首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
3-Methyladenine DNA glycosylase II (AlkA) from Escherichia coli is induced in response to DNA alkylation, and it protects cells from alkylated nucleobases by catalyzing their excision. In contrast to the highly specific 3-methyladenine DNA glycosylase I (E. coli TAG) that catalyzes the excision of 3-methyl adducts of adenosine and guanosine from DNA, AlkA catalyzes the excision of a wide variety of alkylated bases including N-3 and N-7 adducts of adenosine and guanosine and O(2) adducts of thymidine and cytidine. We have investigated how AlkA can recognize a diverse set of damaged bases by characterizing its discrimination between oligonucleotide substrates in vitro. Similar rate enhancements are observed for the excision of a structurally diverse set of substituted purine bases and of the normal purines adenine and guanine. These results are consistent with a remarkably indiscriminate active site and suggest that the rate of AlkA-catalyzed excision is dictated not by the catalytic recognition of a specific substrate but instead by the reactivity of the N-glycosidic bond of each substrate. Damaged bases with altered base pairing have a modest advantage, as mismatches are processed up to 400-fold faster than stable Watson-Crick base pairs. Nevertheless, AlkA does not effectively exclude undamaged DNA from its active site. The resulting deleterious excision of normal bases is expected to have a substantial cost associated with the expression of AlkA.  相似文献   

2.
J Chen  L Samson 《Nucleic acids research》1991,19(23):6427-6432
We previously showed that the expression of the Saccharomyces cerevisiae MAG 3-methyladenine (3MeA) DNA glycosylase gene, like that of the E. coli alkA 3MeA DNA glycosylase gene, is induced by alkylating agents. Here we show that the MAG induction mechanism differs from that of alkA, at least in part, because MAG mRNA levels are not only induced by alkylating agents but also by UV light and the UV-mimetic agent 4-nitroquinoline-1-oxide. Unlike some other yeast DNA-damage-inducible genes, MAG expression is not induced by heat shock. The S. cerevisiae MGT1 O6-methylguanine DNA methyltransferase is not involved in regulating MAG gene expression since MAG is efficiently induced in a methyltransferase deficient strain; similarly, MAG glycosylase deficient strains and four other methylmethane sulfonate sensitive strains were normal for alkylation-induced MAG gene expression. However, de novo protein synthesis is required to elevate MAG mRNA levels because MAG induction was abolished in the presence of cycloheximide. MAG mRNA levels were equally well induced in cycling and G1-arrested cells, suggesting that MAG induction is not simply due to a redistribution of cells into a part of the cell cycle which happens to express MAG at high levels, and that the inhibition of DNA synthesis does not act as the inducing signal.  相似文献   

3.
Human alkyladenine glycosylase (AAG) and Escherichia coli 3-methyladenine glycosylase (AlkA) are base excision repair glycosylases that recognize and excise a variety of alkylated bases from DNA. The crystal structures of these enzymes have provided insight into their substrate specificity and mechanisms of catalysis. Both enzymes utilize DNA bending and base-flipping mechanisms to expose and bind substrate bases. Crystal structures of AAG complexed to DNA suggest that the enzyme selects substrate bases through a combination of hydrogen bonding and the steric constraints of the active site, and that the enzyme activates a water molecule for an in-line backside attack of the N-glycosylic bond. In contrast to AAG, the structure of the AlkA-DNA complex suggests that AlkA substrate recognition and catalytic specificity are intimately integrated in a S(N)1 type mechanism in which the catalytic Asp238 directly promotes the release of modified bases.  相似文献   

