首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pneumococci growing on choline-containing medium are known to incorporate this amino alcohol into the wall teichoic acid and produce autolysin-sensitive cell walls. In contrast, bacteria grown on the choline analogue, ethanolamine, incorporate ethanolamine into the teichoic acid and synthesize cell walls that are resistant to the homologous autolysin. In this communication, we report experiments aimed at understanding the biochemical mechanism of this phenomenon. Ethanolamine-containing (autolysin-resistant) cell walls were methylated in vitro with methyl iodide. Under appropriate conditions, virtually all of the ethanolamine residues could be converted to choline. After methylation, the formerly autolysin-resistant walls could be quantitatively hydrolyzed by the pneumococcal autolysin. Methylated walls also recovered another property typical of cell walls isolated from choline-grown bacteria: they could induce the in vitro "conversion" of an inactive form of autolysin to the catalytically active form (Tomasz, A., and Westphal, M. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 2627-2630). The results suggest that the autolysin-catalyzed hydrolysis of amide bonds in the peptidoglycan requires an additional interaction between the enzyme protein and choline residues in the teichoric acid portion of the cell wall.  相似文献   

2.
Synthesis of teichoic acid by Bacillus subtilis protoplasts   总被引:6,自引:5,他引:1       下载免费PDF全文
Protoplasts of Bacillus subtilis W23 readily synthesized ribitol teichoic acid from nucleotide precursors in the surrounding medium. With cytidine diphosphate-ribitol they made poly(ribitol phosphate), presumably attached to lipoteichoic acid carrier; when cytidine diphosphate-glycerol and uridine diphosphate-N-acetylglucosamine were also present a 10-fold increase in the rate of polymer synthesis occurred, and the product contained both the main chain and the linkage unit. Synthesis was inhibited by trypsin or p-chloromercuribenzenesulfonate in the medium, and we concluded that it occurred at the outer surface of the membrane. During synthesis, which was also achieved readily by whole cells after a brief period of wall lysis, the cytidine phosphate portion of the nucleotide precursors did not pass through the membrane. No evidence could be obtained for a transphosphorylation mechanism for the translocation process. It is suggested that reaction with exogenous substrates was due to temporary exposure of a protein component of the enzyme complex at the outer surface of the membrane during the normal biosynthetic cycle.  相似文献   

3.
4.
5.
6.
Spectrophotometric and spectrofluorometric titrations of two strongly aggregating dyes, 1,9-dimethylmethylene blue (DMMB) and acridine orange (AO), by three anionic biopolymers, chondroitin sulphate A, DNA and teichoic acid (TA), have been described. Though the three polymers differ in their dye binding efficiencies and TA is a weak chromotrope, the equivalent weights of the polymers can be estimated accurately by these methods using the two dyes. Results show DMMB to be the preferred dye for spectrophotometric titration. The titrations can be used to estimate the equivalent weights of anionic polymers, and also for the quantitative estimation of such polymers of known equivalent weights.  相似文献   

7.
8.
9.
Biosynthesis of the wall teichoic acid in Bacillus licheniformis   总被引:18,自引:12,他引:6       下载免费PDF全文
1. The biosynthesis of the wall teichoic acid, poly(glycerol phosphate glucose), has been studied with a particulate membrane preparation from Bacillus licheniformis A.T.C.C. 9945. The precursor CDP-glycerol supplies glycerol phosphate residues, whereas UDP-glucose supplies only glucose to the repeating structure of the polymer. 2. Synthesis proceeds through polyprenol phosphate derivatives, and chemical studies and pulse-labelling techniques show that the first intermediate is the phosphodiester, glucose polyprenol monophosphate. CDP-glycerol donates a glycerol phosphate residue to this to give a second intermediate, (glycerol phosphate glucose phosphate) polyprenol. 3. The glucose residue in the lipid intermediates has the beta configuration, and chain extension in the synthesis of polymer occurs by transglycosylation with inversion of anomeric configuration at two stages.  相似文献   

