首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Song G  Li Q  Shao FZ 《生理学报》2001,53(5):391-395
实验在6只成年猫上进行,将WGA-HRP微量注入C5膈神经核内,通过逆行追踪及5-HT免疫组织化学FITC荧光双重标记方法,研究了中缝核5-HT能神经元向脊髓膈神经核的投射,同时观察了延髓膈肌产运动神经元接受5-HT能纤维投射的情况,结果在中缝苍白核观察到较多的HRP-5-HT双标记神经元,在中缝大核,中缝隐核观察到少数散在的双标记神经元,在延髓疑核,孤束核腹外侧区域的HRP单核记神经元(即膈肌前运动神经元)周围观察到5-HT能轴突末梢,结构表明:发自中缝苍白核5-HT能神经元的传出纤维可投射到脊髓膈神经核,延髓膈肌前运动神经元接受5-HT能纤维的传入投射。  相似文献   

2.
目的 探讨使用激光共聚焦扫描显微镜 (Laser scanning confocal microscope,LSCM)观察大鼠纹状体内谷氨酸能突触连接的方法的可行性.方法 12只正常大鼠分为两组,6只大鼠进行纹状体中等棘刺神经元的CM-DiI 单细胞标记,然后Ⅰ型囊泡膜谷氨酸转运体(vesicular glutamate transporter 1,VGluT1 )免疫荧光标记,LSCM层扫后三维重建,观察VGluT1阳性位点在中等棘刺神经元树突上的分布.另外6只大鼠用TEM观察不对称性突触在纹状体神经元树突上的分布.对两种方法的结果进行比较.结果 用LSCM 和TEM方法观察到的纹状体神经元上谷氨酸能突触连接分布情况一致,没有统计学差异.但LSCM更具优越性的是,可以对图像进行三维重构,从而有利于对神经元之间突触连接的空间分布观察和定量分析.结论 神经细胞荧光标记技术结合LSCM观察是考察纹状体神经元上谷氨酸能突触连接的有效方法.  相似文献   

3.
本文用免疫电镜方法对脊髓胶状质内GABA能神经元的突触联系进行了超微结构研究。结果表明;脊髓胶状质内有许多GABA能神经元胞体和末梢分布;标记的GABA能神经末梢可作为突触前成分与未标记的GABA形成输一树突触。未标记的末梢可与标记的GABA末梢形成输一轴突触。此外,标记的GABA能神经末梢还可作为突触前成分与标记的GABA能轴突、树突或胞体形成输-轴、轴-树或轴-体突触,即自调节突触。上述结果揭示:GABA能末梢可对脊髓胶状质内其它神经元产生抑制或脱抑制作用。值得注意的是胶状质内含GAnA的神经结构可形成各种形式的自调节突触,并借此实现其对脊髓功能的复杂调节。  相似文献   

4.
本文采用HRP逆行示踪的方法,在猫视皮质的17区多点微量注射30%HRP,逆行标记外侧膝状体核(LGN)至视皮质的中继神经元,继用免疫金银法作生长抑素(SS)免疫组织化学,试图双标记LGN的中断神经元。结果显示:光镜下HRP标记细胞与SS是性细胞清晰可辨,HRP标记细胞内为较粗的棕色颗粒,分布于胞浆和树突基部;而SS免疫阳性细胞内的颗粒为银染黑色颗粒;HRP和SS双标记神经元内,上述两种颗粒共存,警备LGN的A、A1和C板层均有SS免疫阳性凶的分布;HRP标记细胞分布于A和A1板层;双标记神经元位于A和A1板层;C板层未见。本文结合以前的研究认为,SS在LGN至视皮质传导通路中的作用,可能与视觉信息的传递和调制有关。  相似文献   

