首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Transglutaminases (EC 2.3.2.13) catalyze the formation of epsilon-(gamma-glutamyl)lysine cross-links and the substitution of primary amines for the gamma-carboxamide groups of protein bound glutamine residues, and are involved in many biological phenomena. Transglutaminase reactions are also applicable in applied enzymology. Here, we established an expression system of recombinant mammalian tissue-type transglutaminase with high productivity. Overexpression of guinea pig liver transglutaminase in Escherichia coli, using a plasmid pET21-d, mostly resulted in the accumulation of insoluble and inactive enzyme protein. By the expression culture at lower temperatures (25 and 18 degrees C), however, a fraction of the soluble and active enzyme protein slightly increased. Co-overexpression of a molecular chaperone system (DnaK-DnaJ-GrpE) and/or a folding catalyst (trigger factor) improved the solubility of the recombinant enzyme produced in E. coli cells. The specific activity, the affinity to the amine substrate, and the sensitivity to the calcium activation and GTP inhibition of the purified soluble recombinant enzyme were lower than those of the natural liver enzyme. These results indicated that co-overexpression of folding modulators tested improved the solubility of the overproduced recombinant mammalian tissue-type transglutaminase, but the catalytic properties of the soluble recombinant enzyme were not exactly the same as those of the natural enzyme.  相似文献   

2.
Transglutaminase type 1 was identified as a tyrosine-phosphorylated protein from the isolated junctional fraction of the mouse liver. This enzyme was reported to be involved in the covalent cross-linking of proteins in keratinocytes, but its expression and activity in other cell types have not been examined. Northern blotting revealed that transglutaminase type 1 was expressed in large amounts in epithelial tissues (lung, liver, and kidney), which was also confirmed by immunoblotting with antibodies raised against mouse recombinant protein. Immunoblotting of the isolated junctional fraction revealed that transglutaminase type 1 was concentrated in the fraction not only as a 97-kDa form but also as forms of various molecular masses cross-linked to other proteins. In agreement with this finding, endogenous transglutaminase type 1 was immunofluorescently colocalized with E-cadherin in cultured simple epithelial cells. In the liver and kidney, immunoelectron microscopy revealed that transglutaminase type 1 was concentrated, albeit not exclusively, at cadherin-based adherens junctions. Furthermore, by in vitro and in vivo labeling, transglutaminase cross-linking activity was also shown to be concentrated at intercellular junctions of simple epithelial cells. These findings suggested that the formation of covalently cross-linked multimolecular complexes by transglutaminase type 1 is an important mechanism for maintenance of the structural integrity of simple epithelial cells, especially at cadherin-based adherens junctions.  相似文献   

3.
GTP hydrolysis by guinea pig liver transglutaminase   总被引:4,自引:0,他引:4  
Homogeneous guinea pig liver transglutaminase was purified from a commercially available enzyme preparation by affinity chromatography on GTP-agarose. The purified transglutaminase exhibited a single band of apparent Mr = 80,000 on sodium dodecyl sulfate polyacrylamide gel and Western blotting and had enzyme activity of both transglutaminase and GTPase. The guinea pig liver transglutaminase has an apparent Km value of 4.4 microM for GTPase activity. GTPase activity was inhibited by guanine nucleotides in order GTP-gamma-S greater than GDP, but not by GMP. These results demonstrate that purified guinea pig liver transglutaminase catalyzes GTP hydrolysis.  相似文献   

4.
Calcium ions are crucial for expression of transglutaminase activity. Although lanthanides have been reported to substitute for calcium in a variety of protein functions, they did not replace the calcium requirement during transglutaminase activity measurements. Furthermore, lanthanides strongly inhibited purified liver transglutaminase activity using either casein or fibrinogen as substrates. Terbium (III) inhibition of transglutaminase-catalyzed putrescine incorporation into casein was not reversed by the presence of 10–200 fold molar excess of calcium ions (Ki for Tb(III)=60 µM). Conformational changes in purified liver transglutaminase upon Tb(III) binding were evident from a biphasic effect of Tb(III) on transglutaminase binding to fibrin. Low concentrations of Tb(III) (1 µM to 10 µM inhibited the binding of transglutaminase to fibrin, whereas higher concentrations (20 µM to 100 µM promoted binding. Conformational changes in purified liver transglutaminase consequent to Tb(III) binding were also demonstrated by fluorescence spectroscopy due to Forster energy transfer. Fluorescence emission was stable to the presence of 200 mM NaCl and 100 mM CaCl2 only partially quenched emission. Purified liver transglutaminase strongly bound to Tb(III)-Chelating Sepharose beads and binding could not be disrupted by 100 mM CaCl2 solution. Our data suggest that Tb(III)-induced conformational changes in transglutaminase are responsible for the observed effects on enzyme structure and function. The potential applications of Tb(III)-transglutaminase interactions in elucidating the structure-function relationships of liver transglutaminase are discussed.  相似文献   

