首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To respect the European labelling threshold for the adventitious presence of genetically modified organisms (GMOs) in food and feed, stakeholders mainly rely on real-time PCR analysis, which provides a measurement expressed as a percentage of GM-DNA. However, this measurement veils the complexity of gene flow, especially in the case of gene stacking. We have investigated the impact of gene stacking on adventitious GM presence due to pollen flow and seed admixture as well as its translation in terms of the percentage of GM-DNA in a non-GM maize harvest. In the case of varieties bearing one to four stacked events, we established a set of relationships between the percentage of GM kernels and the percentage of GM-DNA in a non-GM harvest as well as a set of relationships between the rate of seed admixture and the percentages of GM material in a non-GM harvest. Thanks to these relationships, and based on simulations with a gene flow model, we have been able to demonstrate that the number of events and the stacking structure of the emitting fields impact the ability of a non-GM maize producer to comply with given GM kernel or GM-DNA thresholds. We also show that a great variability in the rates of GM kernels, embryos and DNA results from seed admixture. Finally, the choice of a unit of measurement for a GM threshold in seed lots can have opposite effects on the ability of farmers to comply with a given threshold depending on whether they are crop or seed producers.  相似文献   

3.
4.
商业化种植的六种基因改良玉米品系的鉴定检测方法   总被引:6,自引:0,他引:6  
以PCR方法鉴定检测六种商业化种植的基因改良玉米 (geneticallymodifiedmaize,简称GM 玉米 )。针对Mon810 (Monsanto公司 )、Bt11(Novartis公司 )、Event176 (Novartis公司 )、CBH 35 1(AgrEvo公司 )、T14/T2 5Liberty (AgrEvo公司 )及GA2 1(Monsanto公司 )GM 玉米转入的外源基因质粒图谱 ,设计具有品系特异性的引物进行PCR检测 ,建立了GM 玉米品系鉴定检测的方法。  相似文献   

5.
Coexistence between genetically modified (GM) and non-GM plants is a field of rapid development and considerable controversy. In crops, it is increasingly important to understand and predict the GM volunteer emergence in subsequent non-GM crops. Theoretical models suggest recruitment from the seedbank over extended periods, but empirical evidence matching these predictions has been scarce. Here, we provide evidence of long-term GM seed persistence in conventional agriculture. Ten years after a trial of GM herbicide-tolerant oilseed rape, emergent seedlings were collected and tested for herbicide tolerance. Seedlings that survived the glufosinate herbicide (15 out of 38 volunteers) tested positive for at least one GM insert. The resulting density was equivalent to 0.01 plants m-2, despite complying with volunteer reduction recommendations. These results are important in relation to debating and regulating coexistence of GM and non-GM crops, particularly for planting non-GM crops after GM crops in the same field.  相似文献   

6.
We have developed a novel multiplex quantitative DNA array based PCR method (MQDA-PCR). The MQDA-PCR is general and may be used in all areas of biological science where simultaneous quantification of multiple gene targets is desired. We used quantification of transgenic maize in food and feed as a model system to show the applicability of the method. The method is based on a two-step PCR. In the first few cycles bipartite primers containing a universal 5′ ‘HEAD’ region and a 3′ region specific to each genetically modified (GM) construct are employed. The unused primers are then degraded with a single-strand DNA-specific exonuclease. The second step of the PCR is run containing only primers consisting of the universal HEAD region. The removal of the primers is essential to create a competitive, and thus quantitative PCR. Oligo nucleotides hybridising to internal segments of the PCR products are then sequence specifically labelled in a cyclic linear signal amplification reaction. This is done both to increase the sensitivity and the specificity of the assay. Hybridisation of the labelled oligonucleotides to their complementary sequences in a DNA array enables multiplex detection. Quantitative information was obtained in the range 0.1–2% for the different GM constructs tested. Seventeen different food and feed samples were screened using a twelve-plex system for simultaneous detection of seven different GM maize events (Bt176, Bt11, Mon810, T25, GA21, CBH351 and DBT418). Ten samples were GM positive containing mainly mixtures of Mon810, Bt11 and Bt176 DNA. One sample contained appreciable amounts of GA21. An eight-plex MQDA-PCR system for detection of Mon810, Bt11 and Bt176 was evaluated by comparison with simplex 5′ nuclease PCRs. There were no significant differences in the quantifications using the two approaches. The samples could, by both methods, be quantified as containing >2%, between 1 and 2%, between 0.1 and 1%, or <0.1% in 43 out of 47 determinations. The described method is modular, and thus suited for future needs in GM detection.  相似文献   

