首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adhesion to glass of actively growing cells of the thermophilic Bacillus licheniformis, isolated from the Medyaginskaya test borehole (Yaroslavl' oblast), was studied. The reversible adhesion (RA) manifests itself in a decline of cell density (without cell lysis) in the liquid culture over the first 20–40 min of growth followed by normal exponential growth. The RA is minimal under favorable growth conditions but increases when cells are transferred to a new medium, especially one with a pH, temperature, salinity, or concentration of Ca2+ ions nonoptimal for the given species. Under unfavorable growth conditions, the adhesion becomes irreversible. The obtained data suggest that RA represents an adaptation mechanism important for population survival.  相似文献   

2.
Because of the known property of spontaneous regression in stage IVS of neuroblastoma all attempts are made to elucidate whether differentiation inducers possibly could be applied for neuroblastoma therapy. Here we examined the influence of retinoic acid (RA) in vitro on differentiation, proliferation and adhesion of 10 permanent and 4 primary cell lines as well as of several SCID-mouse tumour transplants. In general, after RA treatment morphologically different cell types which are characteristic for neuroblastoma cells have changed. N (neuronal)-type cells prolonged their neuronal processes, whereas S (epithelial, substrate-adherent, Schwann cell-like)-type cells lost their adherence to substratum and became apoptotic. Additionally, the reactions of all neuroblastoma cell lines with monoclonal antibodies against beta-tubulin (for neuronal cells) and glial fibrillary acidic protein (for epithelial cells) were determined. The anti-proliferative effect of all-trans-RA as well as 13-cis-RA was more profound in S-type cells (up to 40% in primary cell lines). To elucidate the role of adhesion molecules during neuronal cell differentiation, we have analysed the adhesion of neuroblastoma cells on poly-D-lysin-precoated plates under RA influence. While N-type cells displayed an increased adhesion, all S-type cell lines as well as all primary cell lines exhibited a reduced adhesion (IMR-5 and IMR-32: p < 0.001; JW, SR and PM: p < 0.05). RA treatment increased predominantly the tested antigens (HCAM, ICAM-1, NCAM, PECAM-1, VCAM-1, cadherin, FGF-R, IGF-R, NGF-R, TGF-beta/1, NF200, NF160, NF68, NSE, HLA-ABC) in all cell lines independently of their phenotypes (TGF-beta/1: p < 0.001; NF68: p < 0.01; PECAM-1 and NGF-R: p < 0.05). In recultured SCID-mouse-passaged tumour cells antigens were down-regulated (FGF-R: p < 0.01), but increased again after RA influence (TGF-beta/1: p < 0.05). In summary, the RA differentiation model demonstrates the possibility to interfere in cell adhesion and to diminish growth potential both in N-type as well as S-type neuroblastoma cells.  相似文献   

3.
Interleukin-18 (IL-18) is a novel proinflammatory cytokine found in serum and joints of patients with rheumatoid arthritis (RA). We studied a novel role for IL-18 in mediating cell adhesion, a vital component of the inflammation found in RA and other inflammatory diseases. We examined the expression of cellular cell adhesion molecules E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells and RA synovial fibroblasts using flow cytometry. Adhesion of the monocyte-like cell line HL-60 to endothelial cells was determined by immunofluorescence. IL-18 significantly enhanced ICAM-1 and VCAM-1 expression on endothelial cells and RA synovial fibroblasts. In addition, IL-18 induced E-selectin expression on endothelial cells and promoted the adhesion of HL-60 cells to IL-18-stimulated endothelial cells. Neutralizing anti-VCAM-1 and anti-E-selectin could completely inhibit HL-60 adherence to endothelial cells. IL-18-induced adhesion molecule expression appears to be mediated through nuclear factor kappa B (NF kappa B) and phosphatidyl-inositol 3 kinase (PI 3-kinase) since addition of inhibitors to either NF kappa B (pyrrolidine dithiocarbamate and N-acetyl-l-cysteine) or PI 3-kinase (LY294002) inhibited RA synovial fibroblast VCAM-1 expression by 50 to 60%. Addition of both inhibitors resulted in inhibition of VCAM-1 expression by 85%. In conclusion, the ability of IL-18 to induce adhesion molecule expression on endothelial cells and RA synovial fibroblasts indicates that IL-18 may contribute to RA joint inflammation by enhancing the recruitment of leukocytes into the joint. IL-18 requires NF kappa B as well as PI 3-kinase to induce VCAM-1 on RA synovial fibroblasts, suggesting that there may be two distinct pathways in IL-18-induced adhesion molecule expression.  相似文献   