4.
DNA glycosylases initiate base excision repair by first binding, then excising aberrant DNA bases. Saccharomyces cerevisiae encodes a 3-methyladenine (3MeA) DNA glycosylase, Mag, that recognizes 3MeA and various other DNA lesions including 1,N6-ethenoadenine (epsilon A), hypoxanthine (Hx) and abasic (AP) sites. In the present study, we explore the relative substrate specificity of Mag for these lesions and in addition, show that Mag also recognizes cisplatin cross-linked adducts, but does not catalyze their excision. Through competition binding and activity studies, we show that in the context of a random DNA sequence Mag binds epsilon A and AP-sites the most tightly, followed by the cross-linked 1,2-d(ApG) cisplatin adduct. While epsilon A binding and excision by Mag was robust in this sequence context, binding and excision of Hx was extremely poor. We further studied the recognition of epsilon A and Hx by Mag, when these lesions are present at different positions within A:T and G:C tracts. Overall, epsilon A was slightly less well excised from each position within the A:T and G:C tracts compared to excision from the random sequence, whereas Hx excision was greatly increased in these sequence contexts (by up to 7-fold) compared to the random sequence. However, given most sequence contexts, Mag had a clear preference for epsilon A relative to Hx, except in the TTXTT (X=epsilon A or Hx) sequence context from which Mag removed both lesions with almost equal efficiency. We discuss how DNA sequence context affects base excision by various 3MeA DNA glycosylases.  相似文献   

5.
We have purified 3-methyladenine DNA glycosylase I from Escherichia coli to apparent physical homogeneity. The enzyme preparation produced a single band of Mr 22,500 upon sodium dodecyl sulphate/polyacrylamide gel electrophoresis in good agreement with the molecular weight deduced from the nucleotide sequence of the tag gene (Steinum, A.-L. and Seeberg, E. (1986) Nucl. Acids Res. 14, 3763-3772). HPLC confirmed that the only detectable alkylation product released from (3H)dimethyl sulphate treated DNA was 3-methyladenine. The DNA glycosylase activity showed a broad pH optimum between 6 and 8.5, and no activity below pH 5 and above pH 10. MgSO4, CaCl2 and MnCl2 stimulated enzyme activity, whereas ZnSO4 and FeCl3 inhibited the enzyme at 2 mM concentration. The enzyme was stimulated by caffeine, adenine and 3-methylguanine, and inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and 3-methyladenine. The enzyme showed no detectable endonuclease activity on native, depurinated or alkylated plasmid DNA. However, apurinic sites were introduced in alkylated DNA as judged from the strand breaks formed by mixtures of the tag enzyme and the bacteriophage T4 denV enzyme which has apurinic/apyrimidinic endonuclease activity. It was calculated that wild-type E. coli contains approximately 200 molecules per cell of 3-methyladenine DNA glycosylase I.  相似文献   

6.
DNA glycosylases, such as the Mag1 3-methyladenine (3MeA) DNA glycosylase, initiate the base excision repair (BER) pathway by removing damaged bases to create abasic apurinic/apyrimidinic (AP) sites that are subsequently repaired by downstream BER enzymes. Although unrepaired base damage may be mutagenic or recombinogenic, BER intermediates (e.g. AP sites and strand breaks) may also be problematic. To investigate the molecular basis for methylation-induced homologous recombination events in Saccharomyces cerevisiae, spontaneous and methylation-induced recombination were studied in strains with varied MAG1 expression levels. We show that cells lacking Mag1 have increased susceptibility to methylation-induced recombination, and that disruption of nucleotide excision repair (NER; rad4) in mag1 cells increases cellular susceptibility to these events. Furthermore, expression of Escherichia coli Tag 3MeA DNA glycosylase suppresses recombination events, providing strong evidence that unrepaired 3MeA lesions induce recombination. Disruption of REV3 (required for polymerase zeta (Pol zeta)) in mag1 rad4 cells causes increased susceptibility to methylation-induced toxicity and recombination, suggesting that Pol zeta can replicate past 3MeAs. However, at subtoxic levels of methylation damage, disruption of REV3 suppresses methylation-induced recombination, indicating that the effects of Pol zeta on recombination are highly dose-dependent. We also show that overproduction of Mag1 can increase the levels of spontaneous recombination, presumably due to increased levels of BER intermediates. However, additional APN1 endonuclease expression or disruption of REV3 does not affect MAG1-induced recombination, suggesting that downstream BER intermediates (e.g. single strand breaks) are responsible for MAG1-induced recombination, rather than uncleaved AP sites. Thus, too little Mag1 sensitizes cells to methylation-induced recombination, while too much Mag1 can put cells at risk of recombination induced by single strand breaks formed during BER.  相似文献   

