首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isotherm of ferritin adsorption onto a hydrophobic surface was studied by transmission electron microscopy. Adsorbed ferritin was found to be distributed in molecular clusters. The adsorption process was diffusion-rate-limited after 20 h adsorption time at bulk concentrations below 1 mg/1. The clusters formed during the diffusion-rate-limited adsorption had a fractal dimension D approximately 1.0 when averaged over all clusters. The pair distribution function g(r) showed an increased probability of finding nearest neighbours at distances less than 30 nm. The surface concentration of adsorbed ferritin was weakly dependent on the bulk concentration of ferritin in the range 10 mg/1-10 g/1 and the average number of nearest neighbour molecules was constant in this concentration range. The mass distribution of adsorbed ferritin c(r) had a fractal dimension D = 1.8 at a bulk concentration of 10 g/l and a surface concentration corresponding to theta = 0.45 +/- 0.05. The pair correlation function g(r) showed decreasing probability of finding nearest neighbour molecules over long distances as in percolating clusters. The results indicate that ferritin adsorbs strongly to the surface at low surface concentrations and weakly at high surface concentrations. The stability of ferritin adsorption was correlated to the average number of nearest neighbour molecules, indicating a possibility that desorption is a critical supramolecular phenomenon.  相似文献   

2.
The adsorption of ferritin from a water solution to a hydrophobic methylised quartz surface was studied by transmission electron microscopy, allowing direct examination of the iron core of the molecule without further preparation. The initial adsorption was seen to result in small clusters of molecules, the number of sites/cm(2) being concentration dependent. The adsorption process continued via cluster growth. The rate of adsorption increased and the process became mass transport limited. The clusters formed initially had low fractal dimensions (D approximately 1.0) and a coordination number, cn of 2.6-2.8, which increased with time. These clusters were abruptly restructured at a coordination number of 3.5, and the apparent rate of adsorption decreased during the reorganisation of the adsorbed layer. Finally, an equilibrium level was reached which was stable for at least 24 h. The distribution of ferritin molecules at equilibrium was in clusters with a fractal dimension of D = 1.14 +/- 0.16 and D= 1.33 +/- 0.08, respectively, for ferritin concentrations in the bulk of 10 and 100 microg/ml. Rinsing of adsorbed ferritin layers with buffered salt solution resulted in a rapid transient condensation of the clusters, but the net dissociation of protein was slow with the rate of dissociation being proportional to the logarithm of time. The condensed clusters were slowly restructured to linear polymers of ferritin molecules with a coordination number of 1.9 after 24 h of rinsing. The dissociation of protein molecules continued slowly for more than 3 days of rinsing. The results of the present study indicate that the rate of protein adsorption and desorption is strongly related to the supramolecular structure of the adsorbed protein film. Dense clusters of protein are not stable and this phenomenon may explain the formation of a dynamic equilibrium in spite of the fact that protein adsorption to a solid phase may appear to be practically irreversible.  相似文献   

3.
A monomolecular layer of ferritin molecules was formed by adsorption from the subphase onto a Langmuir film of an amphiphilic beta-cyclodextrin (beta-CD) derivative at the air/water interface. The course of the adsorption of ferritin molecules was monitored by measuring the surface pressure and the resulting film was observed by transmission electron microscopy (TEM). These results show the potential of the amphiphilic CD derivative to work as a milder template for protein molecules at the air/water interface.  相似文献   

4.
This research documents in situ wastewater biofilm formation, structure, and physiochemical properties as revealed by scanning and transmission electron microscopy. Cationized ferritin was used to label anionic sites of the biofilm glycocalyx for viewing in thin section. Wastewater biofilm formation paralleled the processes involved in marine biofilm formation. Scanning electron microscopy revealed a dramatic increase in cell colonization and growth over a 144-h period. Constituents included a variety of actively dividing morphological types. Many of the colonizing bacteria were flagellated. Filaments were seen after primary colonization of the surface. Transmission electron microscopy revealed a dominant gram-negative cell wall structure in the biofilm constituents. At least three types of glycocalyces were observed. The predominant glycocalyx possessed interstices and was densely labeled with cationized ferritin. Two of the glycocalyces appeared to mediate biofilm adhesion to the substratum. The results suggest that the predominant glycocalyx of this thin wastewater biofilm serves, in part, to: (i) enclose the bacteria in a matrix and anchor the biofilm to the substratum and (ii) provide an extensive surface area with polyanionic properties.  相似文献   