4.
The contribution of synovial cells to the pathogenesis of rheumatoid arthritis (RA) is only partly understood. Monoclonal antibody (mAb) 1D5 is one of very few mAb ever raised against RA synovial cells in order to study the biology of these cells. Studies on the expression pattern and structural features of the 1D5 Ag suggest that 1D5 recognizes human vascular cell adhesion molecule-1 (VCAM-1), which is an intercellular adhesion molecule. Vascular cell adhesion molecule-1 may be involved in a number of crucial intercellular interactions in RA.  相似文献   

5.
Because of the known property of spontaneous regression in stage IVS of neuroblastoma all attempts are made to elucidate whether differentiation inducers possibly could be applied for neuroblastoma therapy. Here we examined the influence of retinoic acid (RA) in vitro on differentiation, proliferation and adhesion of 10 permanent and 4 primary cell lines as well as of several SCID-mouse tumour transplants. In general, after RA treatment morphologically different cell types which are characteristic for neuroblastoma cells have changed. N (neuronal)-type cells prolonged their neuronal processes, whereas S (epithelial, substrate-adherent, Schwann cell-like)-type cells lost their adherence to substratum and became apoptotic. Additionally, the reactions of all neuroblastoma cell lines with monoclonal antibodies against β-tubulin (for neuronal cells) and glial fibrillary acidic protein (for epithelial cells) were determined. The anti-proliferative effect of all-trans-RA as well as 13-eis-RA was more profound in S-type cells (up to 40% in primary cell lines). To elucidate the role of adhesion molecules during neuronal cell differentiation, we have analysed the adhesion of neuroblastoma cells on poly-D-lysin-precoated plates under RA influence. While N-type cells displayed an increased adhesion, all S-type cell lines as well as all primary cell lines exhibited a reduced adhesion (IMR-5 and IMR-32: p < 0.001; JW, SR and PM: p < 0.05). RA treatment increased predominantly the tested antigens (HCAM, ICAM-1, NCAM, PECAM-1, VCAM-1, cadherin, FGF-R, IGF-R, NGF-R, TGF-β/1, NF200, NF160, NF68, NSE, HLA-ABC) in all cell lines independently of their phenotypes (TGFβ/1: p < 0.001; NF68: p < 0.01; PECAM-1 and NGF-R: p < 0.05). In recultured SCID-mouse-passaged tumour cells antigens were down-regulated (FGF-R: p < 0.01), but increased again after RA influence (TGF-β/1: p < 0.05). In summary, the RA differentiation model demonstrates the possibility to interfere in cell adhesion and to diminish growth potential both in N-type as well as S-type neuroblastoma cells.  相似文献   

6.
The tumor necrosis factor-alpha (TNF-alpha) inhibitor thalidomide is known to be a potent modulator of host immunity, a potential treatment for autoimmune disorders such as rheumatoid arthritis (RA) and a treatment for complications of HIV-1 infection. RA is an autoimmune disease of the joints that has been associated with hyperactivity of lymphocytes and other leukocytes, over-expression of pro-inflammatory cytokines (TNF-alpha and IL-1) and chronic debilitating inflammation. Thalidomide may play a role in RA treatment by altering leukocyte function through down-modulation of cell adhesion molecules necessary for leukocyte migration to inflammatory sites. The present study investigates down-regulation of cell adhesion molecules (ICAM-1 and LFA-1) and decreases in cell-cell contacts between human T leukemic (CEM) cells and human umbilical vein endothelial cells (HUVEC) after thalidomide exposure. CEM cells were cultured in RPMI 1640 medium with 0, 10 or 50 microg/ml thalidomide, stained with fluorescent monoclonal antibodies specific to ICAM-1 and LFA-1 and expression was measured with flow cytometry. For cell-cell adhesion measurements, monolayers of HUVEC cultured in Kaign's F-12 medium were incubated with thalidomide treated CEM cells stained with calcein AM. Specific cell adhesion between the two cell types was visualized with fluorescence microscopy. Thalidomide treatment significantly reduced cell adhesion molecule expression in a dose-dependent fashion and inhibited HUVEC/CEM cell adhesion. These data support the hypothesis that thalidomide has modulatory actions on leukocyte functions through expression of cell adhesion molecules.  相似文献   