7.
A DNA glycosylase that excises, 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine (Fapy) from double stranded DNA has been purified 28,570-fold from the yeast Saccharomyces cerevisiae. Gel filtration chromatography shows that yeast Fapy DNA glycosylase has a molecular weight of about 40 kDa. The Fapy DNA glycosylase is active in the presence of EDTA, but is completely inhibited by 0.2 M KCl. Yeast Fapy DNA glycosylase does not excise N7-methylguanine, N3-methyladenine or uracil. A repair enzyme for 7,8-dihydro-8-oxoguanine (8-OxoG) co-purifies with the Fapy DNA glycosylase. This repair activity causes strand cleavage at the site of 8-OxoG in DNA duplexes. The highest rate of incision of the 8-OxoG-containing strand was observed for duplexes where 8-OxoG was opposite guanine. The mode of incision at 8-OxoG was not established yet. The results however suggest that the Fapy- and 8-OxoG-repair activities are associated with a single protein.  相似文献   

8.
DNA glycosylases help maintain the genome by excising chemically modified bases from DNA. Escherichia coli 3-methyladenine DNA glycosylase I (TAG) specifically catalyzes the removal of the cytotoxic lesion 3-methyladenine (3mA). The molecular basis for the enzymatic recognition and removal of 3mA from DNA is currently a matter of speculation, in part owing to the lack of a structure of a 3mA-specific glycosylase bound to damaged DNA. Here, high-resolution crystal structures of Salmonella typhi TAG in the unliganded form and in a ternary product complex with abasic DNA and 3mA nucleobase are presented. Despite its structural similarity to the helix-hairpin-helix superfamily of DNA glycosylases, TAG has evolved a modified strategy for engaging damaged DNA. In contrast to other glycosylase-DNA structures, the abasic ribose is not flipped into the TAG active site. This is the first structural demonstration that conformational relaxation must occur in the DNA upon base hydrolysis. Together with mutational studies of TAG enzymatic activity, these data provide a model for the specific recognition and hydrolysis of 3mA from DNA.  相似文献   

9.
Summary Repair of methylated bases in Saccharomyces cerevisiae was measured by two methods: in vitro in cell extracts, and in vivo, by determining the loss of methylated bases from yeast DNA after treatment of stationary cultures with [3H]-N-methyl-N-nitro-N-nitrosoguanidine. Whereas no repair activity could be detected by the in vitro method, the methylated bases were removed in vivo very efficiently. These contradictory results of in vitro and in vivo repair measurements suggest that either the repair enzymes of yeast are sufficiently different from those of bacteria and mammalian cells that they are not active in the in vitro assay, or that methylated bases are repaired in yeast by a different pathway.  相似文献   

10.
Escherichia coli has two DNA glycosylases for repair of DNA damage caused by simple alkylating agents. The inducible AlkA DNA glycosylase (3-methyladenine [m3A] DNA glycosylase II) removes several different alkylated bases including m3A and 3-methylguanine (m3G) from DNA, whereas the constitutively expressed Tag enzyme (m3A DNA glycosylase I) has appeared to be specific for excision of m3A. In this communication we have reexamined the substrate specificity of Tag by using synthetic DNA rich in GC base pairs to facilitate detection of any possible methyl-G removal. In such DNA alkylated with [3H]dimethyl sulphate, we found that m3G was excised from double-stranded DNA by both glycosylases, although more efficiently by AlkA than by Tag. This was further confirmed using both N-[3H]methyl-N-nitrosourea- and [3H]dimethyl sulphate-treated native DNA, from which Tag excised m3G with an efficiency that was about 70 times lower than for AlkA. These results can explain the previous observation that high levels of Tag expression will suppress the alkylation sensitivity of alkA mutant cells, further implying that m3G is formed in quantity sufficient to represent an important cytotoxic lesion if left unrepaired in cells exposed to alkylating agents.  相似文献   

