首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Growth and physiological response of woody plants to flooding have been analyzed in detail; however, relatively few studies have been oriented towards the effects of water immersion on cambial activity and wood and bark anatomy of trees that are growing in prolonged flooding conditions. These studies are important to understand the possible effects of predicted sea level rising in mangroves as a consequence of global warming. We studied five species growing in a mangrove forest, sampling three to six trees of each species, in sites that have the longest flooding period. Differences in bark appearance and phloem structure between the submerged stem portion and the portion of the stem above the water surface exist in all species. Although aerenchyma formation and stem hypertrophy are the most common events related to flooding, each type of tissue responded differently. Annona glabra L., Laguncularia racemosa (L.) Gaertn f. and Hibiscus tiliaceus L. developed rythidome. Avicennia germinans (L.) Stearn developed rythidome only in the submerged stem portion. Phyllanthus elsiae Urb., developed one periderm in both stem portions. Species that developed rythidome also developed aerenchyma between periderms and in the phellem. H. tiliaceus and P. elsiae, showed the highest values for anatomical phloem and periderm characters below water surface, while an inverse tendency was observed in A. glabra and L. racemosa, suggesting that prolonged flooding modifies vascular cambium and phellogen differently. Results indicate that sea level rising would affect distribution of the species according to their specific flooding tolerance.  相似文献   

2.
Forest insect pests are one of the major disturbance factors in forest ecosystems and their outbreaks are expected to be more severe under the influence of global warming. Coleopterans are dominant among forest insects and their ecological functions include general detritivores, dead wood feeders, fungivores, herbivores, live wood feeders and predators. Ambrosia and bark beetles contribute to ecological succession of forests and, therefore, ecological functions of forests can be changed in response to their outbreaks. Mountain pine beetle (MPB) outbreaks are the most dramatic example of changes in the ecological functions of forest due to the outbreak of a forest insect pest altered by global warming. Composition of coleopteran species varies with latitude. However, composition of functional groups is consistent with latitude which indicates that resources available to beetles are consistent. In coleopteran communities, ambrosia and bark beetles can become dominant due to increases of dead or stressed trees due to the warming climate. This can also induce changes in the ecological functions of coleopterans, i.e. selective force to displace trees that have lower ecological fitness due to temperature increase. Therefore, recent increases in the density ambrosia and bark beetles offer a chance to study ecological processes in forests under the influence of global warming.  相似文献   

3.
《Dendrochronologia》2014,32(2):113-119
Most subtropical forests in South America are located in regions with a marked seasonality in precipitation, which may induce the formation of annual bands in woody species. Due to the lack of precise information on tree-ring visibility, we evaluated the wood characteristics of 37 tree species in the subtropical Yungas and Chaco forests from northwestern (NW) Argentina. Anatomical features associated with the delimitation of growth bands were examined to establish the presence of tree rings. Different forest types reflect the precipitation gradients and wood anatomical features vary accordingly. Characteristics of wood structure are closely related to the dominant climatic patterns of each forest, revealing a common pattern of anatomical arrangements in terms of water transport and safety. In the Chaco and transitional forests, ring boundaries are related to marginal parenchyma whereas in montane forests growth ring boundary is mostly associated with the presence of thicker fibers at the end of the ring. The largest proportion of species with clearly marked growth rings occurs in the montane forest type of NW Argentina. Clear growth rings is a requisite for dendrochronological applications, hence the present work represents the first regional attempt to address the potential of subtropical species in South America to be used in dendrochronological studies.  相似文献   

