共查询到20条相似文献,搜索用时 15 毫秒
1.
The locust frontal ganglion (FG) constitutes a major source of innervation to the foregut dilator muscles and thus plays a key role in control of foregut movements. This paper reviews our recent studies on the generation and characteristics of FG motor outputs in two distinct and fundamental locust behaviors: feeding and molting. In an in vitro preparation, isolated from all descending and sensory inputs, the FG was spontaneously active and generated rhythmic multi-unit bursts of action potentials, which could be recorded from all efferent nerves. Thus the FG motor pattern is generated by a central pattern generator within the ganglion. Intracellular recordings suggest that only a small fraction (10-20%) of the FG 100 neurons demonstrate rhythmic activity. The FG motor output in vivo was relatively complex, and strongly dependent on the locust's physiological and behavioral state. Rhythmic activity of the foregut was found to depend on the amount of food present in the crop; animals with full crop demonstrated higher FG burst frequency than those with empty crop. At the molt, the FG generates a distinct motor pattern that could be related to air-swallowing behavior. 相似文献
2.
Allen I. Selverston 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1551):2329-2345
There are now a reasonable number of invertebrate central pattern generator (CPG) circuits described in sufficient detail that a mechanistic explanation of how they work is possible. These small circuits represent the best-understood neural circuits with which to investigate how cell-to-cell synaptic connections and individual channel conductances combine to generate rhythmic and patterned output. In this review, some of the main lessons that have appeared from this analysis are discussed and concrete examples of circuits ranging from single phase to multiple phase patterns are described. While it is clear that the cellular components of any CPG are basically the same, the topology of the circuits have evolved independently to meet the particular motor requirements of each individual organism and only a few general principles of circuit operation have emerged. The principal usefulness of small systems in relation to the brain is to demonstrate in detail how cellular infrastructure can be used to generate rhythmicity and form specialized patterns in a way that may suggest how similar processes might occur in more complex systems. But some of the problems and challenges associated with applying data from invertebrate preparations to the brain are also discussed. Finally, I discuss why it is useful to have well-defined circuits with which to examine various computational models that can be validated experimentally and possibly applied to brain circuits when the details of such circuits become available. 相似文献
3.
Lukowiak K Syed N 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》1999,124(3):265-274
In an attempt to elucidate the causal mechanisms underlying learning and memory we have developed a model system, aerial respiration in the pond snail Lymnaea stagnalis. A three-neuron central pattern generator (CPG) whose sufficiency and necessity have been demonstrated mediates this behaviour. Aerial respiration, while an important homeostatic behaviour, is inhibited by the activation of the whole body withdrawal response that the animal uses to protect itself. We found that it was possible to operantly condition snails not to perform aerial respiration in a situation, a hypoxic environment, where aerial respiration should predominate. Operant conditioning was achieved by eliciting the pneumostome withdrawal response, part of the whole body withdrawal response, each time the animal attempted to open its pneumostome to breathe. Yoked control animals did not demonstrate an alteration in breathing behaviour. Subsequently we determined neural correlates of this associative behaviour and found that neuronal changes are distributed throughout the CPG. This preparation may afford us the opportunity to determine the casual neuronal changes that underlie learning and memory of associative conditioning. 相似文献
4.
The pyloric Central Pattern Generator (CPG) in the lobster has an architecture in which every neuron receives at least one connection from another member of the CPG. We call this a "non-open" network topology. An "open" topology, where at least one neuron does not receive synapses from any other CPG member, is found neither in the pyloric nor in the gastric mill CPG. Here we investigate a possible reason for this topological structure using the ability to perform a biologically functional task as a measure of the efficacy of the network. When the CPG is composed of model neurons that exhibit regular membrane voltage oscillations, open topologies are as able to maximize this functionality as non-open topologies. When we replace these models by neurons which exhibit chaotic membrane voltage oscillations, the functional criterion selects non-open topologies. As isolated neurons from invertebrate CPGs are known in some cases to undergo chaotic oscillations, this suggests that there is a biological basis for the class of non-open network topologies that we observe. 相似文献
5.
