首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Solar radiation regulates most biological activities on Earth. Prolonged exposure to solar UV radiation can cause deleterious effects by inducing two major types of DNA damage, namely, cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts. These lesions may be repaired by the photoreactivation (Phr) and nucleotide excision repair (NER) pathways; however, the principal UV-induced DNA repair pathway is not known in the fungal genus Pseudogymnoascus. In this study, we demonstrated that an unweighted UV-B dosage of 1.6 kJ m−2 d−1 significantly reduced fungal growth rates (by between 22% and 35%) and inhibited conidia production in a 10 d exposure. The comparison of two DNA repair conditions, light or dark, which respectively induced photoreactivation (Phr) and NER, showed that the UV-B-induced CPDs were repaired significantly more rapidly in light than in dark conditions. The expression levels of two DNA repair genes, RAD2 and PHR1 (encoding a protein in NER and Phr respectively), demonstrated that NER rather than Phr was primarily activated for repairing UV-B-induced DNA damage in these Pseudogymnoascus strains. In contrast, Phr was inhibited after exposure to UV-B radiation, suggesting that PHR1 may have other functional roles. We present the first study to examine the capability of the Arctic and Antarctic Pseudogymnoascus sp. to perform photoreactivation and/or NER via RT-qPCR approaches, and also clarify the effects of light on UV-B-induced DNA damage repair in vivo by quantifying cyclobutene pyrimidine dimers and pyrimidine 6-4 pyrimidone photoproducts. Physiological response data, including relative growth rate, pigmentation and conidia production in these Pseudogymnoascus isolates exposed to UV-B radiation are also presented.  相似文献   

2.
Marine Bacterial Isolates Display Diverse Responses to UV-B Radiation   总被引:13,自引:8,他引:5       下载免费PDF全文
The molecular and biological consequences of UV-B radiation were investigated by studying five species of marine bacteria and one enteric bacterium. Laboratory cultures were exposed to an artificial UV-B source and subjected to various post-UV irradiation treatments. Significant differences in survival subsequent to UV-B radiation were observed among the isolates, as measured by culturable counts. UV-B-induced DNA photodamage was investigated by using a highly specific radioimmunoassay to measure cyclobutane pyrimidine dimers (CPDs). The CPDs determined following UV-B exposure were comparable for all of the organisms except Sphingomonas sp. strain RB2256, a facultatively oligotrophic ultramicrobacterium. This organism exhibited little DNA damage and a high level of UV-B resistance. Physiological conditioning by growth phase and starvation did not change the UV-B sensitivity of marine bacteria. The rates of photoreactivation following exposure to UV-B were investigated by using different light sources (UV-A and cool white light). The rates of photoreactivation were greatest during UV-A exposure, although diverse responses were observed. The differences in sensitivity to UV-B radiation between strains were reduced after photoreactivation. The survival and CPD data obtained for Vibrio natriegens when we used two UV-B exposure periods interrupted by a repair period (photoreactivation plus dark repair) suggested that photoadaptation could occur. Our results revealed that there are wide variations in marine bacteria in their responses to UV radiation and subsequent repair strategies, suggesting that UV-B radiation may affect the microbial community structure in surface water.  相似文献   

3.
4.
A genetic screen for mutants of Arabidopsis that are hypersensitive to UV light was developed and used to isolate a new mutant designated uvh1. UV hypersensitivity in uvh1 was due to a single recessive trait that is probably located on chromosome 3. Although isolated as hypersensitive to an acute exposure to UV-C light, uvh1 was also hypersensitive to UV-B wavelengths, which are present in sunlight that reaches the earth's surface. UV-B damage to both wild-type and uvh1 plants could be significantly reduced by subsequent exposure of UV-irradiated plants to photoreactivating light, showing that photoreactivation of UV-B damage is important for plant viability and that uvh1 plants are not defective in photoreactivation. A new assay for DNA damage, the Dral assay, was developed and used to show that exposure of wild-type and uvh1 plants to a given dose of UV light induces the same amount of damage in chloroplast and nuclear DNA. Thus, uvh1 is not defective in a UV protective mechanism. uvh1 plants were also found to be hypersensitive to ionizing radiation. These results suggest that uvh1 is defective in a repair or tolerance mechanism that normally provides plants with resistance to several types of DNA damage.  相似文献   