7.
Based on the DNA sequences of the junctions between recombinant and cotton genomic DNA of the two genetically modified (GM) cotton varieties, herbicide-tolerance Mon1445 and insect-resistant Mon531, event-specific primers and probes for qualitative and quantitative PCR detection for both GM cotton varieties were designed, and corresponding detection methods were developed. In qualitative PCR detection, the simplex and multiplex PCR detection systems were established and employed to identify Mon1445 and Mon531 from other GM cottons and crops. The limits of detection (LODs) of the simplex PCR were 0.05% for both Mon1445 and Mon531 using 100 ng DNA templates in one reaction, and the LOD of multiplex PCR analysis was 0.1%. For further quantitative detection using TaqMan real-time PCR systems for Mon1445 and Mon531, one plasmid pMD-ECS, used as reference molecule was constructed, which contained the quantitative amplified fragments of Mon1445, Mon531, and cotton endogenous reference gene. The limits of quantification (LOQs) of Mon1445 and Mon531 event-specific PCR systems using plasmid pMD-ECS as reference molecule were 10 copies, and the quantification range was from 0.03 to 100% in 100 ng of the DNA template for one reaction. Thereafter, five mixed cotton samples containing 0, 0.5, 0.9, 3 and 5% Mon1445 or Mon531 were quantified using established real-time PCR systems to evaluate the accuracy and precision of the developed real-time PCR detection systems. The accuracy expressed as bias varied from 1.33 to 8.89% for tested Mon1445 cotton samples, and from 2.67 to 6.80% for Mon531. The precision expressed as relative standard deviations (RSD) were different from 1.13 to 30.00% for Mon1445 cotton, and from 1.27 to 24.68% for Mon531. The range of RSD was similar to other laboratory results (25%). Concluded from above results, we believed that the established event-specific qualitative and quantitative PCR systems for Mon1445 and Mon531 in this study are acceptable and suitable for GM cotton identification and quantification.  相似文献   

8.
Gene flow in genetically modified wheat   总被引:1,自引:0,他引:1  
Understanding gene flow in genetically modified (GM) crops is critical to answering questions regarding risk-assessment and the coexistence of GM and non-GM crops. In two field experiments, we tested whether rates of cross-pollination differed between GM and non-GM lines of the predominantly self-pollinating wheat Triticum aestivum. In the first experiment, outcrossing was studied within the field by planting "phytometers" of one line into stands of another line. In the second experiment, outcrossing was studied over distances of 0.5-2.5 m from a central patch of pollen donors to adjacent patches of pollen recipients. Cross-pollination and outcrossing was detected when offspring of a pollen recipient without a particular transgene contained this transgene in heterozygous condition. The GM lines had been produced from the varieties Bobwhite or Frisal and contained Pm3b or chitinase/glucanase transgenes, respectively, in homozygous condition. These transgenes increase plant resistance against pathogenic fungi. Although the overall outcrossing rate in the first experiment was only 3.4%, Bobwhite GM lines containing the Pm3b transgene were six times more likely than non-GM control lines to produce outcrossed offspring. There was additional variation in outcrossing rate among the four GM-lines, presumably due to the different transgene insertion events. Among the pollen donors, the Frisal GM line expressing a chitinase transgene caused more outcrossing than the GM line expressing both a chitinase and a glucanase transgene. In the second experiment, outcrossing after cross-pollination declined from 0.7-0.03% over the test distances of 0.5-2.5 m. Our results suggest that pollen-mediated gene flow between GM and non-GM wheat might only be a concern if it occurs within fields, e.g. due to seed contamination. Methodologically our study demonstrates that outcrossing rates between transgenic and other lines within crops can be assessed using a phytometer approach and that gene-flow distances can be efficiently estimated with population-level PCR analyses.  相似文献   