11.
Haploid cells of the yeast Saccharomyces cerevisiae are able to undergo a differentiation-like process: they can switch their mating type between the a and the alpha state. The molecular mechanism of this interconversion of mating types is intrachromosomal gene conversion. It has been shown in a variety of studies that mating type switching in heterothallic strains can be induced by DNA damaging agents, and that different DNA damaging agents differ in the length of incubation after treatment required for induction. Because X-rays induce switching immediately after irradiation and because the DNA double-strand break repair pathway is required for switching, the event initiating heterothallic mating type switching is likely to be a DNA double-strand break. Therefore the assay for heterothallic mating type switching may screen for the induction of DNA double-strand breaks. Several aspects indicating a relationship of mating type switching to mechanisms associated with carcinogenesis are discussed.  相似文献   

12.
The constant attack on DNA by endogenous and exogenous agents gives rise to nucleobase modifications that cause mutations, which can lead to cancer. Visualizing the effects of these lesions on the structure of duplex DNA is key to understanding their biologic consequences. The most definitive method of obtaining such structures, X-ray crystallography, is troublesome to employ owing to the difficulty of obtaining diffraction-quality crystals of DNA. Here, we present a crystallization system that uses a protein, the DNA glycosylase AlkA, as a scaffold to mediate the crystallization of lesion-containing duplex DNA. We demonstrate the use of this system to facilitate the rapid structure determination of DNA containing the lesion 8-oxoguanine in several different sequence contexts, and also deoxyinosine and 1,N(6)-ethenoadenine, each stabilized as the corresponding 2'-flouro analog. The structures of 8-oxoguanine provide a correct atomic-level view of this important endogenous lesion in DNA.  相似文献   

13.
14.
15.
Mitotic recombination is increased when cells are treated with a variety of physical and chemical agents that cause damage to their DNA. We show here, using Saccharomyces cerevisiae strains that carry marked Ty elements, that recombination between members of this family of retrotransposons is not increased by UV irradiation or by treatment with the radiomimetic drug methyl methanesulfonate. Both ectopic recombination and mutation events were elevated by these agents for non-Ty sequences in the same strain. We discuss possible mechanisms that can prevent the induction of recombination between Ty elements.  相似文献   

16.
17.
Nucleotide excision repair (NER) is the most versatile and universal pathway of DNA repair that is capable of repairing virtually any damages other than a double strand break (DSB). This pathway has been shown to be inducible in several systems. However, question of a threshold and the nature of the damage that can signal induction of this pathway remain poorly understood. In this study it has been shown that prior exposure to very low doses of osmium tetroxide enhanced the survival of wild type Saccharomyces cerevisiae when the cells were challenged with UV light. Moreover, it was also found that osmium tetroxide treated rad3 mutants did not show enhanced survival indicating an involvement of nucleotide excision repair in the enhanced survival. To probe this further the actual removal of pyrimidine dimers by the treated and control cells was studied. Osmium tetroxide treated cells removed pyrimidine dimers more efficiently as compared to control cells. This was confirmed by measuring the in vitro repair synthesis in cell free extracts prepared from control and primed cells. It was found that the uptake of active 32P was significantly higher in the plasmid substrates incubated with extracts of primed cells. This induction is dependent on de novo synthesis of proteins as cycloheximide treatment abrogated this response. The nature of induced repair was found to be essentially error free. Study conclusively shows that NER is an inducible pathway in Saccharomyces cerevisiae and its induction is dependent on exposure to a threshold of a genotoxic stress.  相似文献   