The neuronal circuit controlling the rhythmic movements in animal locomotion is called the central pattern generator (CPG). The biological control mechanism appears to exploit mechanical resonance to achieve efficient locomotion. The objective of this paper is to reveal the fundamental mechanism underlying entrainment of CPGs to resonance through sensory feedback. To uncover the essential principle, we consider the simplest setting where a pendulum is driven by the reciprocal inhibition oscillator. Existence and properties of stable oscillations are examined by the harmonic balance method, which enables approximate but insightful analysis. In particular, analytical conditions are obtained under which harmonic balance predicts existence of an oscillation at a frequency near the resonance frequency. Our result reveals that the resonance entrainment can be maintained robustly against parameter perturbations through two distinct mechanisms: negative integral feedback and positive rate feedback. 相似文献
6.
Vogelstein RJ Tenore F Etienne-Cummings R Lewis MA Cohen AH 《Biological cybernetics》2006,95(6):555-566
We show that an ongoing locomotor pattern can be dynamically controlled by applying discrete pulses of electrical stimulation
to the central pattern generator (CPG) for locomotion. Data are presented from a pair of experiments on biological (wetware)
and electrical (hardware) models of the CPG demonstrating that stimulation causes brief deviations from the CPG’s limit cycle
activity. The exact characteristics of the deviation depend strongly on the phase of stimulation. Applications of this work
are illustrated by examples showing how locomotion can be controlled by using a feedback loop to monitor CPG activity and
applying stimuli at the appropriate times to modulate motor output. Eventually, this approach could lead to development of
a neuroprosthetic device for restoring locomotion after paralysis.
R. J. Vogelstein and F. Tenore contributed equally to this work. 相似文献
7.
Central pattern generator (CPG) networks rely on a balance of intrinsic and network properties to produce reliable, repeatable activity patterns. This balance is maintained by homeostatic plasticity where alterations in neuronal properties dynamically maintain appropriate neural output in the face of changing environmental conditions and perturbations. However, it remains unclear just how these neurons and networks can both monitor their ongoing activity and use this information to elicit homeostatic physiological responses to ensure robustness of output over time. Evidence exists that CPG networks use a mixed strategy of activity‐dependent, activity‐independent, modulator‐dependent, and synaptically regulated homeostatic plasticity to achieve this critical stability. In this review, we focus on some of the current understanding of the molecular pathways and mechanisms responsible for this homeostatic plasticity in the context of central pattern generator function, with a special emphasis on some of the smaller invertebrate networks that have allowed for extensive cellular‐level analyses that have brought recent insights to these questions. 相似文献
8.
The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals. 相似文献
9.
F. James Eisenhart Timothy W. Cacciatore William B. Kristan Jr 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2000,186(7-8):631-643
Crawling in the medicinal leech has previously been thought to require sensory feedback because the intact behavior is strongly modulated by sensory feedback and because semi-intact preparations will only crawl if they can move freely. Here we show that an isolated leech nerve cord can produce a crawling motor pattern similar to the one seen in semi-intact preparations, which consists of an anterior-to-posterior wave of alternating excitatory circular and longitudinal motor neuron bursts in each segment. The isolated cord also reproduces the patterns of activity seen in semi-intact preparations for several other kinds of cells: the dorsal inhibitor cell 1, the ventral excitor cell 4, and the annulus erector motor neuron. Because this correspondence is so strong, there must be a central pattern generator in the isolated cord that can produce the basic motor pattern for crawling without sensory feedback. A quantitative analysis of the isolated motor pattern, however, reveals that isolated and semi-intact preparations have longer periods than the intact behavior and that there are deficiencies in the timing of motor neuron bursts in the isolated pattern. These results suggest that sensory feedback modulates the isolated central pattern generator to help produce the normal motor pattern. 相似文献
10.
11.
Stefan Clemens Robert Calin-Jageman Akira Sakurai Paul S. Katz 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2007,193(12):1265-1271
Cyclic AMP is a second messenger that has been implicated in the neuromodulation of rhythmically active motor patterns. Here,
we tested whether manipulating cAMP affects swim motor pattern generation in the mollusc, Tritonia diomedea. Inhibiting adenylyl cyclase (AC) with 9-cyclopentyladenine (9-CPA) slowed or stopped the swim motor pattern. Inhibiting
phosphodiesterase with 3-isobutyl-1-methylxanthine (IBMX) or applying dibutyryl-cAMP (dB-cAMP) disrupted the swim motor pattern,
as did iontophoresing cAMP into the central pattern generator neuron C2. Additionally, during wash-in, IBMX sometimes temporarily
produced extended or spontaneous swim motor patterns. Photolysis of caged cAMP in C2 after initiation of the swim motor pattern
inhibited subsequent bursting. These results suggest that cAMP levels can dynamically modulate swim motor pattern generation,
possibly shaping the output of the central pattern generator on a cycle-by-cycle basis. 相似文献
12.
