首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular dynamics simulations (MD) have been performed on variant crystal and NMR-derived structures of the glucocorticoid receptor DNA-binding domain (GR DBD). A loop region five residues long, the so-called D-box, exhibits significant flexibility, and transient perturbations of the tetrahedral geometry of two structurally important Cys4 zinc finger are seen, coupled to conformational changes in the D-box. In some cases, one of the Cys ligands to zinc exchanges with water, although no global distortion of the protein structure is observed. Thus, from MD simulation, dynamics of the D-box could partly be explained by solvent effects in conjunction with structural reformation of the zinc finger.  相似文献   

3.
4.
5.
6.
The Cys(2)His(2)-type zinc finger is a common DNA binding motif that is widely used in the design of artificial zinc finger proteins. In almost all Cys(2)His(2)-type zinc fingers, position 4 of the α-helical DNA-recognition site is occupied by a Leu residue involved in formation of the minimal hydrophobic core. However, the third zinc finger domain of native Zif268 contains an Arg residue instead of the conserved Leu. Our aim in the present study was to clarify the role of this Arg in the formation of a stable domain structure and in DNA binding by substituting it with a Lys, Leu, or Hgn, which have different terminal side-chain structures. Assessed were the metal binding properties, peptide conformations, and DNA-binding abilities of the mutants. All three mutant finger 3 peptides exhibited conformations and thermal stabilities similar to the wild-type peptide. In DNA-binding assays, the Lys mutant bound to target DNA, though its affinity was lower than that of the wild-type peptide. On the other hand, the Leu and Hgn mutants had no ability to bind DNA, despite the similarity in their secondary structures to the wild-type. Our results demonstrate that, as with the Leu residue, the aliphatic carbon side chain of this Arg residue plays a key role in the formation of a stable zinc finger domain, and its terminal guanidinium group appears to be essential for DNA binding mediated through both electrostatic interaction and hydrogen bonding with DNA phosphate backbone.  相似文献   

7.
For approximately one-third of estrogen receptor (ER)-positive breast cancer patients, extracted tumor ER is unable to bind to its cognate DNA estrogen response element (ERE), an effect that is partly reversible by the thiol-reducing agent dithiothreitol (DTT). Full-length (67 kDa) ER or its 11 kDa recombinant DNA-binding domain (ER-DBD) is also susceptible to loss of structure and function by the action of oxidants such as diamide and hydrogen peroxide; however, prior DNA binding by ER or ER-DBD protects against this oxidant induced loss of function. The ER-DBD contains two (Cys)(4)-liganded zinc finger motifs that cooperate to stabilize a rigid DNA-binding recognition helix and a flexible helix-supported dimerization loop, respectively. Comparisons between synthetic peptide analogues of each zinc finger and recombinant ER-DBD in the presence of zinc by electrophoretic mobility shift assay, circular dichroism, and mass spectrometry confirm that cooperativity between these zinc fingers is required for both ER-DBD structure (alpha-helicity) and function (dimeric DNA binding). Rapid proteolytic digestion of monomeric, non-DNA-bound ER-DBD followed by HPLC-MS analysis of the resulting peptides demonstrates that zinc inhibits thiol oxidation of the DNA-binding finger, but not the finger supporting the flexible dimerization loop, which remains sensitive to internal disulfide formation. These findings indicate that the loss of ER DNA-binding function in extracts from some primary breast tumors and in ER or ER-DBD exposed to thiol-reacting oxidants results from this asymmetric zinc finger susceptibility to disulfide formation that prevents dimerization. Although ER-DBD contains several strategically located methionine residues, they are less susceptible to oxidation than the thiol groups and, thus, afford no protection against cysteine oxidation and consequent loss of ER DNA-binding function.  相似文献   

8.
9.
植物Dof转录因子及其生物学功能   总被引:1,自引:0,他引:1  
Dof(DNA binding with one finger)蛋白是植物特有的一类转录因子,包含一个C2-C2锌指,其N-末端保守的Dof结构域是既与DNA又和蛋白相互作用的双重功能域。在过去10多年的研究中,Dof蛋白在多种单子叶和双子叶植物中被分离。Dof蛋白作为转录的激活子或抑制子在植物的生长和发育中发挥重要作用。就Dof转录因子及其生物学功能的进展进行了综述。  相似文献   

10.
Solution structure of a zinc finger domain of yeast ADR1   总被引:14,自引:0,他引:14  
  相似文献   

11.
12.
13.
14.
The yeast SPT10 gene encodes a putative histone acetyltransferase that binds specifically to pairs of upstream activating sequence (UAS) elements found only in the histone gene promoters. Here, we demonstrate that the DNA-binding domain of Spt10p is located between residues 283 and 396 and includes a His(2)-Cys(2) zinc finger. The binding of Spt10p to the histone UAS is zinc-dependent and is disabled by a zinc finger mutation (C388S). The isolated DNA-binding domain binds to single histone UAS elements with high affinity. In contrast, full-length Spt10p binds with high affinity only to pairs of UAS elements with very strong positive cooperativity and is unable to bind to a single UAS element. This implies the presence of a "blocking" domain in full-length Spt10p, which forces it to search for a pair of UAS elements. Chromatin immunoprecipitation experiments indicate that, unlike wild-type Spt10p, the C388S protein does not bind to the promoter of the gene encoding histone H2A (HTA1) in vivo. The C388S mutant has a phenotype similar to that of the spt10Delta mutant: poor growth and global aberrations in gene expression. Thus, the C388S mutation disables the DNA-binding function of Spt10p in vitro and in vivo. The zinc finger of Spt10p is homologous to that of foamy virus integrase, perhaps suggesting that this integrase is also a sequence-specific DNA-binding protein.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号