5.
DNA photolyases are enzymes which mediate the light-dependent repair (photoreactivation) of UV-induced damage products in DNA by direct reversal of base damage rather than via excision repair pathways. Arabidopsis thaliana contains two photolyases specific for photoreactivation of either cyclobutane pyrimidine dimers (CPDs) or pyrimidine (6-4)pyrimidones (6-4PPs), the two major UV-B-induced photoproducts in DNA. Reduced FADH and a reduced pterin were identified as cofactors of the native Arabidopsis CPD photolyase protein. This is the first report of the chromophore composition of any native class II CPD photolyase protein to our knowledge. CPD photolyase protein levels vary between tissues and with leaf age and are highest in flowers and leaves of 3-5-week-old Arabidopsis plants. White light or UV-B irradiation induces CPD photolyase expression in Arabidopsis tissues. This contrasts with the 6-4PP photolyase protein which is constitutively expressed and not regulated by either white or UV-B light. Arabidopsis CPD and 6-4PP photolyase enzymes can remove UV-B-induced photoproducts from DNA in planta even when plants are grown under enhanced levels of UV-B irradiation and at elevated temperatures although the rate of removal of CPDs is slower at high growth temperatures. These studies indicate that Arabidopsis possesses the photorepair capacity to respond effectively to increased UV-B-induced DNA damage under conditions predicted to be representative of increases in UV-B irradiation levels at the Earth's surface and global warming in the twenty-first century.  相似文献   

6.
Light-dependent repair of UV-induced cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidinone dimers (6-4 products) was investigated in an excision repair-deficient Arabidopsis mutant. As previously described, exposure to broad-spectrum lighting was found to greatly enhance the rate of repair of CPDs. We demonstrate that 6-4 products are also efficiently eliminated in a light-dependent manner and that this photoreactivation of 6-4 products occurs independently of the previously described 6-4 product dark repair pathway. The light-dependent repair of both 6-4 products and CPDs occurs in the presence of blue light (435 nm) but not upon exposure to light of longer wavelengths. We also found that high-level expression of the CPD-specific photoreactivating activity in the Arabidopsis seedling requires induction by exposure to light prior to as well as during the period of repair while the 6-4 photoreactivating activity is constitutively expressed. This differential regulation of the photoreactivating activities suggests that the Arabidopsis seedling produces at least two distinct photolyases: one specific for CPDs and the other specific for 6-4 products.  相似文献   

7.
The impact of simulated solar radiation on DNA and the mitigation of DNA-damaging effects by photoreactivation was studied in a cyanobacterium Anabaena variabilis PCC 7937. Cultures were irradiated under 295, 320 and 395 nm cut-off filters as well as seven other filters such as WG 280, WG 295, WG 305, WG 320, WG 335, WG 345 and GG 400. Growth of the test organism was found to be affected mostly under UV-B radiation as compared to PAR and PAR + UV-A radiations. Amplification of 16s rDNA and RAPD profile was significantly affected following exposure of genomic DNA to UV-B radiation. The formation of T<>T CPDs was recorded only in the cultures irradiated with UV-B radiation (i.e., under 295 nm as well as under WG 280, WG 295 and WG 305 nm cut-off filters), but maximum yield was found under 280 nm cut-off filter. Furthermore, the considerable induction of thymine dimers was observed with increasing UV-irradiation times. Fluorometric analysis of DNA unwinding (FADU) assay for UV-induced DNA strand breaks exhibited the maximum loss in the percentage of dsDNA under UV-B radiation followed by UV-A and PAR in comparison to the light control samples. We observed that T<>T CPD repair is light-dependent, since these lesions were more efficiently removed upon exposure to visible light than in the darkness. Blue radiation was found to be the most effective in photoreactivation than any other wavebands of light. Furthermore, the rate of photoreactivation was measured under varying temperatures (10, 20 and 30 °C); the repair rate was found to be the maximum at 20 °C under white fluorescent light. Our results indicate that photoreactivation play an important role in survival of the organism under natural conditions in spite of being exposed to the UV-B component present in the solar drops.  相似文献   