9.
Regulatory approvals for deliberate release of GM maize events into the environment have lead to real situations of coexistence between GM and non-GM, with some fields being cultivated with GM and conventional varieties in successive seasons. Given the common presence of volunteer plants in maize fields in temperate areas, we investigated the real impact of GM volunteers on the yield of 12 non-GM agricultural fields. Volunteer density varied from residual to around 10% of plants in the field and was largely reduced using certain cultural practices. Plant vigour was low, they rarely had cobs and produced pollen that cross-fertilized neighbour plants only at low—but variable—levels. In the worst-case scenario, the estimated content of GMO was 0.16%. The influence of GM volunteers was not enough to reach the 0.9% adventitious GM threshold but it could potentially contribute to adventitious GM levels, especially at high initial densities (i.e. above 1,000 volunteers/ha).  相似文献   

10.
Gene flow from genetically modified (GM) crops to conventional non-GM crops is a serious concern for protection of conventional and organic farming. Gene flow from GM watermelon developed for rootstock use, containing cucumber green mottle mosaic virus (CGMMV)-coat protein (CP) gene, to a non-GM isogenic control variety “Clhalteok” and grafted watermelon “Keumcheon” was investigated in a small scale field trial as a pilot study. Hybrids between GM and non-GM watermelons were screened from 1304 “Chalteok” seeds and 856 “Keumcheon” seeds using the duplex PCR method targeting theCGMMV- CP gene as a marker. Hybrids were found in all pollen recipient plots. The gene flow frequencies were greater for “Chaiteok” than for “KeumcheonD; with 75% outcrossing in the “Chaiteok” plot at the closest distance (0.8 m) to the GM plot. A much larger scale field trial is necessary to identify the isolation distance between GM and non-GM watermelon, as the behaviors of insect pollinators needs to be clarified in Korea.  相似文献   

11.
A major concern related to the adoption of genetically modified (GM) crops in agricultural systems is the possibility of unwanted GM inputs into non-GM crop production systems. Given the increasing commercial cultivation of GM crops in the European Union (EU), there is an urgent need to define measures to prevent mixing of GM with non-GM products during crop production. Cross-fertilization is one of the various mechanisms that could lead to GM-inputs into non-GM crop systems. Isolation distances between GM and non-GM fields are widely accepted to be an effective measure to reduce these inputs. However, the question of adequate isolation distances between GM and non-GM maize is still subject of controversy both amongst scientists and regulators. As several European countries have proposed largely differing isolation distances for maize ranging from 25 to 800 m, there is a need for scientific criteria when using cross-fertilization data of maize to define isolation distances between GM and non-GM maize. We have reviewed existing cross-fertilization studies in maize, established relevant criteria for the evaluation of these studies and applied these criteria to define science-based isolation distances. To keep GM-inputs in the final product well below the 0.9% threshold defined by the EU, isolation distances of 20 m for silage and 50 m for grain maize, respectively, are proposed. An evaluation using statistical data on maize acreage and an aerial photographs assessment of a typical agricultural landscape by means of Geographic Information Systems (GIS) showed that spatial resources would allow applying the defined isolation distances for the cultivation of GM maize in the majority of the cases under actual Swiss agricultural conditions. The here developed approach, using defined criteria to consider the agricultural context of maize cultivation, may be of assistance for the analysis of cross-fertilization data in other countries.  相似文献   

