首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emergence of strains of pathogenic microorganisms with resistance to commonly used antibiotics has necessitated a search for novel types of antimicrobial agents. Many frog species produce amphipathic alpha-helical peptides with broad spectrum antimicrobial activity in the skin but their therapeutic potential is limited by varying degrees of cytolytic activity towards eukaryotic cells. Methods for development of such peptides into anti-infective drugs are illustrated by the example of temporin-1DRa (HFLGTLVNLAK KIL.NH(2)). Studies with model alpha-helical peptides have shown that increase in cationicity promotes antimicrobial activity whereas increases in hydrophobicity, helicity and amphipathicity promote hemolytic activity and loss of selectivity for microorganisms. Analogs of temporin-1DRa in which each amino acid is replaced by L-lysine and D-lysine were synthesized and their cytolytic activities tested against a range of microorganisms and human erythrocytes. Small changes in structure produced marked changes in conformation, as determined by retention time on reversed-phase HPLC, and in biological activity. However, peptides containing the substitutions (Val(7) -->L-Lys), (Thr(5)-->D-Lys) and (Asn(8)-->D-Lys) retained the high solubility and potent, broad spectrum antimicrobial activity of the naturally occurring peptide but were appreciably (up to 10-fold) less hemolytic. In contrast, analogs in which Leu(9) and Ile(13) were replaced by the more hydrophobic cyclohexylglycine residue showed slightly increased antimicrobial potencies (up to 2-fold) but a 4-fold increase in hemolytic activity. The data suggest a strategy of selective increases in cationicity concomitant with decreases in helicity and hydrophobicity in the transformation of naturally-occurring antimicrobial peptides into non-toxic therapeutic agents.  相似文献   

2.
Kassinatuerin-1, a 21-amino-acid C-terminally alpha-amidated peptide first isolated from the skin of the African frog Kassina senegalensis, adopts an amphipathic alpha-helical conformation in a membrane-mimetic solvent (50% trifluoroethanol) and shows broad-spectrum antimicrobial activity. However, its therapeutic potential is limited by its relatively high cytolytic activity against mammalian cells. The antimicrobial and cytolytic properties of a peptide are determined by an interaction between cationicity, hydrophobicity, alpha-helicity and amphipathicity. Replacement of the C-terminal alpha-amide group in kassinatuerin-1 by carboxylic acid decreased both cationicity and alpha-helicity, resulting in an analog with decreased potency against Escherichia coli (4-fold) and Staphylococcus aureus (16-fold). Low cytolytic activities against human erythrocytes (LD50>400 microM) and L929 fibroblasts (LD50=105 microM) were also observed. Increasing cationicity, while maintaining amphipathic alpha-helical character, by progressively substituting Gly7, Ser18, and Asp19 on the hydrophilic face of the alpha-helix with L-lysine, increased antimicrobial potency against S. aureus and Candida albicans (up to 4-fold) but also increased hemolytic and cytolytic activities. In contrast, analogs with d-lysine at positions 7, 18 and 19 retained activity against Gram-negative bacteria but displayed reduced hemolytic and cytolytic activities. For example, the carboxylic acid derivative of [D-Lys7, D-Lys18, D-Lys19]kassinatuerin-1 was active (minimum inhibitory concentration (MIC)=6-12.5 microM) against a range of strongly antibiotic-resistant strains of E. coli but showed no detectable hemolytic activity at 400 microM and was 4-fold less cytolyic than kassinatuerin-1. However, the reduction in alpha-helicity produced by the D-amino acid substitutions resulted in analogs with reduced potencies against Gram-positive bacteria and against C. albicans.  相似文献   

