首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The structure of three consecutive laminin-type EGF-like (LE) modules of mouse laminin γ1 chain, γ1III3-5 (positions 738 to 899), has been determined by multiple isomorphous replacement in a crystal of space groupP6422 (a=b=74.57 Å,c=185.11 Å and γ=120°). The crystal structure was refined using restrained crystallographic refinement to an R-factor of 19.72 % for 14,983 independent reflections with intensitiesFobs> 0 at 2.1 Å resolution, with root mean square deviations of 0.012 Å and 1.690° from ideal bond lengths and bond angles, respectively. The final model consisted of 1179 (non-hydrogen) protein atoms within 162 residues and 119 water molecules. The molecule showed a rod-like structure of about 76 Å length with individual modules twisted relative to each other by about 70°. Each module had the same disulfide bond connections Cys1-Cys3 (loop a), Cys2-Cys4 (loop b), Cys5-Cys6 (loop c) and Cys7-Cys8 (loop d), the first three being identical to epidermal growth factor (EGF). All three LE modules showed little secondary structure which was mainly restricted to loop d, but they differed in several other details of their structure. The interface contacts between the LE modules are based on hydrogen bonds and hydrophobic interactions between the hydrophobic core of loop d of the preceding module and the first cysteine and an exposed residue in loop b of the following module. Module 4 was previously shown to contribute the major nidogen binding site of laminins and site-directed mutagenesis demonstrated a specific binding role for Asp800, Asn802, Val804 and Tyr819 in loops a and c. The side-chains of these four residues are all located on the surface in a linear array and separated by a distance of 17 Å between Tyr819 and Val804. The entire nidogen binding site is stabilizedviamain-chain hydrogen bonds which are in part derived from the link between loops b and c (residues Leu815 and Lys816). The data demonstrate the unique nature of the LE modules and only a remote similarity to EGF. They also indicate that the crucial residues in the binding loops provide direct contacts with nidogen and explain the synergism between loops a and c which is essential for binding.  相似文献   

2.
E Pschl  J W Fox  D Block  U Mayer    R Timpl 《The EMBO journal》1994,13(16):3741-3747
High affinity binding of nidogen to laminin is mediated by an EGF-like repeat gamma 1III4 of the mouse laminin gamma 1 chain and has now been restricted to two short noncontiguous regions of its 56 residue sequence by use of synthetic peptides and recombinant mutants. Disulfide loop a,b of the repeat and a modified loop a,c could completely inhibit binding, with a 5000-fold or 300-fold reduced affinity respectively. Synthetic loops c and d lacked inhibitory activity. Some binding contribution of Tyr819 in loop c was, however, shown by mutation and side chain modification. Together with studies of loop chimeras, this indicated a distinct cooperativity between the two binding sites. The major binding site of loop a was localized to the heptapeptide NIDPNAV (position 798-804). A change of Asp800 to Asn or Ala803 to Val caused a strong reduction in binding activity, while only small effects were observed for the changes Pro801 to Gln and Ile799 to Val. The latter replacement corresponds to the single substitution found in the same region of the Drosophila laminin gamma 1 chain. However, the changes Asn802 to Ser or Val804 to Ser, both known to exist in the laminin gamma 2 chain, were deleterious mutations. This demonstrated conservation of binding structures in laminins of distantly related species, but not between homologous chains of laminin isoforms.  相似文献   

3.
Interleukin 4 (IL-4) can act on target cells through an IL-4 receptor complex consisting of the IL-4 receptor alpha chain and the common gamma chain (gamma(c)). An IL-4 epitope for gamma(c) binding has previously been identified. In this study, the gamma(c) residues involved in IL-4 binding were defined by alanine-scanning mutational analysis. The epitope comprises gamma(c) residues I100, L102, and Y103 on loop EF1 together with L208 on loop FG2 as the major binding determinants. These predominantly hydrophobic determinants interact with the hydrophobic IL-4 epitope composed of residues I11, N15, and Y124. Double-mutant cycle analysis revealed co-operative interaction between gamma(c) and IL-4 side chains. Several gamma(c) residues involved in IL-4 binding have been previously shown to be mutated in X-linked severe combined immunodeficiency. The importance of these binding residues for gamma(c) function is discussed. These results provide a basis for elucidating the molecular recognition mechanism in the IL-4 receptor system and a paradigm for other gamma(c)-dependent cytokine receptor systems.  相似文献   