4.
5.
Allen JA  Krauss KW  Hauff RD 《Oecologia》2003,135(1):110-121
The tree species Xylocarpus granatum is commonly described as occurring in the upper intertidal zone of mangrove forests, but mature trees are occasionally found at lower elevations. In the Utwe River basin, on the Pacific island of Kosrae, we investigated the relative importance of several biotic and abiotic factors that may control the intertidal distribution of X. granatum. Factors we evaluated included differential seed predation across the lower, mid, and upper intertidal zones and seedling responses to salinity, tidal flooding, and shade. Seed predation was 22.4% over the first 34 days and varied little among zones or in gaps versus under the forest canopy. By day 161, there were still no differences in seed mortality, but a significant difference was found in seedling establishment, with much greater establishment in the upper intertidal plots. X. granatum seedlings in a greenhouse experiment exhibited greater growth in freshwater than seedlings in 23 ppt salinity, which is typical of salinity levels found in the mid intertidal zone in our field study sites in Micronesia, where mature X. granatum trees are generally absent. Seedlings grown in 23 ppt salinity, however, exhibited few visible signs of stress associated with patterns in growth. Seedlings grown in a simulated tidal flooding treatment (with 23 ppt salinity) also showed few signs of stress. Growth declined dramatically under 80% shade cloths, but there were few interactions of shading with either 23 ppt salinity or simulated tidal flooding. Differential seed predation is not likely to be the primary factor responsible for the intertidal distribution of X. granatum on Kosrae. However, seedling tolerance of flooding or salinity may be more important, especially relative to a potential contribution to secondary stress mortality. Other factors may ultimately prove to be more critical, such as physiological effects of salinity on seed germination, effects of tides on seed dispersal and rooting, or differential herbivory on seedlings.  相似文献   

6.
We described, through a vegetation profile, the forest structure (density, basal area, tree height, and species composition), the productivity dynamics (based on litterfall) and the species phenology of distinct physiognomic types of mangroves in three locations of the La Mancha lagoon system in Veracruz, Mexico, during a complete annual cycle. We also evaluated the microtopography and ground water salinity along the profile and their relationship with forest structure and productivity. The South location showed four physiognomic types, whose forest attributes decreased as they were farther from the lagoon shore. Productivity and environment variables significantly varied among these physiognomic types. The Center location had two physiognomic types; there were significant differences in productivity and microtopography among these types, but not in salinity. The North location included two fragments of a basin forest type, and a pasture among them; productivity significantly varied among these forests, but microtopography and salinity were statistically similar. All study sites showed the following behavior: (1) as forest structure decreased, productivity also decreased and the dominant species changed. (2) As water salinity decreased, species dominance changed and productivity increased. Reproductive structures showed a notorious seasonality during the year in all species, except in R. mangle, which showed a permanent flower and propagules production. A. germinans reproduced only in the rainy season (August and September), because of their life history characteristics, whereas L. racemosa reproduced during the months of February and March as a response of the direct entrance of the water discharges, enriched with nutrients, that come from the sugar cane and rice crops. The South location was a relatively well conserved area, whereas the two other sites showed evidences of anthropic disturbances.  相似文献   

7.
Abstract. Within different stands of the white-water inundation forest (várzea forest) in the Central Amazon region, composition, abundance, frequency and basal area of tree species were recorded. Determinations of age and radial growth rates were conducted using dendrochronological methods. Results show significant differences in age, history and species composition between stands as well as different growth strategies among dominant species. Assignment of tree species to growth strategies by means of anatomical and morphological features together with quantitative aspects of vegetational analysis permit the further differentiation of successional stages of várzea forests. General features of successional stages were quantitatively described and compared with forest types from outside the várzea. Many tree species of the várzea forests are widespread in South America, and not limited to floodplains. Their occurrence on sites with distinct dry seasons suggests that they are not specifically adapted to flooding but are tolerant to seasonality in general.  相似文献   

8.

Mangrove tree species show plasticity in their leaf morphological traits in different salinity zones. However, leaf morphological plasticity and its causes in different salinity zones are incompletely understood. To understand the mechanism of plasticity, this study investigated the responses of three dominant tree species Sundri (Heritiera fomes), Gewa (Excoecaria agallocha) and Goran (Ceriops decandra) of the Sundarbans to the salinity gradients. A total of 17 leaf parameters were measured and quantified. All collected data were analyzed using univariate and multivariate statistical tools to investigate leaf morphological plasticity. A wide range of phenotypic plasticity was observed in all leaf parameters studied among the salinity zones of the Sundarbans. One-way ANOVA and Tukey’s posthoc test revealed significant differences (P?<?0.05) in all leaf parameters among the salinity zones and confirming that there was a high degree of phenotypic plasticity among the salinity zones of the Sundarbans. Petiole length (PL), leaf area (LA) and leaf length/petiole length (LL/PL) showed high level of plasticity among the salinity zones of the Sundarbans for each species of Sundri, Gewa and Goran. Plasticity index (PI) was developed in this study for each species studied. High level of phenotypic plasticity in these leaf traits reflects fitness of these species to different saline environments. Our results provide clear evidence that all the leaf parameters measured for three tree species viz., Sundri, Gewa and Goran effectively utilizes a plastic strategy in different salinity zones in the Sundarbans. Morphological trait plasticity could serve as powerful biological indicators to predict the shift of leaf morphology in upcoming environmental change events like sea level rise and reduction of fresh water flow from upstream.