8.
We evaluated the effects of exposure to doses supplied at an environmentally realistic intensity of UV-B radiation (800 mW m(-2) weighted irradiance) on the culturability and germination of selected strains of the entomopathogenic Hyphomycetes Verticillium lecanii and Aphanocladium album. Increased UV-B exposure decreased relative percent culturability for all strains. Four hours of exposure to UV-B were sufficient to reduce the culturability close to zero. The LT(50) (50% lethal time) ranged from 120 ± 5 min for the V. lecanii strain ARSEF 6430 to 86 ± 14 min for the A. album strain ARSEF 6433. A strong delay in the germination of surviving conidia was observed. To determine the occurrence of photoreactivation in these two genera, we evaluated the effect of exposure to visible light after exposure to UV-B radiation. There was no significant difference in relative culturability between conidia exposed to visible light after UV-B exposure compared to those incubated in the dark after UV-B exposure. This indicates that photoreactivation, if it occurs, must have limited importance in the repair of the damage induced by UV-B radiation in these two genera.  相似文献   

9.
Ultraviolet (UV) radiation-induced DNA damage leading to entomopathogenic fungal inactivation is commonly measured by viability counts. Here we report the first quantification of UV-induced cyclobutane pyrimidine dimers (CPD) in DNA of the entomopathogenic fungus, Beauveria bassiana. Changes in the mobility of UV-C irradiated DNA were resolved with CPD specific bacteriophage T4 endonuclease V and alkaline agarose gel electrophoresis. The maximum number of CPD formed in B. bassiana DNA in vitro by UV-C irradiation was 28 CPD/ 10 kb after 720 J/m2 dose. The maximum number of CPDs formed in B. bassiana conidiospore DNA irradiated in vivo was 15 CPD/10 kb after 480 J/m2 dose and was quantified from conidiospores that were incubated to allow photoreactivation and nucleotide excision repair. The conidiospores incubated for photoreactivation and nucleotide excision repair showed decreased number of CPD/10 kb DNA and a higher percent survival of conidiospore populations than conidiospores not allowed to repair.  相似文献   

10.
Tuteja N  Ahmad P  Panda BB  Tuteja R 《Mutation research》2009,681(2-3):134-149
Plant cells are constantly exposed to environmental agents and endogenous processes that inflict damage to DNA and cause genotoxic stress, which can reduce plant genome stability, growth and productivity. Plants are most affected by solar UV-B radiation, which damage the DNA by inducing the formation of two main UV photoproducts such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). Reactive oxygen species (ROS) are also generated extra- or intra-cellularly, which constitute yet another source of genotoxic stress. As a result of this stress, the cellular DNA-damage responses (DDR) are activated, which transiently arrest the cell cycle and allow cells to repair DNA before proceeding into mitosis. DDR requires the activation of Ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) genes, which regulate the cell cycle and transmit the damage signals to downstream effectors of cell-cycle progression. Since genomic protection and stability are fundamental to ensure and sustain plant diversity and productivity, therefore, repair of DNA damages is essential. In plants the bulky DNA lesions, CPDs and 6-4PPs, are repaired by a simple and error-free mechanism: photoreactivation, which is a light-dependent mechanism and requires CPD or 6-4PP specific photolyases. In addition to this direct repair process, the plants also have sophisticated light-independent general repair mechanisms, such as the nucleotide excision repair (NER) and base excision repair (BER). The completed plant genome sequences reveal that most of the genes involved in NER and BER are present in higher plants, which suggests that the network of in-built DNA-damage repair mechanisms is conserved. This article describes the insight underlying the DNA damage and repair pathways in plants. The comet assay to measure the DNA damage and the role of DNA repair helicases such as XPD and XPB are also covered.  相似文献   