5.
活动依赖的突触结构可塑性是学习和记忆的基础.哺乳动物,尤其是啮齿类动物,具有高度发达的嗅觉系统和惊人的气味学习和记忆能力.本研究以CNGA2敲除而导致外周输入缺失的小鼠为模型,研究嗅球内活动依赖的突触结构可塑性.利用特异性的突触前和突触后标记物,发现外周输入缺失减少了突触标记蛋白突触素(synaptophysin)和抑制性突触标记蛋白桥蛋白(gephyrin)在嗅球外网状层和颗粒细胞层中的表达;兴奋性突触标记蛋白囊泡谷氨酸转运蛋白1(VGluT1)的表达水平只在外网状层中有显著下降,而在颗粒细胞层中没有明显变化.进一步通过活体质粒电转标记嗅球颗粒细胞后发现,CNGA2敲除小鼠颗粒细胞上位于外网状层中的远端树突棘密度显著减小,而位于颗粒细胞层中的近端树突棘密度没有明显变化.这些结果表明颗粒细胞上的树-树突触具有对外周活动依赖的结构可塑性,而轴-树突触则无.  相似文献   

6.
中枢神经系统突触前的神经末梢只有少量的突触囊泡存在,突触囊泡数目的多少和融合模式将影响突触传递的效率。对突触囊泡数目的多少和释放模式的研究依赖于有效的研究方法。在本研究中,与膜亲和力不同的荧光染料用于标记体外培养的海马神经元的功能性突触囊泡。通过场电位和高钾刺激,动态观察荧光强度的变化,结果显示在第一轮刺激中,与膜亲和力低的染料FM2-10脱色的比例(93.0%±5.9%)显著大于与膜亲和力高的染料FM1-43(57.9%±3.5%)。但是,第二和第三轮刺激中FM1-43脱色的比例分别为(24.0±2.3)%,(8.6±1.5)%,显著大于FM2-10的脱色比例[(1.4±3.8)%,(2.3±1.6)%]。这个结果提示快速内吞模式不仅存在于囊泡的第一次释放,同时还存在于囊泡回收后的再次释放。另一方面,高频刺激和高渗蔗糖溶液这两种方法同时用于检测体外混合培养13~14天的抑制性神经元的可释放囊泡池(readily releasable pool,RRP)的大小。结果显示,用高渗蔗糖溶液估计的RRP的大小[(200±23.0)pC]显著大于用高频刺激估计的RRP的大小[(51.1±10.5)pC]。分析其可能的...  相似文献   

7.
实验在 6只成年猫上进行。将WGA HRP微量注入C5膈神经核内 ,通过逆行追踪及GABA免疫组织化学FITC荧光双重标记方法 ,研究了脑干内GABA能神经元向膈神经核的投射。结果在脑桥KF核和面神经后核周围区 (即B¨otzinger复合体 )观察到GABA HRP双标神经元。另外 ,在中缝大核、旁巨细胞外侧核及前庭神经核也观察到双标神经元。本实验结果表明 :发自上述脑干神经核团 ,特别是KF核及B¨otzinger复合体的GABA能神经元的轴突可投射到膈神经核  相似文献   

8.
用逆行溃变(Kohnstamm,1902;Yagita,et al.,1909;Torvik,1957)局部电刺激中枢(Chatfield,1942;Magoun et al.,1942;Wang,1943)等方法进行唾液中枢的定位,所得到结果很不一致。近年Satomi(1979)等用辣根过氧化酶(HRP)浸泡猫中间一面神经或鼓索神经,观察了脑干中逆行标记细胞的分布。但用HRP直接浸泡支配猫颌下腺的神经分支尚未见报道。此外,只见到关于鼓索神经纤维类别和数量的分析的光学显微镜研究(Foley,1945),用光镜和电镜相结合分析颌下腺神经支中的纤  相似文献   

9.
PC12活细胞中单个分泌囊泡的动态成像   总被引:5,自引:0,他引:5  
囊泡的荧光标记和动态显微成像观察是研究蛋白质和膜转运机制的重要手段。采用EGFP hpNPY融合荧光蛋白标记PC12细胞的致密大囊泡 ,用全内反射和宽场荧光显微镜对PC12细胞进行成像研究。结果发现 :普通的宽场荧光成像模糊不清 ,难以观察到单个囊泡 ;而全内反射荧光成像则可清晰地分辨出呈现为离散荧光点的单个囊泡 ;并且进一步利用全内反射荧光成像直接观察到了活的PC12细胞中单个囊泡的转运、锚定及与细胞膜的融合过程 ,证实了囊泡的锚定过程是可逆的。  相似文献   