  相似文献   

9.

Key message

Anatomical characteristics and hydrologic signals in tree-rings of oaks from areas with regular flooding may vary, even within the same forest stand, and largely depend on the micro-environmental conditions.

Abstract

Q. robur decline in European floodplain forests in recent years seems to be strongly associated with the deteriorating hydrological regime. We investigated the influence of the Krka River flow on tree-ring patterns of Q. robur from the Krakovo floodplain forests (Slovenia) to assess the effect of micro-location conditions on hydrological signals in wood-anatomical characteristics. We selected two groups of Q. robur trees growing at nearby locations with different hydrological conditions, resulting in frequent autumn and spring flooding at the wetter site (=W oaks) but no flooding at the other, drier site (=D oaks). We found differences between the two groups in the anatomical structure of tree-rings; however, ring width proved to be the main variable determining the anatomical structure of oak wood. D and W oaks responded differently to the Krka River flow in the studied period. Radial growth of D oaks was negatively influenced by spring flow, but positively influenced by minimum summer flow. In W oaks, ring width was positively correlated with mean summer flow. Thus, environmental information stored in wood-anatomical features may vary, even within the same forest stand, and largely depends on the micro-environment. Reduced wood increments of D oaks suggest that growth conditions are less favourable, implying a link between the health state of oaks from lowland forest and hydrological conditions. Trees intended for hydrological reconstruction must therefore be carefully selected to avoid the possibility of error and potential loss of information. Anatomical characteristics and hydrological signals in tree-rings of oaks from areas with regular flooding may vary, even within the same forest stand, and largely depends on the micro-environmental conditions.  相似文献   

10.
影响广东黑石顶树附生苔藓分布的环境因子   总被引:2,自引:0,他引:2  
通过对广东省黑石顶自然保护区内5个2500 m2样地内树附生苔藓的调查及有关环境因子的测定,研究了树附生苔藓的分布格局及其与环境因子的关系.树附生苔藓在不同高度的分布存在一定梯度,20 cm高处树附生苔藓的种类数与盖度均大于60 cm及更高处,且其群落优势种的数量组成与后者存在较大差异.不同树种附生苔藓盖度和种数差异较大.基于附生苔藓植物的盖度进行DCA排序及聚类分析将树种分成四组,马尾松(Pinus massoniana)因具有两种特有的网藓(巴西网藓Syrrhopodon prolifer和鞘刺网藓S.armatus)单独一组,福建青冈(Quercus chungii)亦与其余各种的差异均较大,形成一组,其余阔叶树种根据其所处的森林类型分成两组,针阔叶混交林内的阔叶树种和次生阔叶林内的阔叶树种各形成一组.对环境因子及树皮含水量和pH的分析显示,垂直梯度上空气湿度的差异可能是造成附生苔藓在不同高度分布差异的主要影响因子之一,不同树种附生苔藓的差异在一定程度上受树皮pH的影响,而与树皮含水量无关.同一树种上树附生苔藓的分布又在一定程度上受森林类型的影响.  相似文献   

11.
Sea-level rise threatens low-lying coastal ecosystems globally. In Florida, USA, salinity stress due to increased tidal flooding contributes to the dramatic and well documented decline of species-rich coastal forest areas along the Gulf of Mexico. Here, we present the results of a study of coastal forest stand dynamics in thirteen 400 m2 plots representing an elevation gradient of 0.58–1.1 m affected by tidal flooding and rising sea levels. We extended previously published data from 1992–2000 to 2005 to quantify the full magnitude of the 1998–2002 La Niña-associated drought. Populations of the dominant tree species, Sabal palmetto (cabbage palm), declined more rapidly during 2000–2005 than predicted from linear regressions based on the 1992–2000 data. Dramatic increases in Juniperus virginiana (Southern red cedar) and S. palmetto mortality during 2000–2005 as compared with 1995–2000 are apparently due to the combined effects of a major drought and ongoing sea-level rise. Additionally, coastal forest stands continued to decline in species richness with increased tidal flooding frequency and decreasing elevation. Stable isotope (H, O) analyses demonstrate that J. virginiana accesses fresher water sources more than S. palmetto . Carbon isotopes reveal increasing δ 13C enrichment of S. palmetto and J. virginiana with increased tidal flooding and decreased elevation, demonstrating increasing water stress in both species. Coastal forests with frequent tidal flooding are unable to support species-rich forests or support regeneration of the most salt-tolerant tree species over time. Given that rates of sea-level rise are predicted to increase and periodic droughts are expected to intensify in the future due to global climate change, coastal forest communities are in jeopardy if their inland retreat is restricted.  相似文献   