7.
Polysialic acid (PSA) is a regulatory epitope of neural cell adhesion molecule (NCAM) in homophilic adhesion of neural cells mediated by NCAM, is also known to be re-expressed in several human tumors, thus serves as an oncodevelopmental antigen. In this study, using a recently developed ultrasensitive chemical method in addition to immunochemical methods, growth stage-dependent and retinoic acid (RA)-induced differentiation-dependent changes of PSA expression in human neuroblastoma (IMR-32) and rat pheochromocytoma (PC-12) cells were analyzed both qualitatively and quantitatively. Both IMR-32 and PC-12 cells expressed PSA on NCAM, and the level of PSA expressed per unit weight of cells increased with post-inoculation incubation time. The most prominent feature was seen at the full confluence stage. RA induced neuronal differentiation in both IMR-32 and CP-12 cells that paralleled the change in the PSA level. Chemical analysis revealed the presence of NCAM glycoforms differing in the degree of polymerization (DP) of oligo/polysialyl chains, whose DP was smaller than 40. DP distribution of PSA was different between the cell lines and was changed by the growth stage and the RA treatment. Thus DP analysis of PSA is important in understanding both mechanism and biological significance of its regulated expression.  相似文献   

8.
Two main characteristics of all types of stem cells are their potency for differentiation and self renewal capacity. There is a lot of interest to find the conditions and factors, which govern these behaviours of stem cells. It is very well documented that retinoic acid (RA) reduces growth rate by induction of cell differentiation in certain conditions and cell lines. On the other hand, hyaluronic acid (HA) is known for its growth induction on cultured cells. A natural source of HA, rabbit vitreous humour (VH), was previously shown to promote wound repair in model animals. In search for its possible mechanisms, VH extract was tested on the cultured mesenchymal stem cells and NTERA2 as human embryonal carcinoma cells in the presence of RA. Changes in some cellular and molecular markers (A2B5, 0ct4, Sox2) showed that VH and possibly HA interfere with differentiating effects of RA. Therefore, this reagent may affect cell proliferation and tissue regeneration by inhibition of cell differentiation.  相似文献   

9.
P19 embryonal carcinoma cells provide an in vitro model system to analyze the events involved in neural differentiation. These multipotential stem cells can be induced by retinoic acid (RA) to differentiate into neural cells. We have investigated the ability of several variant forms of the protein-tyrosine kinase (PTK) pp60src to modulate cell fate determination in this system. Normally, P19 cells are induced to differentiate along a neural lineage when allowed to form extensive cell-cell contacts in large multicellular aggregates during exposure to RA. Through analysis of markers of epithelial (keratin and desmosomal proteins) and neuronal (neurofilament) cells we have found that RA-induced P19 cells transiently express epithelial markers before neuronal differentiation. Under these inductive conditions, expression of pp60v-src or expression of the neuronal variant pp60c-src+ inhibited neuronal differentiation, and resulted in maintained expression of an epithelial phenotype. Morphological analysis showed that expression of pp60src PTKs results in decreased cell-cell adhesion during the critical cell aggregation stage of the neural differentiation procedure. The effects of pp60v-src on cell fate and cell-cell adhesion could be mimicked by direct modulation of Ca+(+)-dependent cell-cell contact during RA induction of normal P19 cells. We conclude that the neural lineage of P19 cells includes an early epithelial intermediate and suggest that tyrosine phosphorylation can modulate cell fate determination during an early cell-cell adhesion-dependent event in neurogenesis.  相似文献   