10.
应用包埋前免疫电镜双标技术对大鼠下丘脑室旁核的神经肽Y(NPY)和胆囊收缩素(CCK)神经元的相互关系进行了研究。用Norgren法进行免疫电镜双标染色。结果在电镜下观察到:在室旁核内侧部,NPY样免疫反应产物呈电子密度高的颗粒状或絮状,弥漫分布于胞浆;CCK样免疫反应产物则呈电子密度高的针状或块状,散在分布于胞浆,偶见于核内。有时,在一个神经末梢内既有浓重的颗粒状DAB反应产物,又有典型的针状TMB反应产物。在室旁核内,NPY和CCK神经元胞体互相混杂、交错存在,两者均为中等大细胞。在超微结构水平,NPY和CCK神经元的树突和轴突可由非NPY、非CCK神经末梢接受传入突触联系;CCK神经元的树突还可接受其他CCK神经末梢的传入性自调节突触;CCK神经元胞体可接受NPY神经末梢的传入性突触,后者的突触前成分内可能有CCK与NPY共存。  相似文献   

11.
There is a mediolateral gradient in activation of the parasternal intercostal (PI) muscle during inspiration. In the present study, we tested the hypotheses that serotonergic [5-hydroxytryptamine (5-HT)] input from descending central drive and/or intrinsic size-related properties of PI motoneurons leads to the differential activation of PI muscles. In dogs, PI motoneurons innervating the medial and lateral regions of the PI muscles at the T(3)-T(5) interspaces were retrogradely labeled by intramuscular injection of cholera toxin B subunit. After a 10-day survival period, PI motoneurons and 5-HT terminals were visualized by using immunohistochemistry and confocal imaging. There were no differences in motoneuron morphology among motoneurons innervating the medial and lateral regions of the PI muscle. However, the number of 5-HT terminals and the 5-HT terminal density (normalized for surface area) were greater in motoneurons innervating the medial region of the PI muscle compared with the lateral region. These results suggest that differences in distribution of 5-HT input may contribute to regional differences in PI muscle activation during inspiration and that differences in PI motoneuron recruitment do not relate to size.  相似文献   

12.
Synaptic processes in various functional groups of thoracic motoneurons (Th9-Th11) evoked by stimulation of segmental nerves were investigated in anesthetized and decerebrate cats. No reciprocal relations were found between these groups of motoneurons. Only excitatory mono- and polysynaptic responses were recorded in the motoneurons of the principal intercostal nerve following stimulation of the homonymous nerve. Activation of the afferents of the external intercostal muscle and dorsal branches does not cause noticeable synaptic processes in these motoneurons; much more rarely it is accompanied by the development of low-amplitude polysynaptic EPSP's. In motoneurons of the dorsal branches, stimulation of homonymous nerves leads to the appearance of simple, short-latent EPSP's. Late responses of the IPSP or EPSP - IPSP type with a predominance of the inhibitory component were observed in most motoneurons of this type following activation of the afferent fibers of the principal intercostal nerve. In other motoneurons of the dorsal muscles, stimulation of the main intercostal nerve (and nerve of the external intercostal muscle) did not evoke apparent synpatic processes. EPSP's (mono- and polysynaptic) appeared in the motoneurons of the external intercostal muscle following stimulation of the homonymous and main intercostal nerves. Activation of the afferents of the dorsal branches was ineffective. The character of the synaptic responses of the respiratory motoneurons to segmental afferent stimulation, investigated under conditions of spontaneous respiration, was different. The characteristics of synaptic activation of thoracic motoneurons by segmental afferents under conditions of hyperventilation apnea and during spontaneous breathing of the animals are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 3, pp. 279–288, May–June, 1970.  相似文献   

