors quercetin, myricetin, and staurosporine reveal how these compounds fit into the ATP binding pocket. With a nanomolar IC50, wortmannin most closely fits and fills the active site and induces a conformational change in the catalytic domain. Surprisingly, LY294002 and the lead compound on which it was designed, quercetin, as well as the closely related flavonoid myricetin bind PI3K in remarkably different orientations that are related to each other by 180 degrees rotations. Staurosporine/PI3K interactions are reminiscent of low-affinity protein kinase/staurosporine complexes. These results provide a rich basis for development of isoform-specific PI3K inhibitors with therapeutic potential.  相似文献   

17.
We previously showed (Frace, A.M. and H.C. Hartzell. 1993. Journal of Physiology. 472:305-326) that internal perfusion of frog atrial myocytes with the nonselective protein phosphatase inhibitors microcystin or okadaic acid produced an increase in the L-type Ca current (ICa) and a decrease in the delayed rectifier K current (IK). We hypothesized that microcystin revealed the activity of a protein kinase (PKX) that was basally active in the cardiac myocyte that could phosphorylate the Ca and K channels or regulators of the channels. The present studies were aimed at determining the nature of PKX and its phosphorylation target. The effect of internal perfusion with microcystin on ICa or IK was not attenuated by inhibitors of protein kinase A (PKA). However, the effect of microcystin on ICa was largely blocked by the nonselective protein kinase inhibitors staurosporine (10- 30 nM), K252a (250 nM), and H-7 (10 microM). Staurosporine and H-7 also decreased the stimulation of ICa by isoproterenol, but K252a was more selective and blocked the ability of microcystin to stimulate ICa without significantly reducing isoproterenol-stimulated current. Internal perfusion with selective inhibitors of protein kinase C (PKC), including the autoinhibitory pseudosubstrate PKC peptide (PKC(19-31)) and a myristoylated derivative of this peptide had no effect. External application of several PKC inhibitors had negative side effects that prevented their use as selective PKC inhibitors. Nevertheless, we conclude that PKX is not PKC. PKA and PKX phosphorylate sites with different sensitivities to the phosphatase inhibitors calyculin A and microcystin. In contrast to the results with ICa, the effect of microcystin on IK was not blocked by any of the kinase inhibitors tested, suggesting that the effect of microcystin on IK may not be mediated by a protein kinase but may be due to a direct effect of microcystin on the IK channel.  相似文献   

18.
Fluid production in Locusta Malpighian tubules was stimulated by corpora cardiaca extract (c. 100%) and dibutyryl cAMP (c. 50%). Chelerythrine and staurosporine (Protein kinase C, PKC inhibitors) inhibited it in the range 0.07-60&mgr;M (IC(50)3&mgr;M), whereas Rp-cAMP (Protein kinase A, PKA inhibitor) caused inhibition over the concentration range 10-1000&mgr;M (IC(50)264&mgr;M). The protein phosphatase inhibitor, okadaic acid, was also inhibitory over the concentration range 0.1-1000nM (IC(50) 91nM). CC extract stimulation increased fluid [Na(+)] from 41 to 59mM and decreased [K(+)] from 127 to 107mM; stimulation with cAMP had no such effect. The PKC inhibitors reduced the [K(+)] in the secreted fluid from 126 to 107mM but had no effect on the [Na(+)]. Subsequent addition of CC extract stimulated fluid production and caused an increase in [Na(+)] from 41 to about 50mM. The addition of Rp-cAMP reduced fluid production but caused a decrease in [Na(+)] from 37 to 28mM and an increase in its [K(+)] from 124 to 148mM. Fluid production by Rp-cAMP inhibited tubules was not stimulated by corpora cardiaca extract or cAMP, but [Na(+)] rose to 36mM. Protein phosphorylation plays a role in the regulation of fluid production probably via the apical and basal membrane cation transporters.  相似文献   

19.
Retinoic acid (RA), the biologically active metabolite of vitamin A, is used medicinally for the treatment of hyperproliferative diseases including dermatological conditions and cancer. The antiproliferative effects of RA have been well documented as well as the limitations owing to toxicity and the development of resistance to RA therapy. RA metabolism inhibitors (RAMBAs or CYP26 inhibitors) are attracting increasing interest as an alternative method for enhancing endogenous levels of retinoic acid in the treatment of hyperproliferative disease. Here the synthesis and inhibitory activity of novel 3-(1H-imidazol- and triazol-1-yl)-2,2-dimethyl-3-(4-(phenylamino)phenyl)propyl derivatives in a MCF-7 CYP26A1 microsomal assay are described. The most promising inhibitor methyl 2,2-dimethyl-3-(4-(phenylamino)phenyl)-3-(1H-1,2,4-triazol-1-yl)propanoate (6) exhibited an IC(50) of 13 nM (compared with standards Liarozole IC(50) 540 nM and R116010 IC(50) 10 nM) and was further evaluated for CYP selectivity using a panel of CYP with >100-fold selectivity for CYP26 compared with CYP1A2, 2C9 and 2D6 observed and 15-fold selectivity compared with CYP3A4. The results demonstrate the potential for further development of these potent inhibitors.  相似文献   

20.
The effects of two putative inhibitors of protein kinase C activity, staurosporine and H-7, on partially purified protein kinase C and amylase secretion from isolated rabbit pancreatic acini were investigated. Staurosporine dose-dependently inhibited amylase release stimulated by an optimal concentration of cholecystokinin C-terminal octapeptide. At a concentration of 100 nM, the drug inhibited the secretory response to the secretagogue by approximately 50%. At the same concentration, staurosporine inhibited 12-O-tetradecanoylphorbol 13-acetate-stimulated enzyme secretion by 90%. Moreover, the potentiating effect of this phorbol ester on cholecystokinin-induced amylase release was completely abolished in the presence of staurosporine. Interestingly, amylase release was decreased to the level observed with the combination of cholecystokinin and staurosporine. In contrast, H-7, potentiated rather than inhibited cholecystokinin-stimulated enzyme secretion, whereas the secretory response to 12-O-tetradecanoylphorbol 13-acetate was not affected by the drug. Both staurosporine and H-7, however, inhibited protein kinase C purified from exocrine pancreatic tissue. Kinetic analysis revealed that both compounds inhibited protein kinase C competitively with respect to ATP. The Ki value for staurosporine was 0.55 nM and for H-7 13.5 microM. Our results obtained with staurosporine are in line with a stimulatory role of protein kinase C in cholecystokinin-induced enzyme secretion from the exocrine pancreas. The results obtained with H-7 emphasize that care has to be taken in interpreting the biological effects of this drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号