12.
1. Regulation of rivers for human demands has led to extensive forest dieback on many floodplains. If these important ecosystems are to be maintained under future drier climates, we need accurate tools for predicting forest dieback. In the absence of spatially explicit flooding histories for many floodplains, changes in groundwater conditions may be a good indicator of water availability and, therefore, an important environmental indicator. 2. Eucalyptus camaldulensis forests of Australia are an acute example of forest dieback, with 70% of the Victorian Murray River floodplain dying back. We quantified the relationship between forest dieback and ground water across this extensive floodplain (c. 100 000 ha of forest over 1500 km of river length). 3. A combination of extensive ground surveys, remotely sensed data and modelling methods was used to predict forest dieback at the time of the survey and in the past. This approach provides a valuable tool for accurately monitoring forest condition over large spatial scales. Forest dieback was estimated to have increased from 45 to 70% of the floodplain between 1990 and 2006. 4. Accurate groundwater data (depth and salinity) over a 20‐year period were obtained for 289 bores and summarised using nonlinear regression. Groundwater depth and salinity were strong predictors of stand condition. This suggests that changes in groundwater conditions could be used to signal areas vulnerable to forest dieback and prioritise the limited water available for managed flooding. 5. In the upper Murray, where ground water is predominantly fresh (<15 mS cm?2), dieback increased with increasing groundwater depth. In contrast, the condition of stands in the lower Murray improved with increases in groundwater depth due its high salinity (>30 mS cm?2). These regional differences in response of the same tree species to groundwater conditions show that our understanding of the drivers of forest dieback is best achieved at spatial and temporal scales representative of the problem.  相似文献   

13.
In tropical Africa, evidence of widely distributed genera transcending biomes or habitat boundaries has been reported. The evolutionary processes that allowed these lineages to disperse and adapt into new environments are far from being resolved. To better understand these processes, we propose an integrated approach, based on the eco‐physio‐morphological traits of two sister species with adjacent distributions along a rainfall gradient. We used wood anatomical traits, plant hydraulics (vulnerability to cavitation, wood volumetric water content, and hydraulic capacitance), and growth data from the natural habitat, in a common garden, to compare species with known phylogeny, very similar morphologically, but occupying contrasting habitats: Erythrophleum ivorense (wet forest) and Erythrophleum suaveolens (moist forest and forest gallery). We identified some slight differences in wood anatomical traits between the two species associated with strong differences in hydraulics, growth, and overall species distribution. The moist forest species, E. suaveolens, had narrower vessels and intervessel pits, and higher vessel cell‐wall reinforcement than E. ivorense. These traits allow a high resistance to cavitation and a continuous internal water supply of the xylem during water shortage, allowing a higher fitness during drought periods, but limiting growth. Our results confirm a trade‐off between drought tolerance and growth, controlled by subtle adaptations in wood traits, as a key mechanism leading to the niche partitioning between the two Erythrophleum species. The generality of this trade‐off and its importance in the diversification of the African tree flora remains to be tested. Our integrated eco‐physio‐morpho approach could be the way forward.  相似文献   

