首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous studies have identified members of the multidrug resistance protein (MRP) family of ABC transporters as ATP-dependent GS-X pumps responsible for export of various xenobiotic conjugates, and the few known glutathione conjugates of endogenous metabolites. In the present study we have investigated the possibility that the glutathione conjugate of 13-oxooctadecadienoic acid (13-OXO-SG), is exported from HT-29 cells by one of these GS-X pumps. The precursor 13-oxooctadecadienoic acid (13-OXO) is a metabolic oxidation product of linoleic acid. The transport of 13-OXO-SG is compared to that of the glutathione conjugate of chlorodinitrobenzene (DNP-SG). The results show that the efflux of 13-OXO-SG is ATP-dependent. In cultured HT-29 cells as well as in inside-out vesicles prepared from these cells, significant inhibition of conjugate export is achieved by the energy disrupters, β,γ-methylene ATP, sodium vanadate, and 2-deoxyglucose. Significant inhibition of the vesicle-mediated transport is also observed in the presence of genistein and verapamil. In inside-out vesicles, the transport of both conjugates exhibits saturation with an apparent Km of 325.5 μM and a Vmax of 0.0669 nmol/mg protein per min for 13-OXO-SG and a Km of 169 μM and a Vmax of 0.496 nmol/mg protein per min for DNP-SG. Furthermore, co-inhibition is observed when both conjugates are present simultaneously which is consistent with the involvement of common pumps. The data in this report demonstrate the involvement of an ATP-dependent pump in the metabolic disposition of endogenously derived metabolites of linoleic acid.  相似文献   

2.
Incubation of inverted plasma membrane vesicles from rat liver with micromolar concentrations of S-dinitrophenylglutathione (DNP-SG) in the presence of ATP resulted in the uptake of DNP-SG into the vesicles. ATP-dependent DNP-SG accumulation was half-maximal with 9 μM DNP-SG, while the Km for ATP was 320 μM. Glutathione disulfide (GSSG), but not reduced glutathione, inhibited the ATP-dependent accumulation of DNP-SG by the vesicles, suggesting that the same, ATP-dependent transport system is responsible for the extrusion of glutathione conjugates and GSSG from liver cells.  相似文献   

3.
Srivastava SK  Hu X  Xia H  Pal A  Guo J  Orchard JL  Singh SV 《FEBS letters》1999,445(2-3):291-294
The present study reports gender related differences in ATP-dependent transport of dinitrophenyl-glutathione (GSH) conjugate (DNP-SG), a model GSH xenobiotic conjugate, across murine canalicular liver plasma membrane (cLPM). ATP-dependent transport of DNP-SG across female A/J mouse cLPM was mediated by two components, a high-affinity and a low-affinity component, with corresponding Km of 18 microM (Vmax 0.02 nmol/min.mg) and 500 microM (Vmax 0.23 nmol/min.mg), respectively. On the other hand, only one component for the ATP-dependent transport of DNP-SG was observed in male mouse cLPM (K(m) 130 microM; Vmax 0.18 nmol/min.mg). Moreover, the rate of ATP-dependent transport of DNP-SG was markedly higher in the cLPM fraction of male mouse compared with that of the female. Presence of two transport components in female mouse cLPM, but only one system in the cLPM fraction of male mouse, was confirmed by measuring DNP-SG mediated stimulation of ATP hydrolysis (DNP-SG ATPase activity). To the best of our knowledge, the present study is the first report on gender related differences in ATP-dependent murine canalicular transport of GSH conjugates.  相似文献   