10.
Dickkopf‐3 (Dkk‐3) and Dkkl‐1 (Soggy) are secreted proteins of poorly understood function that are highly expressed in subsets of neurons in the brain. To explore their potential roles during neuronal development, we examined their expression in Ntera‐2 (NT2) human embryonal carcinoma cells, which differentiate into neurons upon treatment with retinoic acid (RA). RA treatment increased the mRNA and protein levels of Dkk‐3 but not of Dkkl‐1. Ectopic expression of both Dkk‐3 and Dkkl‐1 induced apoptosis in NT2 cells. Gene silencing of Dkk‐3 did not affect NT2 cell growth or differentiation but altered their response to RA in suspension cultures. RA treatment of NT2 cells cultured in suspension resulted in morphological changes that led to cell attachment and flattening out of cell aggregates. Although there were no significant differences in the expression levels of cell adhesion molecules in control and Dkk‐3‐silenced cells, this morphological response was not observed in Dkk‐3‐silenced cells. These findings suggest that Dkk‐3 plays a role in the regulation of cell interactions during RA‐induced neuronal differentiation. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1243–1254, 2014  相似文献   

11.
Retinoic acid (RA) has been shown to induce human neuroblastoma SKNBE cell differentiation into a neuronal phenotype. Whether this neuronal differentiation is associated with modulation of matrix gelatinase [matrix metalloproteinase (MMP)-2 and MMP-9] expression was investigated in SKNBE cell cultures exposed to RA for 14 days. Their differentiation into a neuronal phenotype was typified by neural cell adhesion molecule and growth-associated protein-43 expression. Gelatinase expression was assessed by gel zymography, quantitative RT-PCR, and immunocytochemistry. Neuronal markers were located in neurites and ganglion-like clusters of neuronal cells induced upon RA exposure. MMP-2 expression was constitutive and remained unchanged at both the mRNA and protein levels in response to RA, tumor necrosis factor-alpha (TNFalpha), or phorbol 12-myristate 13-acetate (PMA) treatment. In contrast, MMP-9 was inducible by RA, TNFalpha, or PMA. MMP-9 was progressively enhanced by RA as a function of time exposure until day 14. The addition of TNFalpha or PMA potentiated RA-induced MMP-9 expression with a synergic maximal effect at day 14 of RA exposure. Immunoreactive MMP-9 was located early in outgrowing neurites, but only at day 14 of RA exposure in extensive neuritic networks. Taken together, the correlation between the MMP-9 expression by SKNBE cells and the time scale of their differentiation into a neuronal phenotype allowed us to propose that MMP-9 could participate in the neurite growth process and cell migration and organization into ganglion-like clusters.  相似文献   

12.
Rosmarinic acid (RA) is a natural antioxidant produced by cell suspension cultures of sage (Salvia officinalis L.). The growth and production of RA by these cells can be modified by the type of culture medium. Production can be increased 10-fold to attain 6.4 g.1-1 under optimal conditions. Investigation of kinetics showed that a change in the medium caused shifts in peaks of growth and production, and modifications of the cell metabolism. RA production can be correlated with growth or begins only when growth has stopped.  相似文献   

13.
Our previous work has shown that retinoic acid (RA) enhances fibroblast cell attachment to plastic and to laminin. The treatment of NIH-3T3 cells with RA for 2 days also caused a reproducible increase in the binding of the lectin Phaseolus vulgaris leukoagglutinin (PHA-L) to a glycoprotein of molecular weight 130,000 (gp130) as judged by SDS-PAGE analysis. This finding is consistent with an increased number of beta-1,6-linked N-acetylglucosaminyl residues on gp130. Of the 11 additional lectins tested Ricinus communis agglutinin I (RCA), Phaseolus vulgaris erythroagglutinin (PHA-E), soybean agglutinin (SBA), and succinylated wheat germ agglutinin (sWGA) showed a significant increase in binding specifically to gp130. Similar to RA, 13-cis-RA and 3,5-di-tert-butyl-4-chalcone carboxylic acid, a synthetic retinoid, also increased PHA-L binding to gp130; they also enhanced cell adhesiveness and inhibited cell growth. N-(4-Hydroxyphenyl)-all-trans-retinamide and thyroxine failed to influence adhesion and did not increase PHA-L binding to gp130. Moreover these compounds also failed to inhibit cell growth and to alter the morphology of the cultured cells. Since trypsin is utilized to remove cells from the culture dishes before they are used in the attachment assay to laminin, we studied the effect of this trypsinization step on PHA-L binding to gp130. Trypsin reduced PHA-L binding thus suggesting cell surface localization of gp130. After trypsin treatment RA-treated cells still showed enhanced PHA-L binding compared to dimethyl sulfoxide (DMSO) control. In conclusion RA-induced cell adhesiveness and growth inhibition are accompanied by an increase in the PHA-L, PHA-E, SBA, RCA, and sWGA binding to gp130. The sensitivity of gp130 to trypsin suggests that it is a cell surface glycoprotein.  相似文献   