4.
Lang S  Xu J  Stuart F  Thomas RM  Vrijbloed JW  Robinson JA 《Biochemistry》2000,39(51):15674-15685
The monoclonal antibody A6 binds a conformational epitope comprising mainly the CC' surface loop on the N-terminal fibronectin type-III domain of the extracellular interferon gamma receptor (IFNgammaR). The crystal structure of an A6 Fab-IFNgammaR complex revealed an interface rich in the aromatic side chains of Trp, Tyr, and His residues. These aromatic side chains appear to interact with both polar and hydrophobic groups at the interface, a property which, in general, may be advantageous for ligand binding. To analyze these interactions in more detail, the affinities of 19 A6 alanine-scanning mutants for the IFNgammaR have been measured, using engineered A6 single chain variable region fragments, and a surface plasmon resonance biosensor. Energetically important side chains (DeltaG(mutant) - DeltaG(wt) > 2.4 kcal/mol), that form distinct hot spots in the binding interface, have been identified on both proteins. These include V(L)W92 in A6, whose benzenoid ring appears well situated for a pi-cation (or pi-amine) interaction with the side chain of receptor residue K47 and simultaneously for T-stacking onto the indole ring of W82 in the receptor. At another site, energetically important residues V(H)W52 and V(H)W53, as well as V(H)D54 and V(H)D56, surround the aliphatic side chain of the hot receptor residue K52. Taken together, the results show that side chains distributed across the interface, including many aromatic ones, make key energetic contributions to binding. In addition, the receptor CC' loop has been subjected to random mutagenesis, and receptor mutants with high affinity for A6 have been selected by phage display. Residues previously identified as important for receptor binding to A6 were conserved in the clones isolated. Some mutants, however, showed a much improved affinity for A6, due to changes at Glu55, a residue that appeared to be energetically unimportant for binding the antibody by alanine-scanning mutagenesis. An E55P receptor mutant bound A6 with a 600-fold increase in affinity (K(D) approximately 20 pM), which is one of the largest improvements in affinity from a single point mutation reported so far at any protein-protein interface.  相似文献   

5.
The broadly neutralizing HIV-1 antibody 2F5 recognizes an epitope in the gp41 membrane proximal external region (MPER). The MPER adopts a helical conformation as free peptide, as post-fusogenic forms of gp41, and when bound to the 4E10 monoclonal antibody (Mab). However, when bound to 2F5, the epitope is an extended-loop. The antibody-peptide structure reveals binding between the heavy and light chains with most the long, hydrophobic CDRH3 not contacting peptide. However, mutagenesis identifies this loop as critical for binding, neutralization and for putative hydrophobic membrane interactions. Here, we examined length requirements of the 2F5 CDRH3 and plasticity regarding binding and neutralization. We generated 2F5 variants possessing either longer or shorter CDRH3s and assessed function. The CDRH3 tolerated elongations and reductions up to four residues, displaying a range of binding affinities and retaining some neutralizing capacity. 2F5 antibody variants selective recognition of conformationally distinctive MPER probes suggests a new role for the CDRH3 loop in destabilizing the helical MPER. Binding and neutralization were enhanced by targeted tryptophan substitutions recapitulating fully the activities of the wild-type 2F5 antibody in a shorter CDRH3 variant. MPER alanine scanning revealed binding contacts of this variant downstream of the 2F5 core epitope, into the 4E10 epitope region. This variant displayed increased reactivity to cardiolipin-beta-2-glycoprotein. Tyrosine replacements maintained neutralization while eliminating cardiolipin-beta-2-glycoprotein interaction. The data suggest a new mechanism of action, important for vaccine design, in which the 2F5 CDRH3 contacts and destabilizes the MPER helix downstream of its core epitope to allow induction of the extended-loop conformation.  相似文献   