5.
6.
1. The cDNA gene coding for the enzyme transglutiminase (EC 2.3.2.13) was cloned into the pUC18 oriented for expression from the lac promoter. 2. DNA sequencing of the 5' end showed that the cDNA was missing the sequence coding of the N-terminal 30 amino acids. 3. The truncated gene was then cloned into pKK233-2, and the recombinant product was produced in Escherichia coli. 4. A gene construct coding for the complete protein was generated by inserting an oligonucleotide for the missing 30 amino acids into the Eco RI site of the pUC18 clone. 5. A consensus Shine-Dalgarno sequence and translational start codon were positioned at the 5' end of the linker. 6. Immunoblotting experiments of E. coli JM105(pUC18-TGase) indicated the expression of the transglutaminase gene. 7. The cell lysate as well as the partially purified transglutaminase showed no detectable enzyme activity.  相似文献   

7.
Transglutaminase (EC 2.3.2.13) activity in chemically induced rat hepatocellular carcinomas was reduced by some 65% when compared to normal rat livers. The majority of the remaining activity (approx. 85%) was found in the particulate fraction. The use of non-ionic detergent to extract the transglutaminase activity present in both normal and tumour tissue followed by its separation on a Mono-Q column revealed two distinct peaks of activity. These peaks of activity were equivalent to those previously identified as a membrane-bound transglutaminase and the more characteristic cytosolic or tissue transglutaminase. The ratio of the activity of the cytosolic enzyme to that of the membrane-bound enzyme in normal liver was calculated as 5:1. In hepatocellular carcinomas, this ratio was reduced to 0.4:1. No significant change in the activity of the membrane-bound enzyme was detectable in tumour tissue. Comparison of the cytosolic enzyme found in hepatocellular carcinomas with that found in normal liver indicated no change in its molecular weight, Km,app for putrescine incorporation into N,N'-dimethylcasein and sensitivity to activation by Ca2+. These observations suggest that the reduction in transglutaminase activity observed in the hepatocellular carcinoma is due to a selective reduction in the expression of the cytosolic transglutaminase.  相似文献   

8.
9.
Transglutaminase and ornithine decarboxylase activities have been assayed at intervals after partial hepatectomy in regenerating liver cells fractionated to obtain nuclear, cytoplasmic-particulate, and cytoplasmic-soluble fractions. Ornithine decarboxylase activity, localized entirely in the cytoplasmic fractions, undergoes a dramatic induction during the first 4 h after partial hepatectomy and remains elevated. This induction is very sensitive to inhibition by cycloheximide and actinomycin D, as previously reported. Transglutaminase activity is localized in both the cytoplasm and the nucleus with the highest specific activity in the nucleus. Nuclear transglutaminase activity approximately doubles in the first 2 h of liver regeneration, apparently as a result of a translocation of enzyme from the cytoplasm to the nucleus. Inhibitor studies indicate that the translocation is not dependent upon protein or RNA synthesis. In the first 2 h, actinomycin D slightly activates transglutaminase activity in the cytoplasmic-particulate and nuclear fractions. Only at 4 h after the onset of regeneration do actinomycin D and cycloheximide show some inhibition of transglutaminase activity indicating de novo synthesis at this time. A broad increase of transglutaminase activity occurs from hours 12–16 to hour 32 after partial hepatectomy in the nuclear and cytoplasmic-particulate fraction. These data suggest the existence of a function for transglutaminase in the nucleus of rat liver cells.  相似文献   