4.
We have recently demonstrated that RLIP76, a Ral-binding GTPase activating protein mediates ATP-dependent transport of glutathione (GSH) conjugates of electrophiles (GS-E) as well as doxorubicin (DOX), and that it is identical with DNP-SG ATPase, a GS-E transporter previously characterized by us in erythrocyte membranes (Awasthi et al. Biochemistry 39, 9327-9334). Multidrug resistance-associated protein (MRP1) belonging to the family of the ABC-transporters has also been suggested to be a GS-E transporter in human erythrocytes. Using immunological approaches, the present studies were designed to elucidate the relative contributions of RLIP76, MRP1, and P-glycoprotein (Pgp), in the ATP-dependent transport of GS-E and DOX in human erythrocytes. In Western blot analyses using antibodies against RLIP76, a strong expression of RLIP76 was observed in erythrocytes. Immunohistochemical studies using a fluorescent probe showed association of RLIP76 with erythrocyte membrane, which was consistent with its transport function. Neither MRP1 nor Pgp were detected in erythrocytes when the antibodies against MRP1 or Pgp were used. In erythrocyte inside-out vesicles (IOVs) coated with antibodies against RLIP76, a dose-dependent inhibition of the ATP-dependent transport of DOX and GS-E, including S-(dinitrophenyl)glutathione (DNP-SG), leukotriene C(4), and the GSH conjugate of 4-hydroxynonenal, was observed with a maximal inhibition of about 70%. On the contrary, in the IOVs coated with the antibodies against MRP1 or Pgp no significant inhibition of the ATP-dependent transport of these compounds was observed. These findings suggest that RLIP76 is the major ATP-dependent transporter of GS-E and DOX in human erythrocytes.  相似文献   

5.
Active transport of conjugated and unconjugated electrophiles out of cells is essential for cellular homeostasis. We have previously identified in human tissues a transporter, DNP-SG [S-(2, 4-dinitrophenyl)glutathione] ATPase, capable of carrying out this function [Awasthi et al. (1998) Biochemistry 37, 5231-5238, 5239-5248]. We now report the cloning of DNP-SG ATPase. The sequence of the cDNA clone was identical to that of human RLIP76, a known Ral-binding protein. RLIP76 expressed in E. coli was purified by DNP-SG affinity chromatography. Purified recombinant RLIP76: (1) had ATPase activity stimulated by DNP-SG or doxorubicin (DOX), and the K(m) values of RLIP76 for ATP, DOX, and DNP-SG were similar to those reported for DNP-SG ATPase; (2) upon reconstitution with asolectin as well as with defined lipids, catalyzed ATP-dependent transport of DNP-SG and DOX with kinetic parameters similar to those of DNP-SG ATPase; (3) when transfected into K562 cells, resulted in increased resistance to DOX, and increased ATP-dependent transport of DNP-SG and DOX by inside-out membrane vesicles from transfected cells; (4) direct uptake of purified RLIP76 protein into mammalian cells from donor proteoliposomes confers DOX resistance. These results indicate that RLIP76, in addition to its role in signal transduction, can catalyze transport of glutathione conjugates and xenobiotics, and may contribute to the multidrug resistance phenomenon.  相似文献   

6.
The linoleic acid metabolite, 13-oxooctadecadienoic acid (13-OXO), is reactive with cellular thiols. In the present report, incubations of HT-29 or CaCo-2 homogenates with 13-OXO and GSH indicate that HT-29 cell homogenates produce a 13-OXO-GSH conjugate. The conjugate formed was likely of enzymatic origin as chiral-phase HPLC showed the major product consisted of only one of two possible diastereomers. The glutathione transferase activity (GST), using chlorodinitrobenzene, was found to be 126 nmol/mg/min in HT-29 cells and 21 nmol/mg/min in CaCo-2 cells. These levels of activity are consistent with the relative ability of the two cell lines to conjugate GSH to 13-OXO. Incubation of intact HT-29 cells with either 13-OXO, or the metabolic precursor 13-hydroxyoctadecadienoic acid (13-HODE), showed detectable 13-OXO-GSH conjugate in the media, but none in the cells. The stereochemistry of the extracellular conjugate suggested an enzymatic origin. In additional experiments, the labeling of cellular protein by 13-HODE was much more specific than the labeling of protein by 13-OXO suggesting that in situ generation of 13-OXO from 13-HODE confers selectivity on the reactions between cellular thiols and 13-OXO. These results demonstrate that in HT-29 cells, 13-HODE is converted to 13-OXO which then either reacts with cellular protein or is conjugated to GSH by GST. The 13-OXO-GSH conjugate is then exported from the cell.  相似文献   