11.
Both the moderately halophilic bacterium, Halomonas elongata, and the extremely halophilic archaea, Halobacterium salinarum, can be found in hypersaline environments (e.g., salterns). On complex media, H. elongata grows over a salt range of 0.05-5.2 M, whereas, H. salinarum multiplies over a salt range of 2.5-5.2 M. The purpose of this study was to illustrate the effect that solar (UV-A and UV-B) and germicidal radiation (UV-C) had on the growth patterns of these bacteria at varied salt concentrations. Halomonas elongata grown on a complex medium at 0.05, 1.37, and 4.3 M NaCl was found to be more sensitive to UV-A and UV-B radiation, as the salt concentration of the medium increased. Halobacterium salinarum grown on a complex medium at 3.0 and 4.3 M NaCl did not show a significant drop in viability after 39.3 kJ.m-2 of UV-A and UV-B exposure. When exposed to UV-C, H. elongata exhibited substantially more sensitivity than H. salinarum. In H. elongata, differential sensitivity to UV-C was observed. At 0.05 M NaCl, H. elongata was less sensitive to UV-C than at 1.37 and 4.3 M NaCl. Both bacteria showed some photoreactivation when incubated under visible light following both UV-A, UV-B, and UV-C exposure. Mutagenesis following UV-C exposure was demonstrated by both organisms.  相似文献   

12.
The aim of the present study was to observe the induction and repair of single strand breaks (Ssbs) and double strand breaks (Dsbs) in mesophyll protoplasts of Nicotiana plumbaginifolia, irradiated with UV-C and cultured under light or dark conditions. DNA damage and repair was determined by the neutral and alkaline comet assay to reveal Dsbs and Ssbs respectively. Subculturing protoplasts for 4 h at low temperature was essential to reduce the amount of Dsbs to the detection limit of the assay procedure. Light-cultured protoplasts showed a significant increase of Ssbs and Dsbs compared to dark cultured protoplasts, in which the number of Ssbs and Dsbs remained very constant throughout the experiments. UV treatment significantly enhanced the levels of Ssbs and Dsbs in light and dark cultured protoplasts. On average, equal levels of DNA damage were observed under light or dark conditions. Formulations introduced to evaluate the contribution of UV-C or light treatment in repair kinetics of DNA damage, showed that the number of Ssbs, but not of Dsbs, evolved differently for light and dark cultured protoplasts. DNA repair was more rapidly observed under light conditions and occurred in different repair phases. Observations are discussed in relation to the involvement of chromatin remodelling, photosynthetic active radiation and DNA repair mechanisms.  相似文献   

13.
Repair mechanisms of UV-induced DNA damage in soybean chloroplasts   总被引:2,自引:0,他引:2  
In order to better understand the biochemical mechanisms of DNA metabolism in chloroplasts, repair of UV induced plastome damage in vivo was determined by exposure of soybean suspension cells to UV light and subsequent quantitation of the damage remaining in nuclear and chloroplast encoded genes with time by quantitative polymerase chain reaction (QPCR). The kinetics of damage rapir in the nuclear rbcS gene suggest that photoreactivation and dark mechanisms are active, while for the plastome encoded psbA gene only a light-dependent repair process was detected which is considerably slower than would be expected for photolyase-mediated photoreactivation.  相似文献   