10.
Formation of cross-linking between proteins via a gamma-glutamyl-epsilon-lysine residue is an important process in many biological phenomena including apoptosis. Formation of this linkage is catalyzed by the enzyme transglutaminase, which is widely distributed from bacteria to the animal kingdom. The simple multi-cellular organism Caenorhabditis elegans also possesses transglutaminase activity associated with apoptosis [Madi, A. et al. (1998) Eur. J. Biochem. 253, 583-590], but no gene with significant homology to vertebrate or bacterial transglutaminases has been found in the C. elegans genome sequence database. On the other hand, protein disulfide isomerases were recently recognized as a new family of transglutaminases [Chandrashekar, R. et al. (1998) Proc. Natl. Acad. Sci. USA 95, 531-536]. To identify the molecule with transglutaminase activity in C. elegans, we isolated from C. elegans a gene homologous to ERp57, which encodes a protein disulfide isomerase, expressed it in recombinant form, and characterized the transglutaminase and protein disulfide isomerase activities of the resultant protein. The C. elegans ERp57 protein had both enzyme activities, and the transglutaminase activity had similar characteristics to the activity in lysate of the whole worm. These results suggested that the ERp57 homologue was one of the substances with transglutaminase activity in C. elegans.  相似文献   

11.
Colorimetric assay for cellular transglutaminase   总被引:1,自引:0,他引:1  
A colorimetric assay for cellular transglutaminase using 5-(biotinamido)pentylamine and polyvinylidine difluoride membranes for crude cellular preparations and purified enzyme has been developed. The biotinpentylamine substrate was incorporated into N,N-dimethylcasein by transglutaminase, the biotinylated products were adsorbed onto the membrane disks and conjugated with streptavidin-beta-galactosidase, and the absorbance resulting from the formation of p-nitrophenol from hydrolysis of p-nitrophenyl-beta-D-galactopyranoside was measured at 405 nm. The validity of the assay was established by showing a good correlation, gamma = 0.922, between the colorimetric procedure and the commonly used radiometric filter paper method for the enzyme. The procedure offers a rapid, sensitive, and nonisotopic method for the estimation of cellular transglutaminase activity in as low as 20 ng of purified guinea pig liver transglutaminase and 10 micrograms of crude fibroblast cytosol protein.  相似文献   

12.
Rabbit tracheal epithelial cells undergo terminal cell division, start to express a squamous phenotype, and form cross-linked envelopes when reaching the plateau phase of the growth curve. This terminal differentiation is accompanied by a 20-30-fold increase in the activity of the cross-linking enzyme transglutaminase. This activity is found almost solely in the particulate fraction of homogenized cells and can be solubilized by nonionic detergents. This transglutaminase crossreacts with a monoclonal antibody raised against type I transglutaminase, but does not react with an antiserum against type II transglutaminase. The tracheal transglutaminase contains a protein subunit of approximately 92 kDa. The omission of epidermal growth factor from the medium or the addition of fetal bovine serum, conditions that induce terminal cell division and expression of a squamous phenotype, enhance transglutaminase activity. High calcium concentrations only stimulate transglutaminase activity after the cells become committed to terminal cell division. Retinoids, which inhibit the expression of the squamous phenotype but not terminal cell division, inhibit the enhancement in transglutaminase activity induced by either confluency or serum, indicating that this enzyme activity is under the control of retinoids. Some retinoids are active at concentrations as low as 10(-12) M. The ability of retinoids to inhibit transglutaminase activity correlates well with their capacity to bind to the retinoic acid-binding protein. Our results show that the increase in transglutaminase activity correlates with the induction of the terminal differentiated phenotype and suggest that this enzyme can function as a marker for this program of differentiation of rabbit tracheal epithelial cells in culture. Our results identify the transglutaminase as type I transglutaminase and are in agreement with the concept that this transglutaminase is involved in the formation of cross-linked envelopes.  相似文献   

13.
Human tissue transglutaminase (htTG) is one of the most important member within the transglutaminase family, enzymes that for their capacity of catalyzing post-translational modifications of proteins and peptides, rise an high interest for industrial applications. More recently, for its implication as the major autoantigen in the coeliac disease, availability of human tissue transglutaminase as recombinant form is required for accurate diagnostic tests. The aim of this study was to find an alternative and inexpensive source to produce human tissue transglutaminase. To date, plant systems are proposed as heterologous hosts to produce recombinant proteins for use in disease diagnosis and therapy. Here, we describe the stable expression of human tissue transglutaminase into Nicotiana tabacum cultured cells (cultivar Bright Yellow 2 (BY-2)). The recombinant enzyme was successfully expressed in different plant cell compartments and both apoplast (apo) and chloroplast (chl) purified proteins were shown to be catalytically active and able to bind GTP, a property possessed by the natural counterpart. Importantly, plant produced human tissue transglutaminase recognized autoantibodies in the serum of coeliac patients, suggesting possible applications in the diagnosis of coeliac disease.  相似文献   