14.
Tropical West African savannas are exposed to high climatic variability with potential impacts on tree growth, forest dynamics and ecosystem productivity. In such context, understanding the long-term ecological responses of savanna trees to changing environmental conditions is of great relevance for taking appropriate conservation actions. We conducted the first study on tree-ring analysis and quantitative wood anatomy on Afzelia africana Sm. in Burkina Faso, to investigate the life-span growth trajectories and wood anatomical adjustment to site and to climate variations. A total of 24 stem discs was collected in four protected forests along the Sudano-sahelian and the Sudanian climatic zones. Wood samples were analyzed using standard dendrochronological methods and quantitative wood anatomy. The mean annual growth rates varied from 1.002 (± 0.249) mm. year−1 in the Sudanian zone to 1.128 (± 0.436) mm. year−1 in the Sudano-sahelian zone. Analysis of growth trajectories showed high variations within sites and between climatic zones. Wood anatomical traits significantly varied between sites. Principal Component Analysis revealed strong relationships between ring width, wood density and vessel traits, with 82.81 % of the total variance explained. Vessel size significantly increased from the pith to the bark, highlighting the ontogenetic effects on xylem anatomical variations. Inverse relationships were found between vessel size and vessel density across the driest site and the wettest site, suggesting that the higher the rainfall, the taller the tree, the larger vessel size, but the lower vessel density. By contrast, more arid conditions and high evapotranspiration lead to smaller vessel sizes and higher vessel density. Such anatomical adjustments highlight the trade-offs between water conductance efficiency and hydraulic safety, and emphasize physiological responses to climate variability. These variations on the long-term dynamics and xylem anatomical patterns underline complex interactions between ontogenetic effects and contrasting environmental factors that affect the eco-physiological functioning of A. africana throughout the Sudanian region.  相似文献   

15.
 As global climate changes, sea level rise and increased frequency of hurricanes will expose coastal forests to increased flooding and salinity. Quercus species are frequently dominant in these forest, yet little is known about their salinity tolerance, especially in combination with flooding. In this study, 1-year-old seedlings of Quercus lyrata Walt. (overcup oak), Q. michauxii Nutt. (swamp chestnut oak), Q. nigra L. (water oak), and Q. nuttallii Palmer (Nuttall oak) were chronically (simulating sea level rise) and acutely (simulating hurricane storm surge) exposed to increased flooding and salinity, individually and in combination. The four species demonstrated two response patterns of photosynthesis (A), conductance, and leaf water potential, apparently related to their relative flood tolerance. In Q. lyrata, Q. nuttallii, and Q. nigra (moderately flood-tolerant), A was not immediately reduced after the initiation of the freshwater flooding, but was reduced as the duration of flooding increased. In the second pattern, demonstrated by the weakly flood-tolerant Q. michauxii, A was immediately reduced by freshwater flooding with an increasing impact over time. Watering with 2 parts per thousand (ppt) saline water did not consistently reduce A, but flooding with 2 ppt reduced A of all species, similar to the response with freshwater flooding. Photosynthesis of all species was reduced by 6 ppt watering or flooding, with the latter treatment killing all species within 8 weeks. When acutely exposed to 30 ppt salinity, A was quickly and severely reduced regardless of whether the seedlings were watered or flooded. Acutely flooded seedlings exposed to high salinity died within 2 weeks, but seedlings watered with 30 ppt saline water recovered and A was not reduced the following spring. As saline flooding of coastal areas increases due to sea level rise, photosynthesis of these species will be differentially affected based primarily on their flood tolerance. This suggests that increased flooding associated with sea level rise will impact these tree species to a greater extent than small increases in soil salinity. High salinity accompanying storm surges will be very harmful to all of these species. Received: 20 October 1997 / Accepted: 2 December 1998  相似文献   

16.
Concerning forest communities, not much is known about the relationship between wood traits and environmental conditions. Using a succession series, we analyzed which wood anatomical traits were correlated with successional stage and asked which traits and which environmental factors were particularly important for the trait–environment relationship. An extensive dataset of 11 groups of wood traits was generated for 93 woody species that occurred in 27 permanent plots in a secondary subtropical secondary broadleaved forest in Zhejiang Province (SE-China) and subjected to Fourth Corner Analyses, using different permutation models. We encountered a strong relationship of wood porosity, visibility of growth rings and vessel arrangement to the successional gradient. Compared to biotic community characteristics such as density of plants, abiotic environmental variables such as soil characteristics, aspect and inclination of the plots showed only marginal correlations to wood anatomical traits. Furthermore, the link between environment and species composition of the forest communities was found to be more important in explaining the trait–environment relationship than between the communities and species wood traits. In addition, our results support the idea that most of the species in the subtropical forest might be functionally equivalent.  相似文献   