7.
In the present study, the transport of glutathione S-conjugate across rat heart sarcolemma has directly been proved to be an ATP-dependent process. Incubation of sarcolemma vesicles with S-(2,4-dinitrophenyl)glutathione (DNP-SG) in the presence of ATP resulted in a substantial uptake of DNP-SG into the vesicles; Mg2+ was required for ATP-stimulated transport. The rate of glutathione S-conjugate uptake was saturated with respect to ATP and DNP-SG concentrations with apparent Km values of 30 microM for ATP and 20 microM for DNP-SG. However, other nucleoside triphosphates, viz. GTP, UTP, CTP, and TTP, did not stimulate the transport effectively. The ATP-stimulated DNP-SG uptake was not affected by ouabain, EGTA, or by valinomycin-induced K+-diffusion potential, suggesting that Na+,K+-and Ca2+-ATPase activities as well as the membrane potential are not involved in the transport mechanism. ATP could not be replaced by ADP, AMP, or by ATP analogues, adenosine 5'-(beta,gamma-methylene) triphosphate and adenosine 5'-(beta,gamma-imino)triphosphate. From these observations, it is proposed that hydrolysis of gamma-phosphate of ATP is essential for the transport mechanism. The transport of DNP-SG by the sarcolemma vesicles, on the other hand, was inhibited by several different types of glutathione S-conjugates including 4-hydroxynonenal glutathione S-conjugate and leukotriene C4, and not by GSH. The transport system is suggested to have high affinities toward glutathione S-conjugates carrying a long aliphatic carbon chain (n greater than 6) and may play an important role in elimination of naturally occurring glutathione S-conjugates, such as leukotriene C4.  相似文献   

8.
Using rat liver canalicular plasma membrane vesicles, it has been verified that the transport of p-nitrophenyl glucuronide (NPG) across membranes is an ATP-dependent process; the apparent Km for NPG was 20 microM. S-(2,4-dinitrophenyl)-glutathione (DNP-SG) inhibited NPG uptake dose-dependently, and NPG or testosterone glucuronide did ATP-dependent DNP-SG uptake similarly. These results suggest that transport of glucuronide is mediated by an ATP-dependent glutathione S-conjugate carrier.  相似文献   

9.
Multidrug resistance proteins (MRPs) are ATP-dependent export pumps that mediate the export of organic anions. ABCC1 (MRP1), ABCC2 (MRP2) and ABCC3 (MRP3) are all able to facilitate the efflux of anionic conjugates including glutathione (GSH), glucuronide and sulfate conjugates of xenobiotics and endogenous molecules. Earlier studies showed that ABCC4 functions as an ATP-driven export pump for cyclic AMP and cyclic GMP, as well as estradiol-17-beta-D-glucuronide. However, it was unclear if other conjugated metabolites can be transported by ABCC4. Hence in this study, a fluorescent substrate, bimane-glutathione (bimane-GS) was used to further examine the transport activity of ABCC4. Using cells stably overexpressing ABCC4, this study shows that ABCC4 can facilitate the efflux of the glutathione conjugate, bimane-glutathione. Bimane-glutathione efflux increased with time and >85% of the conjugate was exported after 15min. This transport was abolished in the presence of 2.5microM carbonylcyanide m-chlorophenylhydrasone (CCCP), an uncoupler of oxidative phosphorylation. Inhibition was also observed with known inhibitors of MRP transporters including benzbromarone, verapamil and indomethacin. In addition, 100microM methotrexate, an ABCC4 substrate or 100microM 6-thioguanine (6-TG), a compound whose monophosphate metabolite is an ABCC4 substrate, reduced efflux by >40%. A concentration-dependent inhibition of bimane-glutathione efflux was observed with 1-chloro-2,4-dinitrobenzene (CDNB) which is metabolized intracellularly to the glutathione conjugate, 2,4-dinitrophenyl-glutathione (DNP-GS). The determination that ABCC4 can mediate the transport of glucuronide and glutathione conjugates indicates that ABCC4 may play a role in the cellular extrusion of Phase II detoxification metabolites.  相似文献   