3.
Pseudin-2, a naturally occurring 24 amino-acid-residue antimicrobial peptide first isolated from the skin of the South American paradoxical frog Pseudis paradoxa, has weak hemolytic and cytolytic activity but also relatively low potency against microorganisms. In a membrane-mimetic environment, the peptide exists in an amphipathic alpha-helical conformation. Analogs of the peptide with increased cationicity and alpha-helicity were chemically synthesized by progressively substituting neutral and acidic amino acid residues on the hydrophilic face of the alpha-helix by lysine. Analogs with up to three L-lysine substitutions showed increased potency against a range of gram-negative and gram-positive bacteria (up to 16-fold) whilst retaining low hemolytic activity. The analog [D-Lys3, D-Lys10, D-Lys14]pseudin-2 showed potent activity against gram-negative bacteria (minimum inhibitory concentration, MIC=5 microM against several antibiotic-resistant strains of Escherichia coli) but very low hemolytic activity (HC50>500 microM) and cytolytic activity against L929 fibroblasts (LC50=215 microM). Increasing the number of l-lysines to four and five did not enhance antimicrobial potency further but increased hemolytic activity towards human erythrocytes. Time-kill studies demonstrated that the analog [Lys3, Lys10, Lys14, Lys21]pseudin-2 at a concentration of 1 x MIC was bacteriocidal against E. coli (99.9% cell death after 96 min) but was bacteriostatic against S. aureus. Increasing the hydrophobicity of pseudin-2, while maintaining the amphipathic character of the molecule, by substitution of neutral amino acids on the hydrophobic face of the alpha-helix by L-phenylalanine, had only minor effects on antimicrobial and hemolytic activities.  相似文献   

4.
Zelezetsky I  Pag U  Sahl HG  Tossi A 《Peptides》2005,26(12):2368-2376
In nature, alpha-helical antimicrobial peptides present the small and flexible residue glycine at positions 7 or 14 with a significant frequency. Based on the sequence of the non-proteinogenic alpha-helical model peptide P1(Aib7), with a potent, broad spectrum antimicrobial activity, six peptides were designed by effecting a single amino acid substitution to investigate how tuning the structural characteristics at position 7 could lead to optimization of selectivity without affecting antimicrobial activity against a broad panel of multidrug resistant bacterial and yeast indicator strains. The relationship between structural features (size/hydrophobicity of the side chain as well as conformation and flexibility) and biological activity, in terms of minimum inhibitory concentration, membrane permeabilization kinetics and lysis of red blood cells are discussed. On conversion of the peptide to proteinogenic residues, these principles allowed development of a potent antimicrobial peptide with a reduced cytotoxicity. However, while results suggest that both hydrophobicity of residue 7 and chain flexibility at this position can be modulated to improve selectivity, position 14 is less tolerant of substitutions.  相似文献   

5.
In the present study we have utilized the structural framework of the analog GS14K4 (cyclo(VKLd-KVd-YPL KVKLd-YP, where d denotes a d-amino acid)), to examine the role of hydrophobicity in microbial activity and specificity. The hydrophobicity of GS14K4 was systematically altered by residue replacements in the hydrophobic sites of the molecule to produce a series of analogs that were either less or more hydrophobic than the parent compound. Circular dichroism spectroscopy and reversed-phase high performance liquid chromatography analysis showed that the molecules were structurally similar and only differed in overall hydrophobicity. The hydrophobicity of GS14K4 was found to be the midpoint for hemolytic activity, with more hydrophobic analogs exhibiting increased hemolytic activity and less hydrophobic analogs showing decreased hemolytic activity. For antimicrobial activity there were differences between the hydrophobicity requirements against Gram-positive and Gram-negative microorganisms. The hydrophobicity of GS14K4 was sufficient for maximum activity against Gram-negative microorganisms and yeast, with no further increases in activity occurring with increasing hydrophobicity. With Gram-positive microorganisms significant increases in activity with increasing hydrophobicity were seen in three of the six microorganisms tested. A therapeutic index (calculated as a measure of specificity of the peptides for the microorganisms over human erythrocytes) served to define the boundaries of a therapeutic window within which lay the optimum peptide hydrophobicity for each microorganism. The therapeutic window was found to be at a lower hydrophobicity level for Gram-negative microorganisms than for Gram-positive microorganisms, although the limits were more variable for the latter. Our results show that the balance between activity and specificity in the present cyclic peptides can be optimized for each microorganism by systematic modulation of hydrophobicity.  相似文献   