13.
Our purpose was to characterize activity of the intercostal nerve branch innervating the triangularis sterni muscle and the motoneuronal activities comprising this nerve discharge. In decerebrate, vagotomized, paralyzed, and ventilated cats, phasic triangularis sterni neural activity was evident in normocapnia. In most cats, activity did not commence until midexpiration. Activity then rose progressively to terminate at end expiration. Peak neural activities increased in parallel with phrenic activity in hypercapnia and fell in hypocapnia. The progressive increase in triangularis sterni neural activity within each respiratory cycle resulted from recruitment of motoneuronal activities throughout expiration. Once recruited, many motoneurons had a decrementing or constant discharge frequency. In hypercapnia, motoneuronal discharge frequencies increased, and additional activities were recruited. The number of active motoneurons and their discharge frequencies fell in hypocapnia. A similar pattern of motoneuronal activities and responses to stimuli was observed in cats with intact vagi. Factors are considered that may underlie the recruitment pattern of triangularis sterni motoneuronal activities and the inhibition of these in early expiration.  相似文献   

14.
A distribution of degenerated fibers in contralateral phrenic nucleus of cats with chronic hemisection of the spinal cord under medulla oblongata has been studied. These fibers approach the nucleus after the partial secondary crossing of the descending respiratory pathway on the level of cervical segments. Degenerated fibers follow the dendrites of phrenic motoneurons and approach the basal segments of dendrites but do not reach the cell bodies. Possible mode of control over phrenic nucleus activity is under discussion.  相似文献   

15.
The distribution and morphology of motoneurons innervating specific types of muscle fibers in the levator scapulae superior (LSS) muscle complex of the bullfrog (Rana catesbeiana) and tiger salamander (Ambystoma tigrinum) were studied by retrograde labelling with cholera toxin-conjugated horseradish peroxidase (CT-HRP). The LSS muscle complex in both of these amphibians has a segregated pattern of muscle-fiber types (tonic; fast oxidative-glycolytic twitch [FOG]; fast glycolytic twitch [FG]) along an anteroposterior axis. The entire motor pool was labelled by injection of CT-HRP into the whole LSS muscle complex. The motoneurons innervating specific fiber types were labelled by injection of CT-HRP into certain muscle regions. The organization of the motoneuron pool of the LSS complex of both species was arranged in two columns—one ventrolateral and one medial. In bullfrogs, the ventrolateral column contains motoneurons innervating FG and tonic fiber types and the medial column contains motoneurons innervating FOG fiber types. In tiger salamanders, the ventrolateral column contains motoneurons innervating FG fiber types and the medial column contains motoneurons innervating FOG and tonic fiber types. The different motoneuron types also have different soma sizes and patterns of dendritic arborization. In both species, FG motoneurons are the largest, whereas FOG motoneurons are intermediate in size and tonic motoneurons are the smallest. In bullfrogs, the main dendrites of FG motoneurons extend into the dorsolateral and the ventrolateral gray matter of the spinal cord, whereas the dendrites of FOG motoneurons extend into the ventral and medial cord. In the tiger salamander, dendrites of FG motoneurons extend into the ventrolateral spinal cord and dendrites of the FOG motoneurons extend more generally into the ventral cord. Dendrites of tonic motoneurons in both amphibians were small and short, and difficult to observe. These results establish that motoneurons innervating different types of muscle fibers in the LSS muscle complex are segregated spatially and display consistent morphological differences. © 1993 Wiley-Liss, Inc.  相似文献   

16.
The changes in thoracic and abdominal pressure that generate vomiting are produced by coordinated action of the major respiratory muscles. During vomiting, the diaphragm and external intercostal (inspiratory) muscles co-contract with abdominal (expiratory) muscles in a series of bursts of activity that culminates in expulsion. Internal intercostal (expiratory) muscles contract out of phase with these muscles during retching and are inactive during expulsion. The periesophageal portion of the diaphragm relaxes during expulsion, presumably facilitating rostral movement of gastric contents. Recent studies have begun to examine to what extent medullary respiratory neurons are involved in the control of these muscles during vomiting. Bulbospinal expiratory neurons in the ventral respiratory group caudal to the obex discharge at the appropriate time during (fictive) vomiting to activate either abdominal or internal intercostal motoneurons. The pathways that drive phrenic and external intercostal motoneurons during vomiting have yet to be identified. Most bulbospinal inspiratory neurons in the dorsal and ventral respiratory groups do not have the appropriate response pattern to initiate activation of these motoneurons during (fictive) vomiting. Relaxation of the periesophageal diaphragm during vomiting could be brought about, at least in part, by reduced firing of bulbospinal inspiratory neurons.  相似文献   