14.
Tissue transglutaminase has been identified as a contributor to a wide variety of diseases, including cataract formation and Celiac disease. Guinea pig tissue transglutaminase has a very broad substrate specificity and therefore is useful for kinetic studies using substrate analogues. Here, we report the expression in Escherichia coli of a hexahistidine-tagged guinea pig liver tissue transglutaminase (His(6)-tTGase) allowing rapid purification by immobilized-metal affinity chromatography. Using this procedure we have obtained the highest reported specific activity (17 U/mg) combined with a high yield (22 mg/L of culture) for recombinant TGase using a single-step purification protocol. Using two independent spectrophotometric assays, we determined that the K(m) value of the recombinant enzyme with the substrate Cbz-Gln-Gly is in the same range as values reported in the literature for the native enzyme. We have thus developed a rapid and reproducible protocol for the preparation of high quality tissue TGase.  相似文献   

15.
Guanosine 5'-triphosphate (GTP) was found to inhibit guinea pig liver transglutaminase activity as measured by [3H]putrescine incorporation into casein. GDP and GTP-gamma-S also inhibited enzyme activity (GTP-gamma-S greater than GTP greater than GDP). Kinetic studies showed that GTP acted as a reversible, noncompetitive inhibitor and that CaCl2 partially reversed GTP inhibition. GTP also inhibited rat liver and adult bovine aortic endothelial cell transglutaminase, but did not inhibit Factor XIIIa activity. Guanosine monophosphate (GMP), cyclic GMP, and polyguanylic acid did not inhibit enzyme activity. Guinea pig liver transglutaminase adsorbed well to GTP-agarose affinity columns, but not to CTP-agarose columns, and the binding was inhibited by the presence of calcium ions. Specific binding of GTP to transglutaminase was demonstrated by photoaffinity labeling with 8-azidoguanosine 5'-[gamma-32P] triphosphate, which was inhibited by the presence of GTP or CaCl2. GTP inhibited trypsin proteolysis of guinea pig liver transglutaminase without affecting the trypsin proteolysis of chromogenic substrates. Proteolytic protection was reversed by the addition of calcium. This study demonstrates that GTP binds to transglutaminase and that both GTP and calcium ions function in concert to regulate transglutaminase structure and function.  相似文献   

16.
This study examines the effect of transforming growth factor-beta 1 (TGF-beta 1) on the expression of Type I and II transglutaminase in normal human epidermal keratinocytes (NHEK cells). Treatment of undifferentiated NHEK cells with 100 pM TGF-beta 1 caused a 10- to 15-fold increase in the activity of a soluble transglutaminase. Based on its cellular distribution and immunoreactivity this transglutaminase was identified as Type II (tissue) transglutaminase. TGF-beta 1 did not enhance the levels of the membrane-bound Type I (epidermal) transglutaminase activity which is induced during squamous cell differentiation and did not increase Type II transglutaminase activity in differentiated NHEK cells. Several SV40 large T antigen-immortalized NHEK cell lines also exhibited a dramatic increase in transglutaminase Type II activity after TGF-beta 1 treatment; however, TGF-beta 1 did not induce any significant change in transglutaminase activity in the carcinoma-derived cell lines SCC-13, SCC-15, and SQCC/Y1. Half-maximal stimulation of transglutaminase Type II activity in NHEK cells occurred at a dose of 15 pM TGF-beta 1. TGF-beta 2 was about equally effective. This enhancement in transglutaminase activity was related to an increase in the amount of transglutaminase Type II protein as indicated by immunoblot analysis. Northern blot analyses using a specific cDNA probe for Type II transglutaminase showed that exposure of NHEK cells to TGF-beta 1 caused a marked increase in the mRNA levels of this enzyme which could be observed as early as 4 h after the addition of TGF-beta 1. Maximal induction of transglutaminase Type II mRNA occurred between 18 and 24 h. The increase in Type II transglutaminase mRNA levels was blocked by the presence of cycloheximide, suggesting that this increase in mRNA by TGF-beta 1 is dependent on protein synthesis.  相似文献   