6.
Camelids produce functional antibodies devoid of light chains. Autonomous heavy chain variable (V(H)H) domains in these molecules have adapted to the absence of the light chain in the following ways: bulky hydrophobic residues replace small aliphatic residues in the former light chain interface, and residues from the third complementarity-determining region (CDR3) pack against the framework and stabilize the global V(H)H domain fold. To determine the specific roles of CDR3 residues in framework stabilization, we used nai;ve phage-displayed libraries, combinatorial alanine-scanning mutagenesis and biophysical characterization of purified proteins. Our results indicate that in the most stable scaffolds, the structural residues in CDR3 reside near the boundaries of the loop and pack against the framework to form a small hydrophobic core. These results allow us to differentiate between structural CDR3 residues that should remain fixed, and CDR3 residues that are tolerant to substitution and can therefore be varied to generate functional diversity within phage-displayed libraries. These methods and insights can be applied to the rapid design of heavy chain scaffolds for the identification of novel ligands using synthetic, antibody-phage libraries. In addition, they shed light on the relationships between CDR3 sequence diversity and the structural stability of the V(H)H domain fold.  相似文献   

7.
The structure of the single LE module between residues 791 and 848 of the laminin γ1 chain, which contains the high affinity binding site for nidogen, has been probed using NMR methods. The module folds into an autonomous domain which has a stable and unique three-dimensional (3D) structure in solution. The 3D structure was determined on the basis of 362 interproton distance constraints derived from nuclear Overhauser enhancement measurements and 39 π angles, supplemented by 5 ψ and 22 χ1angles. The main features of the NMR structures are two-stranded antiparallel β-sheets which are separated by loops and cross-connected by four disulfide bridges. The N-terminal segment which contains the first three disulfide bridges is similar to epidermal growth factor. The C-terminal segment has an S-like backbone profile with a crossover at the last disulfide bridge and comprises two three-residue long β-strands that form an antiparallel β-sheet. The LE module possesses an exposed nidogen binding loop that projects away from the main body of the protein. The side-chains of three amino acids which are crucial for binding (Asp, Asn, Val) are all exposed at the domain surface. An inactivating Asn-Ser mutation in this region showed the same 3D structure indicating that these three residues, and possibly an additional Tyr in an adjacent loop, provide direct contacts in the interaction with nidogen.  相似文献   

8.
The second extracellular loop (ECL2) of the Noc receptor has been proposed to be involved in ligand binding and selectivity. The interaction of Noc with a constrained cyclic synthetic peptide, mimicking the ECL2, has been studied using fluorescence and NMR spectroscopies. Selective binding was shown with a dissociation constant of ∼10 µM (observed with the constrained cyclic loop and not with the open chain), and residues involved in ligand binding and selectivity have been identified. This bimolecular complex is stabilized by (i) ionic interactions between the two Noc basic motives and the ECL2 acidic residues; (ii) hydrophobic contacts involving Noc FGGF N‐terminal sequence and an ECL2 tryptophane residue. Our data confirm that Noc receptor's ECL2 contributes actively to ligand binding and selectivity by providing the peptidic ligand with a low affinity‐binding site. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Smooth muscle myosin light chain kinase (smMLCK) is a Ca(2+)-calmodulin (CaM)-dependent enzyme that phosphorylates the 20-kDa light chains of myosin. In a previous study (Bagchi, I.C., Kemp, B.E., and Means, A.R. (1989) J. Biol. Chem. 264, 15843-15849), we expressed in bacteria a 40-kDa fragment of smMLCK that displayed Ca(2+)-CaM-regulated catalytic activity. Initial mutagenesis experiments indicated that Gly811 and Arg812 were important for CaM-dependent activation of this 40-kDa enzyme. We have now carried out site-directed mutagenesis within the CaM-binding domain (Ser787 to Leu813) of this enzyme to identify amino acids that are critical for CaM binding and activation. Our studies reveal that the individual mutation of several hydrophobic amino acid residues such as Leu813, Ile810, and Trp800 and the glycine residue Gly804 also resulted in a severe decrease in or complete loss of CaM binding and activation of smMLCK. The hydrophobic residue (Trp800) and the basic residue (Arg812), both of which are mandatory for CaM binding to smMLCK, occur in analogous positions within the CaM-binding domain of a number of CaM-regulated enzymes. We conclude from these results that CaM binding by smMLCK is determined by an interplay of specific hydrophobic and electrostatic interactions which appear to be conserved among various target enzymes of CaM.  相似文献   