17.
The purpose of this study is to analyze the reflex effects of laryngeal afferent activation on respiratory patterns in anesthetized, vagotomized, paralyzed, ventilated cats. We recorded simultaneously from the phrenic nerve, T10 internal intercostal nerve, and single bulbospinal expiratory neurons of the caudal ventral respiratory group (VRG). Laryngeal afferents were activated by electrical stimulation of the superior laryngeal nerve (SLN) or by cold-water infusion into the larynx. Both types of stimuli caused inhibition of phrenic activity and facilitation of internal intercostal nerve activity, indicating expiratory effort. The activity of 46 bulbospinal expiratory cells was depressed during SLN electrical stimulation, and 13 of them were completely inhibited. In 44 of 56 neurons tested, mean firing frequency (FFmean) was decreased in response to cold-water infusion and 8 others responded with increased FFmean; in the remaining 4 neurons, FFmean was unchanged. Possible reasons for different neuronal responses to SLN electrical stimulation and water infusion are discussed. We conclude that bulbospinal expiratory neurons of VRG were not the source of the reflex motoneuronal expiratory-like activity produced by SLN stimulation. Other, not yet identified inputs to spinal expiratory motoneurons are activated during this experimental condition.  相似文献   

18.
S S Tay  W C Wong 《Acta anatomica》1992,144(3):196-201
Insulin-like immunoreactive neurons were localized in the cervical, thoracic, lumbar and sacral segments of the monkey spinal cord. Both dorsal and ventral horn cells were labelled. Insulin-like reaction product was localized in the cell nucleus and cytoplasm. Both inner and outer nuclear membranes were labelled. Reaction product appeared to be scattered throughout the nucleoplasm but not within the nucleolus. In the cytoplasm, labelling was mainly localized in the cisternae of rER and saccules of Golgi apparatus. Both proximal and distal dendrites were labelled, the reaction product was closely associated with the parallel arrays of neurotubules. Most of the distal dendrites were postsynaptic to non-labelled axon terminals; however, some were postsynaptic to lightly labelled axon terminals. A labelled dendrite often formed the central element of a synaptic glomerulus with several nonlabelled axon terminals. It is hypothesized that insulin-like substance(s) may be modulating nuclear activities as well as neurotransmission at the synapse.  相似文献   

19.
Asphyxiation of the spinal cord for periods of 2-4 min leads to block of the monosynaptic pathway. At about the same time this blockage takes place, the afferent action potentials fail to invade the presynaptic terminals. Asphyxiation also interferes with the antidromic invasion of motoneurons, and the failure of the antidromic action potentials to invade the motoneuron dendrites coincides with the time of the disappearance of the orthodromic monosynaptic responses. During reoxygenation, both the presynaptic terminals and the dendrites recover their function, or rather their polarization, in a few seconds and yet synaptic transmission reappears only after several minutes. It is postulated that failure of synaptic transmission during asphyxia is due to depolarization of both the presynaptic terminals and the dendrites of the postsynaptic elements. However, repolarization of these elements during reoxygenation, is not sufficient to reestablish synaptic transmission, but recovery of some unidentified biochemical process is apparently necessary.  相似文献   

20.
Asphyxiation of the spinal cord for periods of 2–4 min leads to block of the monosynaptic pathway. At about the same time this blockage takes place, the afferent action potentials fail to invade the presynaptic terminals. Asphyxiation also interferes with the antidromic invasion of motoneurons, and the failure of the antidromic action potentials to invade the motoneuron dendrites coincides with the time of the disappearance of the orthodromic monosynaptic responses. During reoxygenation, both the presynaptic terminals and the dendrites recover their function, or rather their polarization, in a few seconds and yet synaptic transmission reappears only after several minutes. It is postulated that failure of synaptic transmission during asphyxia is due to depolarization of both the presynaptic terminals and the dendrites of the postsynaptic elements. However, repolarization of these elements during reoxygenation, is not sufficient to reestablish synaptic transmission, but recovery of some unidentified biochemical process is apparently necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号