18.
In order to investigate the importance of 3-methyladenine in cellular sensitivity to chemical methylating agents we have constructed retroviral vectors for the integration and expression of the Escherichia coli tag gene in mammalian cells. The tag gene encodes 3-methyladenine DNA glycosylase-1 which specifically removes 3-alkyladenines from DNA. The constructs were introduced into Chinese hamster V79 cells by liposome mediated transfection or into murine haemopoietic stem cells by cocultivation with a lipofected, virus-packaging cell line. In both cases, stable transfectants were selected for resistance to the antibiotic, G418, conferred by expression of the neo gene carried by the vector. Measurements of 3-methyladenine DNA glycosylase activity in cell extracts showed an up to 10-fold increase in cell lines with stably integrated tag gene sequences. These cell lines were significantly more resistant to the cytotoxic effects of methylmethanesulfonate and N-methyl-N-nitrosourea than their parent cell lines, indicating that 3-methyladenine repair is a limiting factor in cellular resistance to these methylating agents. Furthermore, the mutation frequency induced by methylmethanesulfonate was reduced to 50% of normal by expression of 3-methyladenine I activity in the Chinese hamster cells, indicating that m3A is not only a cytotoxic but also a premutagenic lesion in mammalian cells. It is concluded that an alkylation repair gene function of a type only thought to be present in bacteria can yield a hyperresistant phenotype when transferred to mammalian cells.  相似文献   

19.
Two members of the 14-3-3 protein family, involved in key biological processes in different eukaryotes, are encoded by the functionally redundant Saccharomyces cerevisiae BMH1 and BMH2 genes. We produced and characterized 12 independent bmh1 mutant alleles, whose presence in the cell as the sole 14-3-3 source causes hypersensitivity to genotoxic agents, indicating that Bmh proteins are required for proper response to DNA damage. In particular, the bmh1-103 and bmh1-266 mutant alleles cause defects in G1/S and G2/M DNA damage checkpoints, whereas only the G2/M checkpoint is altered by the bmh1-169 and bmh1-221 alleles. Impaired checkpoint responses correlate with the inability to maintain phosphorylated forms of Rad53 and/or Chk1, suggesting that Bmh proteins might regulate phosphorylation/dephosphorylation of these checkpoint kinases. Moreover, several bmh1 bmh2Delta mutants are defective in resuming DNA replication after transient deoxynucleotide depletion, and all display synthetic effects when also carrying mutations affecting the polalpha-primase and RPA DNA replication complexes, suggesting a role for Bmh proteins in DNA replication stress response. Finally, the bmh1-169 bmh2Delta and bmh1-170 bmh2Delta mutants show increased rates of spontaneous gross chromosomal rearrangements, indicating that Bmh proteins are required to suppress genome instability.  相似文献   

20.
3-Methyladenine (3MeA) DNA glycosylases initiate base excision repair by removing 3MeA. These glycosylases also remove a broad spectrum of spontaneous and environmentally induced base lesions in vitro. Mouse cells lacking the Aag 3MeA DNA glycosylase (also known as the Mpg, APNG or ANPG DNA glycosylase) are susceptible to 3MeA-induced S phase arrest, chromosome aberrations and apoptosis, but it is not known if Aag is solely responsible for repair of 3MeA in vivo. Here we show that in Aag–/– cells, 3MeA lesions disappear from the genome slightly faster than would be expected by spontaneous depurination alone, suggesting that there may be residual repair of 3MeA. However, repair of 3MeA is at least 10 times slower in Aag–/– cells than in Aag+/+ cells. Consequently, 24 h after exposure to [3H]MNU, 30% of the original 3MeA burden is intact in Aag–/– cells, while 3MeA is undetectable in Aag+/+ cells. Thus, Aag is the major DNA glycosylase for 3MeA repair. We also investigated the in vivo repair kinetics of another Aag substrate, 7-methylguanine. Surprisingly, 7-methylguanine is removed equally efficiently in Aag+/+ and Aag–/– cells, suggesting that another DNA glycosylase acts on lesions previously thought to be repaired by Aag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号