10.
We have shown previously that Phe93 in the extracellular domain of the erythropoietin (EPO) receptor (EPOR) is crucial for binding EPO. Substitution of Phe93 with alanine resulted in a dramatic decrease in EPO binding to the Escherichia coli-expressed extracellular domain of the EPOR (EPO-binding protein or EBP) and no detectable binding to full-length mutant receptor expressed in COS cells. Remarkably, Phe93 forms extensive contacts with a peptide ligand in the crystal structure of the EBP bound to an EPO-mimetic peptide (EMP1), suggesting that Phe93 is also important for EMP1 binding. We used alanine substitution of EBP residues that contact EMP1 in the crystal structure to investigate the function of these residues in both EMP1 and EPO binding. The three largest hydrophobic contacts at Phe93, Met150, and Phe205 and a hydrogen bonding interaction at Thr151 were examined. Our results indicate that Phe93 and Phe205 are important for both EPO and EMP1 binding, Met150 is not important for EPO binding but is critical for EMP1 binding, and Thr151 is not important for binding either ligand. Thus, Phe93 and Phe205 are important binding determinants for both EPO and EMP1, even though these ligands share no sequence or structural homology, suggesting that these residues may represent a minimum epitope on the EPOR for productive ligand binding.  相似文献   

11.
Replica exchange molecular dynamics simulations (300 ns) were used to study the dimerization of amyloid β(1‐40) (Aβ(1‐40)) polypeptide. Configurational entropy calculations revealed that at physiological temperature (310 K, 37°C) dynamic dimers are formed by randomly docked monomers. Free energy of binding of the two chains to each other was ?93.56 ± 6.341 kJ mol?1. Prevalence of random coil conformations was found for both chains with the exceptions of increased β‐sheet content from residues 16‐21 and 29‐32 of chain A and residues 15‐21 and 30‐33 of chain B with β‐turn/β‐bend conformations in both chains from residues 1‐16, 21‐29 of chain A, 1‐16, and 21‐29 of chain B. There is a mixed β‐turn/β‐sheet region from residues 33‐38 of both chains. Analysis of intra‐ and interchain residue distances shows that, although the individual chains are highly flexible, the dimer system stays in a loosely packed antiparallel β‐sheet configuration with contacts between residues 17‐21 of chain A with residues 17‐21 and 31‐36 of chain B as well as residues 31‐36 of chain A with residues 17‐21 and 31‐36 of chain B. Based on dihedral principal component analysis, the antiparallel β‐sheet‐loop‐β‐sheet conformational motif is favored for many low energy sampled conformations. Our results show that Aβ(1‐40) can form dynamic dimers in aqueous solution that have significant conformational flexibility and are stabilized by collapse of the central and C‐terminal hydrophobic cores with the expected β‐sheet‐loop‐β‐sheet conformational motif. Proteins 2017; 85:1024–1045. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
13.
Recognition of poly(C) DNA and RNA sequences in mammalian cells is achieved by a subfamily of the KH (hnRNP K homology) domain-containing proteins known as poly(C)-binding proteins (PCBPs). To reveal the molecular basis of poly(C) sequence recognition, we have determined the crystal structure, at 1.7-A resolution, of PCBP2 KH1 in complex with a 7-nucleotide DNA sequence (5'-AACCCTA-3') corresponding to one repeat of the human C-rich strand telomeric DNA. The protein-DNA interaction is mediated by the combination of several stabilizing forces including hydrogen bonding, electrostatic interactions, van der Waals contacts, and shape complementarities. Specific recognition of the three cytosine residues is realized by a dense network of hydrogen bonds involving the side chains of two conserved lysines and one glutamic acid. The co-crystal structure also reveals a protein-protein dimerization interface of PCBP2 KH1 located on the opposite side of the protein from the DNA binding groove. Numerous stabilizing protein-protein interactions, including hydrophobic contacts, stacking of aromatic side chains, and a large number of hydrogen bonds, indicate that the protein-protein interaction interface is most likely genuine. Interaction of PCBP2 KH1 with the C-rich strand of human telomeric DNA suggests that PCBPs may participate in mechanisms involved in the regulation of telomere/telomerase functions.  相似文献   