6.
We present the antimicrobial and hemolytic activities of the decapeptide anoplin and 19 analogs thereof tested against methicillin‐resistant Staphylococcus aureus ATCC 33591 (MRSA), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), vancomycin‐resistant Enterococcus faecium (ATCC 700221) (VRE), and Candida albicans (ATCC 200955). The anoplin analogs contain substitutions in amino acid positions 2, 3, 5, 6, 8, 9, and 10. We use these peptides to study the effect of altering the charge and hydrophobicity of anoplin on activity against red blood cells and microorganisms. We find that increasing the charge and/or hydrophobicity improves antimicrobial activity and increases hemolytic activity. For each strain tested, we identify at least six anoplin analogs with an improved therapeutic index compared with anoplin, the only exception being Enterococcus faecium, against which only few compounds are more specific than anoplin. Both 2Nal6 and Cha6 show improved therapeutic index against all strains tested. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
A novel antimicrobial peptide, designated macropin (MAC‐1) with sequence Gly‐Phe‐Gly‐Met‐Ala‐Leu‐Lys‐Leu‐Leu‐Lys‐Lys‐Val‐Leu‐NH2, was isolated from the venom of the solitary bee Macropis fulvipes. MAC‐1 exhibited antimicrobial activity against both Gram‐positive and Gram‐negative bacteria, antifungal activity, and moderate hemolytic activity against human red blood cells. A series of macropin analogs were prepared to further evaluate the effect of structural alterations on antimicrobial and hemolytic activities and stability in human serum. The antimicrobial activities of several analogs against pathogenic Pseudomonas aeruginosa were significantly increased while their toxicity against human red blood cells was decreased. The activity enhancement is related to the introduction of either l ‐ or d ‐lysine in selected positions. Furthermore, all‐d analog and analogs with d ‐amino acid residues introduced at the N‐terminal part of the peptide chain exhibited better serum stability than did natural macropin. Data obtained by CD spectroscopy suggest a propensity of the peptide to adopt an amphipathic α‐helical secondary structure in the presence of trifluoroethanol or membrane‐mimicking sodium dodecyl sulfate. In addition, the study elucidates the structure–activity relationship for the effect of d ‐amino acid substitutions in MAC‐1 using NMR spectroscopy. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Novel cationic antimicrobial peptides (CAPs) designed in our lab-typified by sequences such as KKKKKKAAX-AAXAAXAA-NH(2), where X = Phe/Trp-display high antibacterial activity but exhibit little or no hemolytic activity towards human red blood cells even at high doses. To clarify the mechanism of their selectivity for bacterial versus mammalian membranes and to increase our understanding of the relationships between primary sequence and bioactivity, a library of derivatives was prepared by increasing segmental hydrophobicity, in which systematic substitutions of Ala for two, three, or four Leu residues were made. Conformationally constrained dimeric and cyclic derivatives were also synthesized. The peptides were examined for activity against pathogenic bacteria (Pseudomonas aeruginosa), hemolytic activity on human red blood cells, and insertion into models of natural bacterial membranes (containing anionic lipids) and mammalian membranes (containing zwitterionic lipids + cholesterol). Results were compared with corresponding properties of the natural CAPs magainin and cecropin. Using circular dichroism and fluorescence spectroscopy, we found that peptide conformation and membrane insertion were sequence dependent, both upon the number of Leu residues, and upon their positions along the hydrophobic core. Membrane disruption was likely enhanced by the fact that the peptides contain potent dimerization-promoting sequence motifs, as assessed by SDS-PAGE gel analysis. The overall results led us to identify distinctions in the mechanism of actions of these CAPs for disruption of bacterial versus mammalian membranes, the latter dependent on surpassing a "second hydrophobicity threshold" for insertion into zwitterionic membranes.  相似文献   

9.
The antimicrobial hexapeptide PAF26 was de novo designed towards phytopathogenic fungi of agricultural importance. To analyze its clinical potential, the activity of PAF26 has been determined against several microorganisms of clinical relevance including Staphylococcus, Candida, and several dermatophytes. For comparison purposes, the peptides KR20 and KI26 derived from the human cathelicidin LL37 were selected and fungal pathogens of agronomic relevance were included. PAF26 has similar antimicrobial activity in vitro compared to KR20 despite their different lengths and amino acid compositions. Moreover, neither peptide is lytic to human erythrocytes or keratinocytes. The hybrid peptide PAF26:KR20 showed better antimicrobial properties than the original peptides against most of the pathogens tested. The structural properties of PAF26:KR20 compared to related 26-amino acid peptides support the idea that the increment in toxicity correlates with positive charge and hydrophobicity. However, the degree of peptide helicity was not a predictor of antimicrobial activity.  相似文献   