10.
Kinetic studies on the low- and high-Km transport systems for S-2,4-dinitrophenyl glutathione (DNP-SG) present in erythrocyte membranes were performed using inside-out plasma membrane vesicles. The high-affinity system showed a Km of 3.9 microM a Vmax of 6.3 nmol/mg protein per h, and the low-affinity system a Km of 1.6 mM and a Vmax of 131 nmol/mg protein per h. Both uptake components were inhibited by fluoride, vanadate, p-chloromercuribenzoate (pCMB) and bis(4-nitrophenyl)dithio-3,3'-dicarboxylate (DTNB). The low-Km uptake process was less sensitive to the inhibitory action of DTNB as compared to the high-Km process. N-Ethylmaleimide (1 mM) inhibited the high-Km process only. The high-affinity uptake of DNP-SG was competitively inhibited by GSSG (Ki = 88 microM). Vice versa, DNP-SG inhibited competitively the low-Km component of GSSG uptake (Ki = 3.3 microM). The high-Km DNP-SG uptake system was not inhibited by GSSG. The existence of a common high-affinity transporter for DNP-SG and GSSG in erythrocytes is suggested.  相似文献   

11.
The release of glutathione S-conjugates from cells is an ATP-dependent process mediated by integral membrane glycoproteins belonging to the recently discovered multidrug-resistance protein (MRP) family. Many lipophilic compounds conjugated with glutathione, glucuronate, or sulfate are substrates for export pumps of the MRP family. In humans six MRP isoforms encoded by different genes have been cloned. Orthologs of MRP have been identified in many species including yeast, plants, and nematodes. Human MRP1 and MRP2 are currently best characterized with respect to substrate specificity by measurements of ATP-dependent transport into inside-out membrane vesicles. High-affinity substrates include the glutathione S-conjugate leukotriene C4, S-(2,4dinitrophenyl)glutathione, bilirubin glucuronosides, and 17beta-glucuronosyl estradiol. In addition, glutathione disulfide is transported by MRP1 and MRP2. Reduced glutathione may be released from cells in a process directly or indirectly mediated by members of the MRP family. Proteins of the MRP family are indispensable for transport of glutathione S-conjugates and glutathione disulfide into the extracellular space and play, therefore, a decisive role in detoxification and defense against oxidative stress.  相似文献   

12.
T Ishikawa 《FEBS letters》1989,246(1-2):177-180
Sarcolemmal vesicles prepared from rat heart exhibited ATP-dependent uptake of S-(2,4-dinitrophenyl)glutathione (DNP-SG), which obeyed Michaelis-Menten kinetics with an apparent Km of 21 microM for DNP-SG and a Vmax of 0.27 nmol.10 min-1.mg protein-1. Several model glutathione S-conjugates inhibited DNP-SG uptake, but leukotriene C4 inhibited uptake much more significantly even at lower concentrations (competitive inhibition, Ki = 1.5 microM). However, leukotrienes D4 and E4, which lack the gamma-glutamyl moiety, were less effective. The results suggest that the ATP-dependent transport system has a high affinity for leukotriene C4, and may be responsible for the translocation of this compound.  相似文献   