14.
Bourque JR  Bearne SL 《Biochemistry》2008,47(2):566-578
Mandelate racemase from Pseudomonas putida catalyzes the Mg2+-dependent 1,1-proton transfer that interconverts the enantiomers of mandelate. Residues of the 20s and 50s loops determine, in part, the topology and polarity of the active site and hence the substrate specificity. Previously, we proposed that, during racemization, the phenyl ring of mandelate moves between an S-pocket comprised of residues from the 50s loop and an R-pocket comprised of residues from the 20s loop [Siddiqi, F., Bourque, J. R., Jiang, H., Gardner, M., St. Maurice, M., Blouin, C., and Bearne, S. L. (2005) Biochemistry 44, 9013-9021]. The 20s loop constitutes a mobile beta-meander flap that covers the active site cavity shielding it from solvent and controlling entry and egress of ligands. To understand the role of the 20s loop in catalysis and substrate specificity, we constructed a series of mutants (V22A, V22I, V22F, T24S, A25V, V26A, V26L, V26F, V29A, V29L, V29F, V26A/V29L, and V22I/V29L) in which the sizes of hydrophobic side chains of the loop residues were varied. Catalytic efficiencies (kcat/Km) for all mutants were reduced between 6- and 40-fold with the exception of those of V22I, V26A, V29L, and V22I/V29L which had near wild-type efficiencies with mandelate. Thr 24 and Ala 25, located at the tip of the 20s loop, were particularly sensitive to minor alterations in the size of their hydrophobic side chains; however, most mutations were tolerated quite well, suggesting that flap mobility could compensate for increases in the steric bulk of hydrophobic side chains. With the exception of V29L, with mandelate as the substrate, and V22F and V26A/V29L, with 2-naphthylglycolate (2-NG) as the substrate, the values of kcat and Km were not altered in a manner consistent with steric obstruction of the R-pocket, perhaps due to flap mobility compensating for the increased size of the hydrophobic side chains. Surprisingly, V22I and V29L catalyzed the racemization of the bulkier substrate 2-NG with kcat/Km values approximately 2-fold greater than those observed for wild-type mandelate racemase. Although minor changes in substrate specificity were achieved through alterations of the active site flap of mandelate racemase, our results suggest that hydrophobic residues that reside on a flexible flap and define the topology of an active site through their van der Waals contacts with the substrate are quite tolerant of a variety of steric substitutions.  相似文献   

15.
K A Walsh  K Titani  K Takio  S Kumar  R Hayes  P H Petra 《Biochemistry》1986,25(23):7584-7590
The amino acid sequence of the sex steroid binding protein (SBP) from human plasma has been determined. The SBP subunit consists of a 373-residue polypeptide chain containing two disulfide bonds and three oligosaccharide chains. The sequence was solved primarily by analysis of peptides derived by cleavage at either lysyl or methionyl residues. In our preparations, approximately half of the protein molecules have the amino-terminal sequence Arg-Pro-Val-Leu-Pro; the other half lack Arg-Pro and begin with the valine. Preparations of Hammond et al. [Hammond, G. L., Robinson, P. A., Sugino, H., Ward, D. N., & Finne, J. (1986) J. Steroid Biochem. 24, 815] have an additional leucine at the amino terminus, making a total of 373 residues in the chain. Oligosaccharide chains are placed at Thr-7 and at Asn residues 351 and 367. The two disulfide bonds connect Cys-164 to Cys-188 and Cys-333 to Cys-361. The reported heterogeneity of preparations of the molecule may result in part from the amino-terminal microheterogeneity, in part from variations in the oligosaccharide moieties, and possibly in part from rearrangements involving cyclic imide formation in two Asn-Gly sequences. Certain hydrophobic segments are suggested as possible components of the steroid-binding sites. The protein shows no homology either with the cDNA-derived sequences of the estrogen and glucocorticoid receptors found by others to be homologous with each other or with any other protein sequence in the 1986 data base.  相似文献   