12.
From 2000 to 2003 a range of Farm Scale Evaluation (FSE) trials were established in the UK to assess the effect of the release and management of herbicide tolerant (HT) crops on arable weeds and invertebrates. The FSE trials for maize were also used to investigate crop-to-crop gene flow and to develop a statistical model for the prediction of gene flow frequency that can be used to evaluate current separation distance guidelines for GM crops. Seed samples were collected from the non-GM half of 55 trial sites and 1,055 were tested for evidence of gene flow from the GM HT halves using a quantitative PCR assay specific to the HT (pat) gene. Rates of gene flow were found to decrease rapidly with increasing distance from the GM source. Gene flow was detected in 30% of the samples (40 out of 135) at 150 m from the GM source and events of GM to non-GM gene flow were detected at distances up to and including 200 m from the GM source. The quantitative data were subjected to statistical analysis and a two-step model was found to provide the best fit for the data. A dynamic whole field model predicted that a square field (150 m x 150 m in size) of grain maize would require a separation distance of 3 m for the adjacent crop to be below a 0.9% threshold (with <2% probability of exceeding the threshold). The data and models presented here are discussed in the context of necessary separation distances to achieve various possible thresholds for adventitious presence of GM in maize.  相似文献   

13.
Real-time Polymerase Chain Reaction (PCR) based assays are widely used to estimate the content of genetically modified (GM) materials in food, feed and seed. It has been known that the genetic structures of the analyte can significantly influence the GM content expressed by the haploid genome (HG) % estimated using real-time PCR assays; this kind of influence is also understood as the impact of biological factors. The influence was first simulated at theoretical level using maize as a model. We then experimentally assessed the impact of biological factors on quantitative results, analysing by quantitative real-time PCR six maize MON 810 hybrid kernels with different genetic structures: (1) hemizygous from transgenic male parent, (2) hemizygous from transgenic female parent and (3) homozygous at the transgenic locus. The results obtained in the present study showed clear influences of biological factors on GM DNA quantification: 1% of GM materials by weight (wt) for the three genetic structures contained 0.39, 0.55 and 1.0% of GM DNA by HG respectively, from quantitative real-time PCR analyses. The relationships between GM wt% and GM HG% can be empirically established as: (1) in the case of the presence of a single GM trait: GM HG% = GM wt% × (0.5 ± 0.167Y), where Y is the endosperm DNA content (%) in the total DNA of a maize kernel, (2) in the case of the presence of multiple GM traits: GM HG% = N × GM wt% × (0.5 ± 0.167Y), where N is the number of GM traits (stacked or not) present in an unknown sample. This finding can be used by stakeholders related to GMO for empirical prediction from one unit of expression to another in the monitoring of seed and grain production chains. Practical equations have also been suggested for haploid copy number calculations, using hemizygous GM materials for calibration curves.  相似文献   

14.
Over the last 15 years, several studies on coexistence have used simulation results of spatially explicit gene flow models. These models predict the adventitious presence (AP) of GM grains in non-GM fields at the landscape scale. However, result uncertainty is not quantified. Moreover, most of the models require an important amount of input data on climate, land use, and crop management practices which might not always be available. A comprehensive Bayesian statistical approach has been implemented in the case of gene flow. This approach makes it possible to inform the decision-maker on AP, whatever the amount of information available in a given situation, to provide information on the uncertainty of the predictions and to model the variability of AP within a field, which helps set up sampling strategies.The resulting decision-support tool (DST) can compute the expected AP and its probability distribution in non-GM maize fields at different times of the growing season and under different management scenarios. Integrated through a web interface, the DST is designed to be operationally helpful for managing coexistence between GM and non-GM maize crops for a wide range of stakeholders from farmers to policy makers.  相似文献   