14.
Tissue transglutaminase (tTGase) is a GTP-binding Ca(2+)-dependent enzyme which catalyses the post-translational modification via epsilon(gamma-glutamyl)lysine bridges. The physiological role of tTGase is not fully understood. It has been shown that in cartilage the expression of tTGase correlates with terminal differentiation of chondrocytes. Recent evidence suggests that the GTP-binding activity of tTGase may play a role in the control of cell cycle progression thus explaining some of the suggested roles for the enzyme.tTGase activity is present in primary cultures of epiphyseal chondrocytes and increases transiently upon retinoic acid (RA) treatment. Increase in enzyme activity occurs upon RA addition and is accompanied by a parallel increase in protein and mRNA levels. Stimulation of tTGase expression by RA correlates with suppression of cell growth and occurs independently of cell adhesion and cell differentiation.tTGase expression is not observed in MC2, a permanent chondrocyte cell line derived from retrovirus infected chondrocytes. RA treatment fails to activate tTGase expression in MC2 cells and to completely suppress cell proliferation.Our findings lend support to the idea that tTGase might play a role in non-dividing cultured chondrocytes.  相似文献   

15.
16.
Hyperoxia induces growth arrest, apoptosis, necrosis, and morphological changes (spreading and adhesion) in various types of cells. The mechanism of hyperoxia-induced cell growth arrest has not been well elucidated, especially in macrophages. One possible mechanism is a role of cell adhesion in hyperoxia-induced cell cycle arrest. To evaluate this finding, macrophages were cultured in normoxia (21% O2) or hyperoxia (95% O2) in adhesion or low adhesion conditions. Incubation of macrophages in hyperoxia induced cell cycle arrest. The hyperoxia-induced cell cycle arrest was prevented by low adhesion conditions. To evaluate pathways potentially involved in hyperoxia-induced growth arrest, we measured extracellular regulated kinase and retinoblastoma protein activation and p21Cip1 and p53 accumulation. Hyperoxia strongly induced activation of extracellular regulated kinase and retinoblastoma protein as well as up-regulation of p21Cip1. These effects of hyperoxia were attenuated under low adhesion conditions, suggesting a role for integrin-dependent signaling. The induction of p21Cip1 and activation of retinoblastoma protein occurred via a p53-independent mechanism. These results suggest that adhesion-dependent pathways are required for hyperoxia-induced cell cycle arrest in macrophages.  相似文献   

17.
Human SH-SY5Y neuroblastoma cells maintain their potential for differentiation and regression in culture conditions. The induction of differentiation could serve as a strategy to inhibit cell proliferation and tumor growth. Previous studies have shown that differentiation of SH-SY5Y cells can be induced by all-trans-retinoic-acid (RA) and cholesterol (CHOL). However, signaling pathways that lead to terminal differentiation of SH-SY5Y cells are still largely unknown. The goal of this study was to examine in the RA and CHOL treated SH-SY5Y cells the additive impacts of estradiol (E2) and brain-derived neurotrophic factor (BDNF) on cell morphology, cell population growth, synaptic vesicle recycling and presence of neurofilaments. The above features indicate a higher level of neuronal differentiation. Our data show that treatment for 10 days in vitro (DIV) with RA alone or when combined with E2 (RE) or CHOL (RC), but not when combined with BDNF (RB), significantly (p < 0.01) inhibited the cell population growth. Synaptic vesicle recycling, induced by high-K+ depolarization, was significantly increased in all treatments where RA was included (RE, RC, RB, RCB), and when all agents were added together (RCBE). Specifically, our results show for the first time that E2 treatment can alone increase synaptic vesicle recycling in SH-SY5Y cells. This work contributes to the understanding of the ways to improve suppression of neuroblastoma cells’ population growth by inducing maturation and differentiation.  相似文献   