16.
Gordon M. Crippen 《Biopolymers》1977,16(10):2189-2201
The x-ray crystal structures of 19 selected proteins are examined empirically for correlations between the amino acid sequence and long-range, tertiary conformation. There is clear evidence for preferential associations of certain types of amino acids, particularly among the hydrophobic aliphatic, aromatic, and cysteine residues. However, the likelihoods of forming these residue-pair contacts are all less than 12%, so packing and geometric requirements must often take precedent over energetic considerations. The prediction of long-range contacts is not substantially improved by taking into account the sequentially previous residues. The analysis of atom–atom contacts shows a similar lack of predictive ability, but the results show that a good approximation to the interresidue energy function must include different types of interactions at two or three different sites on some amino acids. Backbone–backbone long-range interactions are relatively rare and nonspecific, whereas some “polar” side chains form hydrogen bonds from the polar groups while occasionally forming hydrophobic contacts with the remainder of the chain.  相似文献   

17.
Barnett ME  Zolkiewski M 《Biochemistry》2002,41(37):11277-11283
ClpB is a member of a multichaperone system in Escherichia coli (with DnaK, DnaJ, and GrpE) that reactivates strongly aggregated proteins. The sequence of ClpB contains two ATP-binding domains, each containing Walker consensus motifs. The N- and C-terminal sequence regions of ClpB do not contain known functional motifs. In this study, we performed site-directed mutagenesis of selected charged residues within the Walker A motifs (Lys212 and Lys611) and the C-terminal region of ClpB (Asp797, Arg815, Arg819, and Glu826). We found that the mutations K212T, K611T, D797A, R815A, R819A, and E826A did not significantly affect the secondary structure of ClpB. The mutation of the N-terminal ATP-binding site (K212T), but not of the C-terminal ATP-binding site (K611T), and two mutations within the C-terminal domain (R815A and R819A) inhibited the self-association of ClpB in the absence of nucleotides. The defects in self-association of these mutants were also observed in the presence of ATP and ADP. The four mutants K212T, K611T, R815A, and R819A showed an inhibition of chaperone activity, which correlated with their low ATPase activity in the presence of casein. Our results indicate that positively charged amino acids that are located along the intersubunit interface (this includes Lys212 in the Walker A motif of the N-terminal ATP-binding domain as well as Arg815 and Arg819 in the C-terminal domain) participate in intersubunit salt bridges and stabilize the ClpB oligomer. Interestingly, we have identified a conserved residue within the C-terminal domain (Arg819) which does not participate directly in nucleotide binding but is essential for the chaperone activity of ClpB.  相似文献   

18.
The DNA binding domain (DBD) of gamma delta resolvase (residues 141-183) is responsible for the interaction of this site-specific DNA recombinase with consensus site DNA within the gamma delta transposable element in Escherichia coli. Based on chemical-shift comparisons, the proteolytically isolated DBD displays side-chain interactions within a hydrophobic core that are highly similar to those of this domain when part of the intact enzyme (Liu T, Liu DJ, DeRose EF, Mullen GP, 1993, J Biol Chem 268:16309-16315). The structure of the DBD in solution has been determined using restraints obtained from 2-dimensional proton NMR data and is represented by 17 conformers. Experimental restraints included 458 distances based on analysis of nuclear Overhauser effect connectivities, 17 phi and chi 1 torsion angles based on analysis of couplings, and 17 backbone hydrogen bonds determined from NH exchange data. With respect to the computed average structure, these conformers display an RMS deviation of 0.67 A for the heavy backbone atoms and 1.49 A for all heavy atoms within residues 149-180. The DBD consists of 3 alpha-helices comprising residues D149-Q157, S162-T167, and R172-N183. Helix-2 and helix-3 form a backbone fold, which is similar to the canonical helix-turn-helix motif. The conformation of the NH2-terminal residues, G141-R148, appears flexible in solution. A hydrophobic core is formed by side chains donated by essentially all hydrophobic residues within the helices and turns. Helix-1 and helix-3 cross with a right-handed folding topology. The structure is consistent with a mechanism of DNA binding in which contacts are made by the hydrophilic face of helix-3 in the major groove and the amino-terminal arm in the minor groove. This structure represents an important step toward analysis of the mechanism of DNA interaction by gamma delta resolvase and provides initial structure-function comparisons among the divergent DBDs of related resolvases and invertases.  相似文献   