17.
The effect of a single intraperitoneal injection of retinoic acid on liver transglutaminase (EC 2.3.2.13) activity and total putrescine, spermidine and spermine was studied. The results demonstrate that: (1) transglutaminase activity is increased over control values as early as 4-6 h after treatment, reaching a maximum (2-fold increase) at 12 h and returning to control values at 36 h; (2) the retinoic acid-induced form of enzyme is the soluble tissue transglutaminase; (3) actinomycin D treatment does not completely inhibit the early (6 h) increase of activity, while suppressing that at 12 h; (4) the immunoassay of the soluble transglutaminase shows that, 6 h after treatment, there is no increase in the protein, whereas at 12 and 24 h a significant increase is observed; (5) putrescine, but not spermidine and spermine, increases (5-7-fold) 6 and 18 h after the retinoic acid treatment. The possibility also that the expression of soluble transglutaminase is modulated in vivo by retinoic acid and the relationship to polyamine levels are discussed.  相似文献   

18.
Prion proteins are known as the main agents of transmissible spongiform encephalopathies affecting humans as well as animals. A recombinant ovine prion protein was found to be in vitro able to act as an effective substrate for a microbial isoform of transglutaminase, an enzyme catalyzing the formation of isopeptide bonds inside the proteins. We proved that transglutaminase modifies the structure of the prion protein by leading to the formation of three intra-molecular crosslinks and that the crosslinked protein form is more competent in amyloid formation compared to the unmodified one. In addition, the crosslinked prion protein was shown also to be more resistant to proteinase K digestion. Our findings suggest a possible use of transglutaminase in stabilizing the prion protein three-dimensional structure in order to investigate the molecular basis of the conversion of the protein into its pathological form.  相似文献   

19.
Tissue transglutaminase (tTG) expression was found to be induced in rat liver following in vivo retinoic acid (RA) treatment (Piacentini et al. (1988) Biochem. J. 253, 33-38). Here we show that the increased enzyme expression in rat liver is at least partially the result of the action of RA in parenchymal cells. In fact, (a) when hepatocytes are isolated from RA-treated animals their transglutaminase protein content is much higher than in similarly isolated control cells; (b) higher tTG protein level is also found by immunoelectronmicroscopy in the hepatocytes of the RA-treated rats as compared with the very low amount detected in the controls; (c) RA induces tTG in hepatocytes under culture conditions as well. One of the functions of tTG is to form a protein polymer in dying apoptotic cells by epsilon(gamma-glutamyl)lysine and, specifically gamma-glutamylpolyamine cross-links (Fesus et al. (1989) FEBS Lett. 245, 150-154). Noteworthy, after in vivo and in vitro RA-treatment we could not determine any increase (there was even a slight decrease) in the number of the cross-linked apoptotic envelopes. In keeping with this is the significant reduction of protein bound gamma-glutamylpolyamine detected in hepatocytes exposed to RA in culture. These findings suggest that the RA-induced tTG in parenchimal cells is an inactive form.  相似文献   

20.
The protein cross-linking enzyme tissue transglutaminase binds in vitro with high affinity to fibronectin via its 42-kD gelatin-binding domain. Here we report that cell surface transglutaminase mediates adhesion and spreading of cells on the 42-kD fibronectin fragment, which lacks integrin-binding motifs. Overexpression of tissue transglutaminase increases its amount on the cell surface, enhances adhesion and spreading on fibronectin and its 42-kD fragment, enlarges focal adhesions, and amplifies adhesion-dependent phosphorylation of focal adhesion kinase. These effects are specific for tissue transglutaminase and are not shared by its functional homologue, a catalytic subunit of factor XIII. Adhesive function of tissue transglutaminase does not require its cross-linking activity but depends on its stable noncovalent association with integrins. Transglutaminase interacts directly with multiple integrins of beta1 and beta3 subfamilies, but not with beta2 integrins. Complexes of transglutaminase with integrins are formed inside the cell during biosynthesis and accumulate on the surface and in focal adhesions. Together our results demonstrate that tissue transglutaminase mediates the interaction of integrins with fibronectin, thereby acting as an integrin-associated coreceptor to promote cell adhesion and spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号