15.
We have investigated the immunological and metabolomic impacts of Cry1Ab administration to mice, either as a purified protein or as the Cry1Ab-expressing genetically modified (GM) MON810 maize. Humoral and cellular specific immune responses induced in BALB/cJ mice after intra-gastric (i.g.) or intra-peritoneal (i.p.) administration of purified Cry1Ab were analyzed and compared with those induced by proteins of various immunogenic and allergic potencies. Possible unintended effects of the genetic modification on the pattern of expression of maize natural allergens were studied using IgE-immunoblot and sera from maize-allergic patients. Mice were experimentally sensitized (i.g. or i.p. route) with protein extracts from GM or non-GM maize, and then anti-maize proteins and anti-Cry1Ab-induced immune responses were analyzed. In parallel, longitudinal metabolomic studies were performed on the urine of mice treated via the i.g. route. Weak immune responses were observed after i.g. administration of the different proteins. Using the i.p. route, a clear Th2 response was observed with the known allergenic proteins, whereas a mixed Th1/Th2 immune response was observed with immunogenic protein not known to be allergenic and with Cry1Ab. This then reflects protein immunogenicity in the BALB/c Th2-biased mouse strain rather than allergenicity. No difference in natural maize allergen profiles was evidenced between MON810 and its non-GM comparator. Immune responses against maize proteins were quantitatively equivalent in mice treated with MON810 vs the non-GM counterpart and no anti-Cry1Ab-specific immune response was detected in mice that received MON810. Metabolomic studies showed a slight "cultivar" effect, which represented less than 1% of the initial metabolic information. Our results confirm the immunogenicity of purified Cry1Ab without evidence of allergenic potential. Immunological and metabolomic studies revealed slight differences in mouse metabolic profiles after i.g. administration of MON810 vs its non-GM counterpart, but no significant unintended effect of the genetic modification on immune responses was seen.  相似文献   

16.
A total of 72 male weaned pigs were used in a 110-day study to investigate the effect of feeding genetically modified (GM) Bt MON810 maize on selected growth and health indicators. It was hypothesised that in pigs fed Bt maize, growth and health are not impacted compared with pigs fed isogenic maize-based diets. Following a 12-day basal period, pigs (10.7 ± 1.9 kg body weight (BW); ∼40 days old) were blocked by weight and ancestry and randomly assigned to treatments: (1) non-GM maize diet for 110 days (non-GM), (2) GM maize diet for 110 days (GM), (3) non-GM maize diet for 30 days followed by GM maize diet up to day 110 (non-GM/GM) and (4) GM maize diet for 30 days followed by non-GM maize diet up to day 110 (GM/non-GM). BW and daily feed intake were recorded on days 0, 30, 60 and 110 (n = 15). Body composition was determined by dual energy X-ray absorptiometry (n = 10) on day 80. Following slaughter on day 110, organs and intestines were weighed and sampled for histological analysis and urine was collected for biochemical analysis (n = 10). Serum biochemistry analysis was performed on days 0, 30, 60, 100 and 110. Growth performance and serum biochemistry were analysed as repeated measures with time and treatment as main factors. The slice option of SAS was used to determine treatment differences at individual time points. There was no effect of feeding GM maize on overall growth, body composition, organ and intestinal weight and histology or serum biochemistry on days 60 and 100 and on urine biochemistry on day 110. A treatment × time interaction was observed for serum urea (SU; P < 0.05), creatinine (SC; P < 0.05) and aspartate aminotransferase (AST; P < 0.05). On day 30, SU was lower for the non-GM/GM treatment compared with the non-GM, GM and GM/non-GM treatments (P < 0.05). On day 110, SC was higher for the non-GM/GM and GM/non-GM treatments compared with non-GM and GM treatments (P < 0.05). Overall, serum total protein was lower for the GM/non-GM treatment compared with the non-GM/GM treatment (P < 0.05). The magnitude of change observed in some serum biochemical parameters did not indicate organ dysfunction and the changes were not accompanied by histological lesions. Long-term feeding of GM maize to pigs did not adversely affect growth or the selected health indicators investigated.  相似文献   

17.
The food safety of stacked trait genetically modified (GM) maize GH5112E-117C containing insect-resistance gene Cry1Ah and glyphosate-resistant gene G2-aroA was evaluated in comparison to non-GM Hi-II maize fed to Sprague-Dawley rats during a 90-day subchronic feeding study. Three different dietary concentrations (12.5, 25 and 50 %, w/w) of the GM maize were used or its corresponding non-GM maize. No biologically significant differences in the animals’ clinical signs, body weights, food consumption, hematology, clinical chemistry, organ weights and histopathology were found between the stacked trait GM maize groups, and the non-GM maize groups. The results of the 90-day subchronic feeding study demonstrated that the stacked trait GM maize GH5112E-117C is as safe as the conventional non-GM maize Hi-II.  相似文献   