10.
In the present study, the 26-residue peptide sequence Ac-KWKSFLKTFKSAVKTVLHTALKAISS-amide (V681) was utilized as the framework to study the effects of peptide hydrophobicity/hydrophilicity, amphipathicity, and helicity (induced by single amino acid substitutions in the center of the polar and nonpolar faces of the amphipathic helix) on biological activities. The peptide analogs were also studied by temperature profiling in reversed-phase high performance liquid chromatography, from 5 to 80 degrees C, to evaluate the self-associating ability of the molecules in solution, another important parameter in understanding peptide antimicrobial and hemolytic activities. A higher ability to self-associate in solution was correlated with weaker antimicrobial activity and stronger hemolytic activity of the peptides. Biological studies showed that strong hemolytic activity of the peptides generally correlated with high hydrophobicity, high amphipathicity, and high helicity. In most cases, the D-amino acid substituted peptides possessed an enhanced average antimicrobial activity compared with L-diastereomers. The therapeutic index of V681 was improved 90- and 23-fold against Gram-negative and Gram-positive bacteria, respectively. By simply replacing the central hydrophobic or hydrophilic amino acid residue on the nonpolar or the polar face of these amphipathic derivatives of V681 with a series of selected D-/L-amino acids, we demonstrated that this method has excellent potential for the rational design of antimicrobial peptides with enhanced activities.  相似文献   

11.
Lee DL  Hodges RS 《Biopolymers》2003,71(1):28-48
The cyclic beta-sheet structure possessed by the 10-residue antibiotic peptide gramicidin S was taken as the structural framework for the de novo design of biologically active peptides with membrane-active properties. We have shown from previous studies that gramicidin S is a broad-spectrum antibiotic effective against Gram-positive bacteria, Gram-negative bacteria, and fungi, but is toxic to human red blood cells. We tested the effect of ring size on antimicrobial activity and hemolytic activity on peptides varying from 4 to 16 residues. Interestingly, we were able to dissociate hemolytic activity and antimicrobial activity by increasing the ring size of the peptide to 14 residues (peptide GS14). Furthermore, we increased specificity for microbial membranes while decreasing toxicity to red blood cells by substituting enantiomers (D-amino acids for L-amino acids and vice versa) into the GS14 sequence. The enantiomeric substitutions all disrupted beta-sheet structure in benign medium and decreased peptide amphipathicity. The least amphipathic peptide, produced by substituting a D-Lys at position 4 of GS14 (peptide GS14K4), also had the highest therapeutic index, i.e., highest degree of specificity for microbial cells over human cells. Solution structures of GS14 analogs solved by NMR spectroscopy showed that the D-amino acid side chain was located on the nonpolar face of GS14K4. Another analog, a beta-sheet peptide with reduced amphipathicity (peptide GS14 K3L4), also had a lysine (lysine 3) on the nonpolar face as determined by the NMR structure. Both GS14K4 and GS14 K3L4 had reduced amphipathicity relative to GS14 and much higher therapeutic indices. Finally, the alteration of the nonpolar face hydrophobicity of GS14K4 analogs provided a range of activities and specificities, where the peptides with the intermediate hydrophobicities among the series had the highest therapeutic indices. The optimal peptide hydrophobicities varied depending on the microorganism being tested, with higher hydrophobicity requirements against Gram-positive bacteria and yeast compared with Gram-negative microorganisms. The net result of these studies suggests that it is possible to rationally design a cyclic membrane-active antimicrobial peptide with high specificity towards prokaryotic (bacterial and fungal) membranes and minimal toxicity to eukaryotic (e.g., mammalian) membranes.  相似文献   