18.
The effects of retinoic acid on the differentiation of human monocytic leukemia cell lines containing aneuploid (THP-1-Cs5) or diploid chromosomes (THP-1-R) were studied and compared. The induction of cell adhesion to a substratum, phagocytosis of sheep red blood cells (SRBC) or IgG-coated SRBC, pinocytosis of dextran sulfate, and NBT dye reduction by the cells were examined. The occurrence of these processes was much greater in RA-treated THP-1-Cs5 cells than in RA-treated THP-1-R cells. Of all these functional activities, the most remarkable differences between the two cell types were seen for cell adhesion and phagocytosis of SRBC. Morphological changes in RA-treated THP-1-Cs5 cells were observed by light and electron microscopy. RA-treated THP-1-Cs5 cells had a moderately-developed Golgi apparatus, and abundant lysosomes, mitochondria and lipid droplets in the cytoplasm. Among various retinoids examined, RA was the strongest inducer of the differentiation of the THP-1-Cs5 cells into mature cells. These findings suggest that THP-1-Cs5 cells which contain aneuploid chromosomes are more efficiently functionally differentiated by RA than are THP-1-R cells.  相似文献   

19.
The action of two effectors - fibronectin (FN) and retinyl acetate (RA) - on cell attachment and spreading of human synoviocytes was investigated by adding these two drugs to the cell culture medium. No relationship was observed between the level of the effectors (FN = 20-80 micrograms/well, RA = 0.50-2 micrograms/well) and the biological effects studied. For normal human synoviocytes, fibronectin was less effective on the adhesion than fetal calf serum (FCS) present in the control culture medium; retinyl acetate, a drug acting on glycoprotein synthesis, led to similar effects to those observed for FCS-treated cells. In the case of rheumatoid synovial cells, the degree of adhesion was similar for drug- and FCS-treated cultures. Moreover, FN and RA had little effect on the spreading compared to FCS. Given these results, it would appear that synoviocytes differ in their behaviour from usual fibroblastic models.  相似文献   

20.
RA 233, a pyrimido-pyrimidine analogue developed originally as an antiplatelet agent, has reduced the incidence of tumor metastases in clinical trials. However, in animal tumor models antimetastatic therapy using RA 233 has been inconsistent. We therefore tested RA 233 for additional effects, such as its direct action on tumor cells. Using the rat 13726NF mammary adenocarcinoma tumor system, low, nontoxic concentrations of RA 233 had pleiotropic and differential effects on two 13762NF tumor cell clones. The growth of MTC cells (low spontaneous metastatic potential) was not affected by low concentrations of RA 233 (50 microM) or epidermal growth factor (EGF) (up to 10 ng/ml) for 3 days in 0.5-10% fetal bovine serum. In contrast, MTLn3 (high spontaneous metastatic potential) cell cultures maintained for 3 days in low (0.5-1%) serum in the presence of 1.25-10 ng/ml EGF doubled in cell numbers compared with control cultures, and addition of 50 microM RA 233 abrogated the growth-stimulatory effect of EGF. The inhibitory effect of RA 233 on MTLn3 cells was dose dependent and not due to cell toxicity as determined by cell viability, cell growth, and colony formation properties after drug removal. In addition, incubation of MTLn3 cells with 50 microM RA 233 resulted in an increase of p21ras protein expression, whereas there was no effect on the level of p21ras in identically treated MTC cells or when either clone was treated with 10 ng/ml EGF. The results suggest that among the heterogeneous effects of RA 233 on tumor cells, modulation of growth factor responses and regulatory molecules may be important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号