10.
Abstract The metabolism of d -alanyl substituents of lipoteichoic acid (LTA) and teichoic acid was studied in Staphylococcus aureus . Double labelling with [3H]glycerol and d -[14C]alanine revealed that during the chase LTA was stable whereas its 14C label rapidly decreased. Half-time comparison indicated an enzyme- rather than a base-catalyzed process. Correlated with the loss of [14C]alanine from LTA was an increase of the radioactivity in wall-linked alanine ester which, after hydrolysis with HF, proved to be linked to teichoic acid. These results suggest that LTA-alanine is the donor for alanine esterification of teichoic acid. In connection with previous data we hypothesize that the loss of alanine from LTA is compensated by de novo incorporation.  相似文献   

11.
12.
13.
14.
Streptococcus pneumoniae is a major human pathogen and many interactions of this bacterium with its host appear to be mediated, directly or indirectly, by components of the bacterial cell wall, specifically by the phosphorylcholine residues which serve as anchors for surface-located choline-binding proteins and are also recognized by components of the host response, such as the human C-reactive protein, a class of myeloma proteins and PAF receptors. In the present study, we describe the identification of the pneumococcal pce gene encoding for a teichoic acid phosphorylcholine esterase (Pce), an enzymatic activity capable of removing phosphorylcholine residues from the cell wall teichoic acid and lipoteichoic acid. Pce carries an N-terminal signal sequence, contains a C-terminal choline-binding domain with 10 homologous repeating units similar to those found in other pneumococcal surface proteins, and the catalytic (phosphorylcholine esterase) activity is localized on the N-terminal part of the protein. The mature protein was overexpressed in Escherichia coli and purified in a one-step procedure by choline-affinity chromatography and the enzymatic activity was followed using the chromophoric p-nitrophenyl-phosphorylcholine as a model substrate. The product of the enzymatic digestion of 3H-choline-labelled cell walls was shown to be phosphorylcholine. Inactivation of the pce gene in S. pneumoniae strains by insertion-duplication mutagenesis caused a unique change in colony morphology and a striking increase in virulence in the intraperitoneal mouse model. Pce may be a regulatory element involved with the interaction of S. pneumoniae with its human host.  相似文献   

15.
16.
A lipid intermediate in the biosynthesis of a teichoic acid   总被引:12,自引:0,他引:12  
  相似文献   

17.
Control of teichoic acid synthesis in Bacillus licheniformis ATCC 9945   总被引:7,自引:0,他引:7  
Analysis of cell walls of Bacillus licheniformis ATCC 9945 grown under phosphate limitation showed that teichoic acid could be replaced by teichuronic acid under these conditions. Teichuronic acid, however, was always present in the walls to some extent irrespective of the growth conditions. The enzymes involved in teichoic acid synthesis were investigated and the synthesis of these was shown to be repressed when the intracellular Pi level fell. CDP-glycerol pyrophosphorylase was studied in some detail and evidence is presented to show that the enzyme is inactivated under phosphate-limited conditions. The mechanism of inactivation is unknown but it has been shown that it does not require protein synthesis de novo.  相似文献   

18.
19.
20.
BackgroundThe activation of hepatic stellate cells plays a central role in the development of liver fibrosis during chronic liver trauma. The aim of the present study was to identify a compound that inhibits the activation process of stellate cells.MethodsRat primary cultured stellate cells and a human stellate cell line (LX-2) were used. The effects of arundic acid on the expression of α-smooth muscle actin, collagen 1α1, and cytoglobin were evaluated.ResultsArundic acid (300 μM) inhibited the activation of primary rat stellate cells, as determined by morphological transformation and α-smooth muscle actin expression, after both prophylactic and therapeutic treatment. The level of α-smooth muscle actin mRNA showed a dose-dependent decrease in response to arundic acid, and 50 μM arundic acid exhibited the maximum inhibition of collagen 1α1 mRNA expression. In contrast, arundic acid triggered an unexpected increase in mRNA and protein levels of cytoglobin, the fourth globin in mammals expressed exclusively in hepatic stellate cells. The effect of arundic acid on the level of α-smooth muscle actin mRNA was abrogated in HSCs treated with cytoglobin siRNA. Arundic acid decreased the expression of collagen 1α1 mRNA in LX-2 cells.ConclusionArundic acid affects the activation process of hepatic stellate cells via the unexpected induction of cytoglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号