12.
Temporin-SHc (FLSHIAGFLSNLFamide) first isolated from skin extraction of the Tunisian frog Pelophylax saharica, which shows potent antimicrobial activity against Gram-positive bacteria and is highly active against yeasts and fungi without hemolytic activity at antimicrobial concentrations. The peptide adopts well-defined α-helical conformation when bound to SDS micelles. In this study, we explored the effects of residue at position 5 and the N-terminus hydrophobic character on the hydrophilic/polar face of temp-SHc, on its biological activities (antimicrobial and hemolytic) and biophysical properties (hydrophobicity, amphipathicity and helicity). Antibacterial and hemolytic properties of temporin-SHc derivatives depend strongly on physicochemical properties. Therefore, slight decreasing amphipathicity together with hydrophobicity and helicity by the substitution Ile5 → Leu decreased antimicrobial potency approximately twofold without changing of hemolytic activity. It is noteworthy that a conservative amino acid substitution decreases the antimicrobial activity, underlining the differences between Leu/Ile side chains insertion into the lipid bilayer. While the modification of N-terminal hydrophobic character by four residue inversion decreased amphipathicity (twofold) of (4-1)L5temp-SHc and resulted in an increase in antibacterial activity against E. coli, E. faecalis and C. parapsilosis of at least fourfold, its therapeutic potential is limited by its drastic increase of hemolysis (LC50 = 2 μM). We found that the percentage of helicity of temp-SHc analog is directly correlated to its hemolytic activity. Last, the hydrophobic N-terminal character is an important determinant of antimicrobial activity.  相似文献   

13.
A major barrier to the use of antimicrobial peptides as antibiotics is the toxicity or ability to lyse eukaryotic cells. In this study, a 26-residue amphipathic α-helical antimicrobial peptide A12L/A20L (Ac-KWKSFLKTFKSLK KTVLHTLLKAISS-amide) was used as the framework to design a series of D- and L-diastereomeric peptides and study the relationships of helicity and biological activities of α-helical antimicrobial peptides. Peptide helicity was measured by circular dichroism spectroscopy and demonstrated to correlate with the hydrophobicity of peptides and the numbers of D-amino acid substitutions. Therapeutic index was used to evaluate the selectivity of peptides against prokaryotic cells. By introducing D-amino acids to replace the original L-amino acids on the non-polar face or the polar face of the helix, the hemolytic activity of peptide analogs have been significantly reduced. Compared to the parent peptide, the therapeutic indices were improved of 44-fold and 22-fold against Gram-negative and Grampositive bacteria, respectively. In addition, D- and L-diastereomeric peptides exhibited lower interaction with zwitterionic eukaryotic membrane and showed the significant membrane damaging effect to bacterial cells. Helicity was proved to play a crucial role on peptide specificity and biological activities. By simply replacing the hydrophobic or the hydrophilic amino acid residues on the non-polar or the polar face of these amphipathic derivatives of the parent peptide with D-amino acids, we demonstrated that this method could have excellent potential for the rational design of antimicrobial peptides with enhanced specificity.  相似文献   

14.
Human beta-defensins form a group of cysteine-rich antimicrobial peptides which have been found in epithelial tissue and, more recently, in the male genital tract. They play a role in the defense against microbial pathogens in innate immunity and display additional chemotactic functions in the adaptive immune system. An important characteristic of antimicrobial peptides is that they also exhibit toxic potential on eukaryotic cells. Very little is known about the structure dependence of antimicrobial and cytotoxic effects. We investigated human beta-defensin 3 (hBD-3), a potent broad-spectrum antimicrobial effector peptide, regarding the influence of structural parameters on the antimicrobial and cytotoxic activity. We have established a structure-activity relation of the hBD-3 using synthetic derivatives differing in length, charge, disulfide connectivity, and overall hydrophobicity. The antimicrobial activity of the peptides was compared to the cyctotoxic effects on monocytic THP-1 cells and the hemolytic activity on human erythrocytes. We found that it is not important for antimicrobial and cytotoxic activity whether and how cysteine residues are arranged to form disulfide bonds. Substitution of half-cystinyl residues by tryptophan resulted in increased activities, while other substitutions did not change activity. Correlation of activities with the structural changes demonstrates that the activity on eukaryotic cells appears to depend strongly on the overall hydrophobicity. In contrast, the antimicrobial potency of hBD-3 peptides is determined by the distribution of positively charged amino acid residues and hydrophobic side chains. The results facilitate the understanding of beta-defensin interaction with different cell types and guide the design of antimicrobially active peptides.  相似文献   