13.
[35S]S-[5-(4-benzoylphenyl)pentyl]glutathione (GIF-0017) as a biochemical probe targeting the ATP-dependent organic anion transporters GS-X pumps was synthesized by the reaction of [35S]glutathione and excess 4-(5-bromo)pentylbenzophenone under alkaline conditions, with the radiochemical yield of 24-33% after HPLC purification. Photolysis of the mixture of [35S]GIF-0017 and plasma membrane vesicles prepared from the MRP1 cDNA-transfected LLC-PK1 cells resulted in radio-labeling of a 180-kDa membrane protein. Immunoprecipitation and western blotting using an anti-MRP1 monoclonal antibody confirmed that the [35S]GIF-0017-labeled protein was the MRPI/GS-X pump.  相似文献   

14.
Transport of 2,4-dinitrophenyl-S-glutathione (DNP-SG) and a fluorescent glutathione S-conjugate, bimane-S-glutathione (B-SG) was studied in the baker's yeasts (S. cerevisiae). Both conjugates were exported from the cells; the transport was inhibited by fluoride and vanadate like in mammalian cells. B-SG was also found to be accumulated in the vacuoles. The transport rate of DNP-SG outside the cell was higher in a vacuolar-deficient strain. A significant ATP-dependent uptake of (3H)-DNP-SG by vacuoles was found. These results indicate thatS. cerevisiaetransport glutathione S-conjugates both outside the cells and into the vacuoles.  相似文献   

15.
The effect of oxidized glutathione (GSSG) on the ATP-dependent transport of S-dinitrophenyl glutathione (Dnp-SG) by inside-out vesicles prepared from human erythrocytes and by intact erythrocytes has been studied. It is demonstrated that the transport of Dnp-SG is not inhibited by GSSG in either intact erythrocytes or in inside-out vesicles. These results suggest that Dnp-SG and GSSG are transported out of human erythrocytes by separate systems.  相似文献   

16.
The oxidation of linoleic acid leads to the generation of several products with biological activity, including 13-oxooctadeca-9,11-dienoic acid (13-OXO), a bioactive 2,4-dienone that has been linked to cell differentiation. In the current work, the conjugation of 13-OXO by human glutathione transferases (GSTs) of the alpha (A1-1, A4-4), mu (M1-1, M2-2) and pi (the allelic variants P1-1/ile, and P1-1/val) classes, and a rat theta (rT2-2) class enzyme has been evaluated. The kinetics and stereoselectivity of the production of the 13-OXO-glutathione conjugate (13-OXO-SG) have been examined. In contrast to many xenobiotic substrates, the endogenous substrate 13-OXO does not exhibit an appreciable non-enzymatic rate of conjugation under physiological conditions. Therefore, the GST-catalyzed conjugation takes on greater significance as it provides the only realistic means for formation of 13-OXO-SG in most biological systems. Alpha class enzymes are most efficient at catalyzing the formation of 13-OXO-SG with kcat/Km values of 8.9 mM(-1) s(-1) for GST A1-1 and 2.14 mM(-1) s(-1) for GST A4-4. In comparison, enzymes from the mu and pi classes exhibit specificity constants from 0.4 to 0.8 mM(-1) s(-1). Conjugation of 13-OXO with glutathione at C-9 of the substrate can yield a pair of diastereomers that can be resolved by chiral HPLC. GSTs from the mu and pi classes are the most stereoselective enzymes and there is no apparent relationship between catalytic efficiency and stereoselectivity. The role of GST in the metabolic disposition of the bioactive oxidation products of linoleic acid has implications for the regulation of normal cellular functions by these versatile enzymes.  相似文献   

17.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and beta-mercaptoethanol, with concentrations of 10 mM inhibiting by approximately 40%. DTT's inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [(3)H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