18.
【目的】对转基因作物进行生态风险评估是大面积种植前的一个必要步骤,水稻Oryza sativa访花昆虫有上百种,包括家蝇Musca domestica。本研究旨在明确访花昆虫家蝇介导转基因水稻外源基因逃逸的风险。【方法】2010年,我们使用转基因水稻B1, B6和G8-7作为父本(花粉供体),用同源非转基因水稻Jiazao 935和Wuyunjing 7作为母本(花粉受体),并用家蝇作为授粉昆虫,在浙江大学华家池和长兴试验基地开展了田间种植试验,对收割的后代水稻种子进行室内种植培养,对种苗用潮霉素B和草甘膦处理进行转基因杂交种检测,对存活植株进行潮霉素和草甘膦抗性基因PCR检测,测试家蝇介导的转基因水稻外源基因逃逸频率。【结果】对浙江两个测试基地3个转基因水稻品种共计超过216 500粒后代水稻种子进行的检测及结果表明,在毗邻区域杂交种少,家蝇授粉区和无家蝇授粉区转基因水稻外源基因向非转基因水稻逃逸频率均较低(0~0.64%)。【结论】家蝇介导的转基因水稻外源基因逃逸频率较低,家蝇没有增加转基因水稻外源基因逃逸的风险。  相似文献   

19.
Feeding experiments were carried out to investigate the digestive fate of transgenic DNA and novel protein in wild boar applying polymerase chain reaction (PCR) and immunodiagnostic techniques. Furthermore, the dispersal of viable maize and rapeseed (endozoochory) was studied. A diet containing conventional rapeseed, and either genetically modified (GM) maize expressing Cry1Ab protein (Bt176) or non-GM isogenic maize was offered. By conventional and quantitative PCR both chloroplast-specific plant DNA (rubisco) and cry1Ab gene fragments were detected only in gastrointestinal content. Using an enzyme-linked immunosorbent assay (ELISA) positive signals of immunoactive Cry1Ab protein were detected in digesta samples. Analysis of endozoochory showed that excreted maize seeds retain their germination capacity only in extremely rare cases and no intact rapeseed was found in faeces. A possible dispersal of viable seeds by wild boars is highly unlikely.  相似文献   

20.
We present for the first time a comparative analysis of blood and organ system data from trials with rats fed three main commercialized genetically modified (GM) maize (NK 603, MON 810, MON 863), which are present in food and feed in the world. NK 603 has been modified to be tolerant to the broad spectrum herbicide Roundup and thus contains residues of this formulation. MON 810 and MON 863 are engineered to synthesize two different Bt toxins used as insecticides. Approximately 60 different biochemical parameters were classified per organ and measured in serum and urine after 5 and 14 weeks of feeding. GM maize-fed rats were compared first to their respective isogenic or parental non-GM equivalent control groups. This was followed by comparison to six reference groups, which had consumed various other non-GM maize varieties. We applied nonparametric methods, including multiple pairwise comparisons with a False Discovery Rate approach. Principal Component Analysis allowed the investigation of scattering of different factors (sex, weeks of feeding, diet, dose and group). Our analysis clearly reveals for the 3 GMOs new side effects linked with GM maize consumption, which were sex- and often dose-dependent. Effects were mostly associated with the kidney and liver, the dietary detoxifying organs, although different between the 3 GMOs. Other effects were also noticed in the heart, adrenal glands, spleen and haematopoietic system. We conclude that these data highlight signs of hepatorenal toxicity, possibly due to the new pesticides specific to each GM corn. In addition, unintended direct or indirect metabolic consequences of the genetic modification cannot be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号