15.
IsCT is a non-cell-selective antimicrobial peptide isolated from the scorpion Opisthacanthus madagascariensis that has potent cytolytic activity against both mammalian and bacterial cells. To investigate the structure-activity relationships of IsCT and to design novel peptide antibiotics with bacterial cell selectivity, we synthesized several analogs of IsCT and determined their three-dimensional structures in solution by 2D-NMR spectroscopy. IsCT has a linear alpha-helical structure from Gly3 to Phe13, and [K7]-IsCT has a linear alpha-helical structure from Leu2 to Phe13. [K7, P8, K11]-IsCT, which has a bend in its middle region, exhibited the highest antibacterial activity without hemolytic activity, suggesting that its proline-induced bend is an important determinant of this selectivity. Tryptophan fluorescence showed that the high selectivity of [K7, P8, K11]-IsCT toward bacterial cells is closely correlated with its highly selective interaction with negatively charged phospholipids. Its potent activity against antibiotic-resistant bacteria suggests that [K7, P8, K11]-IsCT may serve as a promising lead candidate in the development of new peptide antibiotics.  相似文献   

16.
Gramicidin S (GS) is a 10-residue cyclic beta-sheet peptide with lytic activity against the membranes of both microbial and human cells, i.e. it possesses little to no biologic specificity for either cell type. Structure-activity studies of de novo-designed 14-residue cyclic peptides based on GS have previously shown that higher specificity against microbial membranes, i.e. a high therapeutic index (TI), can be achieved by the replacement of a single L-amino acid with its corresponding D-enantiomer [Kondejewski, L.H. et al. (1999) J. Biol. Chem. 274, 13181]. The diastereomer with a D-Lys substituted at position 4 caused the greatest improvement in specificity vs. other L to D substitutions within the cyclic 14-residue peptide GS14, through a combination of decreased peptide amphipathicity and disrupted beta-sheet structure in aqueous conditions [McInnes, C. et al. (2000) J. Biol. Chem. 275, 14287]. Based on this information, we have created a series of peptide diastereomers substituted only at position 4 by a D- or L-amino acid (Leu, Phe, Tyr, Asn, Lys, and achiral Gly). The amino acids chosen in this study represent a range of hydrophobicities/hydrophilicities as a subset of the 20 naturally occurring amino acids. While the D- and L-substitutions of Leu, Phe, and Tyr all resulted in strong hemolytic activity, the substitutions of hydrophilic D-amino acids D-Lys and D-Asn in GS14 at position 4 resulted in weaker hemolytic activity than in the L-diastereomers, which demonstrated strong hemolysis. All of the L-substitutions also resulted in poor antimicrobial activity and an extremely low TI, while the antimicrobial activity of the D-substituted peptides tended to improve based on the hydrophilicity of the residue. D-Lys was the most polar and most efficacious substitution, resulting in the highest TI. Interestingly, the hydrophobic D-amino acid substitutions had superior antimicrobial activity vs. the L-enantiomers although substitution of a hydrophobic D-amino acid increases the nonpolar face hydrophobicity. These results further support the role of hydrophobicity of the nonpolar face as a major influence on microbial specificity, but also highlights the importance of a disrupted beta-sheet structure on antimicrobial activity.  相似文献   

17.
In our previous study, we utilized a 26-residue amphipathic alpha-helical antimicrobial peptide L-V13K (Chen et al., Antimicrob Agents Chemother 2007, 51, 1398-1406) as the framework to study the effects of peptide hydrophobicity on the mechanism of its antimicrobial action. In this study, we explored the effects of net charge and the number of positively charged residues on the hydrophilic/polar face of L-V13K on its biological activity (antimicrobial and hemolytic) and biophysical properties (hydrophobicity, amphipathicity, helicity, and peptide self-association). The net charge of V13K analogs at pH 7 varied between -5 and +10 and the number of positively charged residues varied from 1 to 10. The minimal inhibitory concentrations (MIC) against six strains of Pseudomonas aeruginosa as well as other gram-negative and gram-positive bacteria were determined along with the maximal peptide concentration that produces no hemolysis of human red blood cells (MHC). Our results show that the number of positively charged residues on the polar face and net charge are both important for both antimicrobial activity and hemolytic activity. The most dramatic observation is the sharp transition of hemolytic activity on increasing one positive charge on the polar face of V13K i.e., the change from +8 to +9 resulted in greater than 32-fold increase in hemolytic activity (250 microg/ml to <7.8 microg/ml, respectively).  相似文献   