19.
The antigenic recognition of Shigella flexneri O-polysaccharide, which consists of a repeating unit ABCD [-->2)-alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-beta-D-GlcpNAc-(1-->], by the monoclonal antibody SYA/J6 (IgG3, kappa) has been investigated by crystallographic analysis of the Fab domain and its two complexes with two antigen segments (a pentasaccharide Rha A-Rha B-Rha C-GlcNAc D-Rha A' and a modified trisaccharide Rha B-Rha C-GlcNAc D in which Rha C* is missing a C2-OH group). These complex structures, the first for a Fab specific for a periodic linear heteropolysaccharide, reveal a binding site groove (between the V(H) and V(L) domains) that makes polar and nonpolar contacts with all the sugar residues of the pentasaccharide. Both main-chain and side-chain atoms of the Fab are used in ligand binding. The charged side chain of Glu H50 of CDR H2 forms crucial hydrogen bonds to GlcNAc of the oligosaccharides. The modified trisaccharide is more buried and fits more snugly than the pentasaccharide. It also makes as many contacts (approximately 75) with the Fab as the pentasaccharide, including the same number of hydrogen bonds (eight, with four being identical). It is further engaged in more hydrophobic interactions than the pentasaccharide. These three features favorable to trisaccharide binding are consistent with the observation of a tighter complex with the trisaccharide than the pentasaccharide. Thermodynamic data demonstrate that the native tri- to pentasaccharides have free energies of binding in the range of 6.8-7.4 kcal mol(-1), and all but one of the hydrogen bonds to individual hydroxyl groups provide no more than approximately 0.7 kcal mol(-1). They further indicate that hydrophobic interactions make significant contributions to binding and, as the native epitope becomes larger across the tri-, tetra-, pentasaccharide series, entropy contributions to the free energy become dominant.  相似文献   

20.
Intramolecular interactions in bound cholera toxin peptide (CTP3) in three antibody complexes were studied by two-dimensional transferred NOE spectroscopy. These measurements together with previously recorded spectra that show intermolecular interactions in these complexes were used to obtain restraints on interproton distances in two of these complexes (TE32 and TE33). The NMR-derived distance restraints were used to dock the peptide into calculated models for the three-dimensional structure of the antibody combining site. It was found that TE32 and TE33 recognize a loop comprising the sequence VPGSQHID and a beta-turn formed by the sequence VPGS. The third antibody, TE34, recognizes a different epitope within the same peptide and a beta-turn formed by the sequence IDSQ. Neither of these two turns was observed in the free peptide. The formation of a beta-turn in the bound peptide gives a compact conformation that maximizes the contact with the antibody and that has greater conformational freedom than alpha-helix or beta-sheet secondary structure. A total of 15 antibody residues are involved in peptide contacts in the TE33 complex, and 73% of the contact area in the antibody combining site consists of the side chains of aromatic amino acids. A comparison of the NMR-derived models for CTP3 interacting with TE32 and TE33 with the previously derived model for TE34 reveals a relationship between amino acid sequence and combining site structure and function. (a) The three aromatic residues that interact with the peptide in TE32 and TE33 complexes, Tyr 32L, Tyr 32H, and Trp 50H, are invariant in all light chains sharing at least 65% identity with TE33 and TE32 and in all heavy chains sharing at least 75% identity with TE33. Although TE34 differs from TE32 and TE33 in its fine specificity, these aromatic residues are conserved in TE34 and interact with its antigen. Therefore, we conclude that the role of these three aromatic residues is to participate in nonspecific hydrophobic interactions with the antigen. (b) Residues 31, 31c, and 31e of CDR1 of the light chain interact with the antigen in all three antibodies that we have studied. The amino acids in these positions in TE34 differ from those in TE32 and TE33, and they are involved in specific polar interactions with the antigen. (c) CDR3 of the heavy chain varies considerably both in length and in sequence between TE34 and the two other anti-CTP3 antibodies. These changes modify the shape of the combining site and the hydrophobic and polar interactions of CDR3 with the peptide antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号