Paul A. Stevenson Wolfram Kutsch 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1987,161(1):115-129
Summary Although it is generally agreed that locusts can generate flight similar rhythmic motor activity in the absence of sensory feedback from the wings, recent studies indicate that functional deafferentation produces significant changes in the flight motor pattern (Hedwig and Pearson 1984). These findings have raised doubts on the adequacy of the central pattern generator concept for the locust flight system (Pearson 1985). In this paper, we re-investigate the effects of deafferentation on the capacity of adult migratory locusts to generate the flight motor pattern. For this purpose, the experimental animals were dissected to various degrees, ranging from head-ventral nerve cord, to isolated pterothoracic nerve cord, and finally single isolated ganglion preparations. Flight motor activity was released by either wind stimulation, the more traditional method, or by applying octopamine (Sombati and Hoyle 1984; Stevenson and Kutsch 1986). In all cases the released motor activity was analysed, giving details of latency, and phase relationships between specific synergistic and antagonistic motor units, and then compared with the flight motor pattern generated by intact tethered locusts.This analysis shows that deafferentation, although reducing the frequency, does not necessarily disrupt the basic flight motor pattern. By using octopamine we could show that even isolated thoracic nerve cord preparations can generate activity, which in all major aspects corresponds to this motor program. This could also be shown for the fully isolated metathoracic ganglion and we provide some evidence that the mesothoracic ganglion may be capable of a similar performance. In addition to releasing flight activity, octopamine was also found to enhance the responsiveness of deafferentated locusts to wind stimulation. This resulted in a considerable elevation of the frequency and prolongation of the flight motor activity to values comparable to the performance of intact tethered locusts. 相似文献
13.
Kahn JA Roberts A 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1982,296(1081):229-243
The central nervous system of paralysed Xenopus laevis embryos can generate a motor output pattern suitable for swimming locomotion. By recording motor root activity in paralysed embryos with transected nervous systems we have shown that: (a) the spinal cord is capable of swimming pattern generation; (b) swimming pattern generator capability in the hindbrain and spinal cord is distributed; (c) caudal hindbrain is necessary for sustained swimming output after discrete stimulation. By recording similarly from embryos whose central nervous system was divided longitudinally into left and right sides, we have shown that: (a) each side can generate rhythmic motor output with cycle periods like those in swimming; (b) during this activity cycle period increases within an episode, and there is the usual rostrocaudal delay found in swimming; (c) this activity is influenced by sensory stimuli in the same way as swimming activity; (d) normal phase coupling of the left and right sides can be established by the ventral commissure in the spinal cord. We conclude that interactions between the antagonistic (left and right) motor systems are not necessary for swimming rhythm generation and present a model for swimming pattern generation where autonomous rhythm generators on each side of the nervous system drive the motoneurons. Alternation is achieved by reciprocal inhibition, and activity is initiated and maintained by tonic excitation from the hindbrain. 相似文献
14.
Avis H. Cohen 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1987,160(2):181-193
Summary In the lamprey,Ichthyomyzon unicuspis, the wave of activity required for normal swimming movements can be generated by a central pattern generator (CPG) residing in the spinal cord. A constant phase coupling between spinal segments can be organized by intersegmental coordinating neurons intrinsic to the cord. The rostral and caudal segmental oscillators of the CPG have different preferred frequencies when separated from each other. Therefore the system must maintain the segmental oscillators of the locomotor CPG at a single common frequency and with the proper relative timing. Using selective lesions and a split-bath, it is demonstrated that the coordinating system is comprised of at least 3 subsystems, short-axon systems in the lateral and medial tracts and a long axon system in the lateral tracts. Each alone can sustain relatively stable coordinated activity.Abbreviations
CPG
central pattern generator
-
NMDA
N-methyl-D-aspartate
-
VR
ventral root 相似文献
15.