18.
M Kawai  U Nagai 《Biopolymers》1978,17(6):1549-1565
In order to study the role of D -amino acid residues in keeping the stable β-sheet conformation and in the antimicrobial activity of gramicidin S (GS), the four analogs of GS containing D -Ala, L -Ala, Gly, and Aib (α-aminoisobutyric acid) in place of D -Phe were synthesized. D -Ala-and Gly-containing analogs showed antimicrobial activity, while those containing L -Ala and Aib showed no activity. Conformation of these analogs and their derivatives were studied by comparison of ORD and CD spectra and by slective methylation method. It is concluded that the biologically active analogs have β-sheet conformation while inactive analogs have a much different conformation from that of GS. This indicates that D -Ala-Pro and Gly-Pro sequences favor taking a β-bend form but L -Ala-Pro and Aib-Pro sequences do not because the presence of L -side methyl group on the α-carbon atom of L Ala and Aib residues destabilizes the β-bend form. This would explain why the inactive analogs which take a different conformation from that of the active ones result in the loss of activity.  相似文献   

19.
Three novel antimicrobial peptides (AMPs), named panurgines (PNGs), were isolated from the venom of the wild bee Panurgus calcaratus. The dodecapeptide of the sequence LNWGAILKHIIK-NH2 (PNG-1) belongs to the category of α-helical amphipathic AMPs. The other two cyclic peptides containing 25 amino acid residues and two intramolecular disulfide bridges of the pattern Cys8–Cys23 and Cys11–Cys19 have almost identical sequence established as LDVKKIICVACKIXPNPACKKICPK-OH (X=K, PNG-K and X=R, PNG-R). All three peptides exhibited antimicrobial activity against Gram-positive bacteria and Gram-negative bacteria, antifungal activity, and low hemolytic activity against human erythrocytes. We prepared a series of PNG-1 analogs to study the effects of cationicity, amphipathicity, and hydrophobicity on the biological activity. Several of them exhibited improved antimicrobial potency, particularly those with increased net positive charge. The linear analogs of PNG-K and PNG-R having all Cys residues substituted by α-amino butyric acid were inactive, thus indicating the importance of disulfide bridges for the antimicrobial activity. However, the linear PNG-K with all four cysteine residues unpaired, exhibited antimicrobial activity. PNG-1 and its analogs induced a significant leakage of fluorescent dye entrapped in bacterial membrane-mimicking large unilamellar vesicles as well as in vesicles mimicking eukaryotic cell membrane. On the other hand, PNG-K and PNG-R exhibited dye-leakage activity only from vesicles mimicking bacterial cell membrane.  相似文献   

20.
HP (2-20) is an antimicrobial sequence derived from the N-terminus of Helicobacter pylori ribosomal protein L1. We previously tested whether several analogues of HP (2-20), with amino acid substitutions that increased or decreased net hydrophobicity, could be useful as therapeutic agents. In the present study, we show that substituting Gln and Asp for Trp at positions 17 and 19, respectively, of HP (2-20) (peptide A3) had potent antibacterial activity in minimal inhibition concentration and minimal bactericidal concentration without having hemolytic activity. In contrast, when we decreased hydrophobicity by substituting Leu or Phe for Ser at positions 12 and 19, respectively, of HP (2-20) (Anal 4, Anal 5), there was no significant effect on antibacterial activity. We found that A3 acted synergistically with chloramphenicol against bacterial cells. Fluorescence activated flow cytometry showed that A3-treated cells had higher fluorescence intensity than untreated cells, similar to that of melittin-treated cells. Furthermore, A3 caused significant morphological alterations of Staphylococcus aureus and Pseudomonas aeruginosa, as shown by scanning electron microscopy. Our results suggest that peptide A3 may be useful for the design of novel antibiotic peptides that possess high bacterial cell selectively and synergistic effects with conventional antibiotic agents but lack hemolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号