18.
The oxidation of linoleic acid produces several products with biological activity including the hydroperoxy fatty acid 13-hydroperoxyoctadecadienoic acid (13-HPODE), the hydroxy fatty acid 13-hydroxyoctadecadienoic acid (13-HODE), and the 2,4-dienone 13-oxooctadecadienoic acid (13-OXO). In the present work, the peroxidase activity of glutathione transferases (GST) A1-1, M1-1, M2-2, and P1-1(Val 105) toward 13-HPODE has been examined. The alpha class enzyme is the most efficient peroxidase while the two enzymes from the mu class exhibit weak peroxidase activity toward 13-HPODE. It was also determined that the conjugated diene 13-HODE is not a substrate for GST from the alpha and mu classes but that 13-HODE does inhibit the GST-catalyzed conjugation of CDNB by enzymes from the alpha, mu, and pi classes. Finally, both 13-HODE and 13-OXO were shown to be inducers of GST activity in HT-29 and HCT-116 colon tumor cells. These data help to clarify the role of GST in the metabolic disposition of linoleic acid oxidation products.  相似文献   

19.
We have characterized ATP-dependent Ca2+ transport into highly purified plasma membrane fraction isolated from guinea pig ileum smooth muscle. The membrane fraction contained inside-out sealed vesicles and was enriched 30-40-fold in 5'-nucleotidase and phosphodiesterase I activity as compared to post nuclear supernatant. Plasma membrane vesicles showed high rate (76 nmol/mg/min) and high capacity for ATP dependent Ca2+ transport which was inhibited by addition of Ca2+ ionophore A23187. The inhibitors of mitochondrial Ca2+ transport, i.e., sodium azide, oligomycin and ruthenium red did not inhibit ATP-dependent Ca2+ uptake into plasma membrane vesicles. The energy dependent Ca2+ uptake into plasma membranes showed very high specificity for ATP as energy source and other nucleotide triphosphates were ineffective in supporting Ca2+ transport. Phosphate was significantly better as Ca2+ trapping anion to potentiate ATP-dependent Ca2+ uptake into plasma membrane fraction as compared to oxalate. Orthovanadate, an inhibitor of cell membrane (Ca2+-Mg2+)-ATPase activity, completely inhibited ATP-dependent Ca2+ transport and the Ki was approximately 0.6 microM. ATP-dependent Ca2+ transport and formation of alkali labile phosphorylated intermediate of (Ca2+-Mg2+)-ATPase increased with increasing concentrations of free Ca2+ in the incubation mixture and the Km value for Ca2+ was approximately 0.6-0.7 microM for both the reactions.  相似文献   

20.
The oxidation of linoleic acid leads to the generation of several products with biological activity, including 13-oxooctadeca-9,11-dienoic acid (13-OXO), a bioactive 2,4-dienone that has been linked to cell differentiation. In the current work, the conjugation of 13-OXO by human glutathione transferases (GSTs) of the alpha (A1–1, A4–4), mu (M1–1, M2–2) and pi (the allelic variants P1–1/ile, and P1–1/val) classes, and a rat theta (rT2–2) class enzyme has been evaluated. The kinetics and stereoselectivity of the production of the 13-OXO-glutathione conjugate (13-OXO-SG) have been examined. In contrast to many xenobiotic substrates, the endogenous substrate 13-OXO does not exhibit an appreciable non-enzymatic rate of conjugation under physiological conditions. Therefore, the GST-catalyzed conjugation takes on greater significance as it provides the only realistic means for formation of 13-OXO-SG in most biological systems. Alpha class enzymes are most efficient at catalyzing the formation of 13-OXO-SG with kcat/Km values of 8.9 mM−1 s−1 for GST A1–1 and 2.14 mM−1 s−1 for GST A4–4. In comparison, enzymes from the mu and pi classes exhibit specificity constants from 0.4 to 0.8 mM−1 s−1. Conjugation of 13-OXO with glutathione at C-9 of the substrate can yield a pair of diastereomers that can be resolved by chiral HPLC. GSTs from the mu and pi classes are the most stereoselective enzymes and there is no apparent relationship between catalytic efficiency and stereoselectivity. The role of GST in the metabolic disposition of the bioactive oxidation products of linoleic acid has implications for the regulation of normal cellular functions by these versatile enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号