14.
Bacterial endospores are 1 to 2 orders of magnitude more resistant to 254-nm UV (UV-C) radiation than are exponentially growing cells of the same strain. This high UV resistance is due to two related phenomena: (i) DNA of dormant spores irradiated with 254-nm UV accumulates mainly a unique thymine dimer called the spore photoproduct (SP), and (ii) SP is corrected during spore germination by two major DNA repair pathways, nucleotide excision repair (NER) and an SP-specific enzyme called SP lyase. To date, it has been assumed that these two factors also account for resistance of bacterial spores to solar UV in the environment, despite the fact that sunlight at the Earth's surface consists of UV-B, UV-A, visible, and infrared wavelengths of approximately 290 nm and longer. To test this assumption, isogenic strains of Bacillus subtilis lacking either the NER or SP lyase DNA repair pathway were assayed for their relative resistance to radiation at a number of UV wavelengths, including UV-C (254 nm), UV-B (290 to 320 nm), full-spectrum sunlight, and sunlight from which the UV-B portion had been removed. For purposes of direct comparison, spore UV resistance levels were determined with respect to a calibrated biological dosimeter consisting of a mixture of wild-type spores and spores lacking both DNA repair systems. It was observed that the relative contributions of the two pathways to spore UV resistance change depending on the UV wavelengths used in a manner suggesting that spores irradiated with light at environmentally relevant UV wavelengths may accumulate significant amounts of one or more DNA photoproducts in addition to SP. Furthermore, it was noted that upon exposure to increasing wavelengths, wild-type spores decreased in their UV resistance from 33-fold (UV-C) to 12-fold (UV-B plus UV-A sunlight) to 6-fold (UV-A sunlight alone) more resistant than mutants lacking both DNA repair systems, suggesting that at increasing solar UV wavelengths, spores are inactivated either by DNA damage not reparable by the NER or SP lyase system, damage caused to photosensitive molecules other than DNA, or both.  相似文献   

15.
Summary Biological systems can repair damage induced in their DNA by ultraviolet light (UV). Most cells contain at least three DNA repair pathways, each of which has a marked effect on UV survival. Excision repair and recombinational (postreplication) repair are light-independent whereas photoreactivation (PR), whether enzyzmatic or photochemical, is light-dependent. The specificity of photoreactivation for UV-induced DNA damage allows it to be used as a tool for examining whether premutational DNA lesions are preferred sites for photoreversal; it therefore plays an important role in mutagenesis studies. Evidence is presented here that PR occurs in a time-dependent fashion in three strains ofStreptomyces lividans 66. The effect appears to be independent of temperature and is observed only when PR treatment is given after UV irradiation. The present experiments do not discriminate between enzymatic and photochemical protection.  相似文献   

16.
Plants use sunlight as energy for photosynthesis; however, plant DNA is exposed to the harmful effects of ultraviolet‐B (UV‐B) radiation (280–320 nm) in the process. UV‐B radiation damages nuclear, chloroplast and mitochondrial DNA by the formation of cyclobutane pyrimidine dimers (CPDs), which are the primary UV‐B‐induced DNA lesions, and are a principal cause of UV‐B‐induced growth inhibition in plants. Repair of CPDs is therefore essential for plant survival while exposed to UV‐B‐containing sunlight. Nuclear repair of the UV‐B‐induced CPDs involves the photoreversal of CPDs, photoreactivation, which is mediated by CPD photolyase that monomerizes the CPDs in DNA by using the energy of near‐UV and visible light (300–500 nm). To date, the CPD repair processes in plant chloroplasts and mitochondria remain poorly understood. Here, we report the photoreactivation of CPDs in chloroplast and mitochondrial DNA in rice. Biochemical and subcellular localization analyses using rice strains with different levels of CPD photolyase activity and transgenic rice strains showed that full‐length CPD photolyase is encoded by a single gene, not a splice variant, and is expressed and targeted not only to nuclei but also to chloroplasts and mitochondria. The results indicate that rice may have evolved a CPD photolyase that functions in chloroplasts, mitochondria and nuclei, and that contains DNA to protect cells from the harmful effects of UV‐B radiation.  相似文献   