U. Bässler 《Biological cybernetics》1986,54(1):65-69
A central pattern generator (CPG) is defined here as a neural network responsible for the production of the timing cues of a rhythmic motor output pattern in the isolated CNS. For the intact animal, model considerations show that this term is neither clearly delimited from the concept of a reflex chain nor from the concept of a pattern generator with functional principles different from those of the CPG. Therefore, it cannot be concluded from the existence of a CPG in the isolated nervous system that this CPG also provides the decisive timing cues in the intact animal. Consequences for the study of the neural basis of rhythmic movements are shown. 相似文献
16.
New findings in the nervous system of invertebrates have shown how a number of features of central pattern generator (CPG) circuits contribute to the generation of robust flexible rhythms. In this paper we consider recently revealed strategies that living CPGs follow to design CPG control paradigms for modular robots. To illustrate them, we divide the task of designing an example CPG for a modular robot into independent problems. We formulate each problem in a general way and provide a bio-inspired solution for each of them: locomotion information coding, individual module control and inter-module coordination. We analyse the stability of the CPG numerically, and then test it on a real robot. We analyse steady state locomotion and recovery after perturbations. In both cases, the robot is able to autonomously find a stable effective locomotion state. Finally, we discuss how these strategies can result in a more general design approach for CPG-based locomotion. 相似文献
17.
A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander 总被引:1,自引:0,他引:1
Ijspeert AJ 《Biological cybernetics》2001,84(5):331-348
18.
A test of a dual central pattern generator hypothesis for subcortical control of locomotion. 总被引:2,自引:0,他引:2
M A Guadagnoli B Etnyre M L Rodrigue 《Journal of electromyography and kinesiology》2000,10(4):241-247
This study was designed to examine the nature of neural circuits involved in subcortical inter-limb coordination and reflex modulation mechanisms of locomotion. These circuits, called central pattern generators (CPGs), are believed to receive tonic input and generate rhythmically alternating sets of commands. Although CPGs have been theorized to exist in humans, their potential dual role in inter-limb coordination and reflex modulation is unclear. In the present study, nine participants walked on a treadmill, timing their heel-strikes to a metronome which varied the phase lag from 0.5 to 1.0 pi radians (0.1 pi intervals). A stimulus was delivered to the sural nerve and reflexes were measured in the ipsilateral and contralateral lower extremities through electromyography. The similarity between phase lag conditions for both temporal coordination (i.e., relative timing aspects between muscles and/or limbs) and reflex intensities suggested that they may be controlled by the same subcortical circuitry. Two plausible explanations exist: (1) a single CPG coordinates muscular contractions and phasically alters proprioceptive reflex modulation, as well as cutaneous input, using feed-forward control; (2) two separate circuits are strongly entrained, producing synchronous outputs for inter-limb coordination and reflex modulation. The out-of-phase task used in this study was limited in discerning such a difference, if it exists. 相似文献
19.
Egg-laying in Locusta migratoria involves the control of a variety of complex behavioural patterns including those that regulate digging of the oviposition hole and retention of eggs during digging. These two behavioural patterns are under the control of central pattern generators (CPGs). The digging and egg-retention CPGs are coordinated and integrated with overlapping locations of neural substrate within the VIIth and VIIIth abdominal ganglia of the central nervous system (CNS). In fact, the egg-retention CPG of the VIIth abdominal ganglion is involved in both egg-retention and protraction of the abdomen during digging. The biogenic amine, octopamine, has peripheral effects on oviduct muscle, relaxing basal tension of the lateral and upper common oviduct and enabling egg passage. Here we show that octopamine also modulates the pattern of the egg-retention CPG by altering the motor pattern that controls the external ventral protractor of the VIIth abdominal segment. There is no change in the motor pattern that goes to the oviducts. Octopamine decreased the frequency of the largest amplitude action potential and decreased burst duration while leading to an increase in cycle duration and interburst interval. The effects of octopamine were greatly reduced in the presence of the α-adrenergic blocker, phentolamine, indicating that the action of octopamine was via a receptor. Thus, octopamine orchestrates events that can lead to oviposition, centrally inhibiting the digging behavior and peripherally relaxing the lateral and common oviducts to enable egg-laying. 相似文献