17.
Savanna tree communities occurring in confluence zones with other biomes likely experience different environmental pressures, resulting in shifts in the selection of individual traits, the combinations of such traits, and species composition. In seasonally dry fire-prone environments, plant survival is presumably associated with adaptive changes in bark properties related to fire protection and water storage. Here, we integrated the multiple functions of the bark to investigate whether different selective pressures could influence patterns of variation in bark structure and allocation across species in a broad geographical range. We measured thickness, density, and water content of the inner and outer bark in branches and the main stem of the 51 most abundant species in three savanna communities differing in climatic aridity, one located at the core region of Cerrado in Central Brazil and the other two at its periphery, in the transition zones with Amazonia and Atlantic forest biomes. We found no difference in outer bark thickness but markedly difference in inner bark thickness between the three plant communities. In the central region, where dry season is long and fire is frequent, branches and main stem showed thicker inner bark. Contrastingly, in the south periphery region, where dry season is short, species showed thinner inner bark in both branches and main stem. Species from the north periphery region, where mean annual precipitation is higher, but fire is frequent and the dry season is also long, showed similar main stem inner bark thickness, but thinner branch inner bark compared to core region species. Our findings support the idea that investing in inner bark thickness and bark moisture may be the most advantageous strategy in plant communities that suffer from high evaporative demand during a long period and are at a high risk of fire.  相似文献   

18.
Rapid destruction of forest habitats has led to the establishment of protected areas in formerly managed forests with the aim of restoring biodiversity. Conservation in spruce-dominated reserves is often contradicted by salvage logging after insect outbreaks. Here we study the community characteristics of wood decaying fungi in a high montane Norway Spruce forest with three different management types: (1) a formerly managed area disturbed by a large-scale bark beetle outbreak, (2) an area with continuous salvage logging, and (3) an old-growth forest. Bark beetle activity in the disturbed area resulted in downed wood amounts comparable to those of the old-growth forest. However, species accumulation curves for the disturbed forest were more similar to those of the logged forest than to those of the old-growth forest. This arose because of differences in the diversity of wood decay classes; wood decay in the disturbed forest was more homogeneous. Logs in the disturbed forest originated almost exclusively from bark-beetle-infested trees, but the causes of tree mortality in the old-growth forest were manifold. Although most red-listed species were clearly confined to old-growth forest, Antrodiella citrinella was most abundant in the disturbed forest. Our analysis furthermore showed that the between stand scale is the most effective unit for diversity wood-decaying fungi. We therefore suggest a conservation strategy for preserving old-growth forests and establishing protected forest stands to enhance structural heterogeneity in spruce-dominated forests. For this, a careful screening of protected areas throughout Europe is necessary to provide managers with guidelines for conservation.  相似文献   

19.
水分利用效率是反映植物水分利用的客观指标,对其研究有助于了解陆地生态系统的碳水耦合机制.本研究利用稳定碳同位素技术分析了长白山阔叶红松林演替序列下3种林分(中龄杨桦林、成熟杨桦林、阔叶红松林)中优势树种的水分利用效率.结果 表明:3种林分的水分利用效率在不同演替阶段存在阔叶红松林>中龄杨桦林>成熟杨桦林的大小顺序,且同...  相似文献   

20.
红树植物是一类生长在热带、亚热带海岸潮间带的乔木、灌木或草本植物,根据其分布特征可分为真红树植物植物和半红树植物。为了探究两者对海岸潮间带高盐、高光和缺氧等环境的生态适应策略的异同,该文选取5种真红树植物植物[卤蕨(Acrostichum aureum)、木榄(Bruguiera gymnorrhiza)、老鼠簕(Acanthus ilicifolius)、桐花树(Aegiceras corniculatum)、秋茄(Kandelia candel)]和4种半红树植物[银叶树(Heritiera littoralis)、水黄皮(Pongamia pinnata)、黄槿(Hibiscus tiliaceus)、杨叶肖槿(Thespesia populnea)]为研究对象,对叶片解剖和功能性状进行了对比研究。结果表明:(1)9种红树植物叶片的共同特征表现为均具有角质层、叶肉具有栅栏组织和海绵组织分化、气孔下陷等。(2)不同之处在于真红树植物植物叶片有蜡质层和内皮层、无表皮毛、气孔仅分布在下表皮,而半红树植物的叶片则较少有蜡质层,部分有表皮毛,无内皮层,气孔在上下表皮分布不完全一致。(3)真红树植物植物的气孔密度和比叶面积显著小于半红树植物(P<0.05),而叶片厚度、含水量、比叶重和鲜干重比则显著大于半红树植物(P<0.05)。以上结果说明真红树植物植物的叶片性状使其在维持盐度平衡及贮水保水能力方面强于半红树植物,从而能更好地适应海岸潮间带高盐环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号