17.
In cotyledons of etiolated mustard (Sinapis alba L.) seedlings, phytochrome-far-red-absorbing form-induced flavonoid biosynthesis was found to be inhibited by short-term ultraviolet (UV) irradiations. UV inhibition was shown for the synthesis of quercetin, anthocyanin, and also for the accumulation of the mRNA for chalcone synthase, the key enzyme of this pathway. The UV effect was more pronounced on flavonoid biosynthesis, a process that selectively occurs in the epidermal layers, than on the synthesis of mRNA for chlorophyll a/b-binding protein localized in the mesophyll tissue. These UV inhibitory effects were accompanied by cyclobutane pyrimidine dimer (CPD) formation showing a linear fluence-response relationship. CPD formation and UV inhibition of flavonoid biosynthesis was found to be partially reversible by blue/UV-A light via DNA photolyase (PRE), allowing photoreactivation of the DNA by splitting of CPDs, which are the cause of the UV effect. Like flavonoid formation PRE was also induced by the far-red-absorbing form of phytochrome and induction was inhibited by UV. A potential risk of inhibition, in response to solar UV-B irradiation, was shown for anthocyanin formation. This inhibition, however, occurred only if photoreactivation was experimentally reduced. The PRE activity present in the etiolated seedlings (further increasing about 5-fold during light acclimatization) appears to be sufficient to prevent the persistence of CPDs even under conditions of high solar irradiation.  相似文献   

18.
19.
The effects of solar UV-B radiation on the green flagellate, Euglena gracilis, are measured under controlled conditions. Both photoorientation and motility are drastically impaired even after short exposure times of a few hours to sunlight not filtered by an ozone cuvette. Phototactic orientation starts to deteriorate after about 90 min and is completely lost after about 5 h. The percentage of motile cells in a population decreases likewise after an exposure of about 2 h and the velocity distributions shows a reduced speed of movement after an initial photokinetic increase. The damage is irreversible: in populations exposed for >2 h no living cell was found 24 h later. The UV-B sensitivity seems to be independent of the culture age at least over three weeks: While the percentage of motile cells changes with a peak at about 8 d, the relative UV-B induced inhibition is constant and depends only on the UV dose. DNA seems not to be the primary UV-B target since UV-B inhibition could not be repaired during subsequent dark or moderate light conditions even after low doses.  相似文献   

20.
Stratospheric ozone depletion leads to enhanced UV-B radiation. Therefore, the capacity of reproductive cells to cope with different spectral irradiance was investigated in the laboratory. Zoospores of the upper sublittoral kelp Saccorhiza dermatodea were exposed to varying fluence of spectral irradiance consisting of photosynthetically active radiation (PAR, 400-700 nm; =P), PAR+UV-A radiation (UV-A, 320-400 nm; =PA), and PAR+UV-A+UV-B radiation (UV-B, 280-320 nm; =PAB). Structural changes, localization of phlorotannin-containing physodes, accumulation of UV-absorbing phlorotannins, and physiological responses of zoospores were measured after exposure treatments as well as after 2-6 d recovery in dim white light (8 mumol photon m(-2) s(-1)). Physodes increased in size under PAB treatment. Extrusion of phlorotannins into the medium and accumulation of physodes was induced not only under UVR treatment but also under PAR. UV-B radiation caused photodestruction indicated by a loss of pigmentation. Photosynthetic efficiency of spores was photoinhibited after 8 h exposure to 22 and 30 mumol photon m(-2) s(-1) of PAR, while supplement of UVR had a significant additional effect on photoinhibition. A relatively low recovery of photosystem II function was observed after 2 d recovery in spores exposed to 1.7 x 10(4) J m(-2) of UV-B, with a germination rate of only 49% of P treatment after 6 d recovery. The amount of UV-B-induced DNA damage measured as cyclobutane-pyrimidine dimers (CPDs) increased with the biologically effective UV-B dose (BED(DNA)). Significant removal of CPDs indicating repair of DNA damage was observed after 2 d in low white light. The protective function of phlorotannins has restricted efficiency for a single cell. Within a plume of zoospores, however, each cell can buffer each other and protect the lower layer of spores from excessive radiation. Exudation of phlorotannins into the water can also reduce the impact of UV-B radiation on UV-sensitive spores. The results of this study showed that the impact of UVR on reproductive cells can be mitigated by protective and repair mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号