5.
This research documents in situ wastewater biofilm formation, structure, and physiochemical properties as revealed by scanning and transmission electron microscopy. Cationized ferritin was used to label anionic sites of the biofilm glycocalyx for viewing in thin section. Wastewater biofilm formation paralleled the processes involved in marine biofilm formation. Scanning electron microscopy revealed a dramatic increase in cell colonization and growth over a 144-h period. Constituents included a variety of actively dividing morphological types. Many of the colonizing bacteria were flagellated. Filaments were seen after primary colonization of the surface. Transmission electron microscopy revealed a dominant gram-negative cell wall structure in the biofilm constituents. At least three types of glycocalyces were observed. The predominant glycocalyx possessed interstices and was densely labeled with cationized ferritin. Two of the glycocalyces appeared to mediate biofilm adhesion to the substratum. The results suggest that the predominant glycocalyx of this thin wastewater biofilm serves, in part, to: (i) enclose the bacteria in a matrix and anchor the biofilm to the substratum and (ii) provide an extensive surface area with polyanionic properties.  相似文献   

6.
Protein adsorption on surfaces is a complex phenomenon that is described by the balance of convective/diffusive transport of the protein species to the surface and its adsorption/desorption at the surface. The extent of binding depends on a variety of factors such as protein/surface interactions, availability of binding sites, localized concentrations of protein near biomaterial surfaces and flow characteristics of the protein in that region. Factors such as time-varying flows, complex device geometries, presence of multiple competitive species, or possible denaturing of proteins when they attach to the surface make it extremely difficult to quantitatively analyze protein interactions with surfaces. Adsorption/desorption rate constants are often inferred using simplistic models which neglect mass transport and have limited use across different microfluidic systems and flow protocols. In this work, we have developed and demonstrated a fluidics-resolved model that evaluates protein adsorption, accounting for both the fluidic transport and the biochemical kinetics in complex biomicrofluidic devices. The model is valid for both flow and static conditions. An automated procedure was also developed to extract the "intrinsic" mass-transport-independent adsorption kinetic rate constants from experimental data using a least squares optimization method. The automated data extraction methodology is applied to two proteins (alkaline phosphatase and glucose oxidase) that have been brought into contact with poly(etheretherketone) and Teflon capillaries. The applicability of the procedure in analyzing flow and adsorption in complex microfluidic structures is also demonstrated.  相似文献   

7.
An isolated perfused liver system was used to study the distribution of asialoglycoprotein (ASGP) binding sites on rat hepatocyte cell surfaces. The number of surface receptors was quantitated by monitoring clearance of 125I-labeled ligands from the perfusate medium under two conditions that blocked their internalization: low temperature (less than 5 degrees C) or brief formaldehyde fixation. The cell surface distribution of binding sites was visualized in the electron microscope with either asialoorosomucoid covalently coupled to horseradish peroxidase (ASOR-HRP) or lactosaminated ferritin (Lac-Fer), both of which were bound with similar kinetics and to similar extents as ASOR itself. At low temperature or after prefixation, ASGP binding sites were present over much of the sinusoidal cell surface, but were concentrated most heavily over coated pits. Quantitation of ligand distribution at 4 degrees C with Lac-Fer gave an approximately 70-fold greater density of ferritin particles over coated membrane than over uncoated regions. We obtained no evidence for gradual movement of ASGP receptors into or out of coated pits within the time-course of our experiments. Finally, the number and distribution of cell surface binding sites was unaffected by previous exposure to ASOR or by inhibition of endocytic vesicle-lysosome fusion and ASOR degradation at 16 degrees C.  相似文献   

8.
Computer simulation of surface-induced aggregation of ferritin.   总被引:2,自引:0,他引:2  
Models are presented describing the transient mass-transport limited adsorption and cluster growth of ferritin at a solid surface. Computer simulations are carried out on a hexagonal lattice using a computer model that can be characterized as a two-dimensional stochastic cellular automaton allowing different rules regarding association, lateral interaction and dissociation to be incorporated in the model. The fractal dimensions of individual clusters were extracted from simulated aggregates and for similar rules found to be consistent with literature values on reversible diffusion-limited aggregation in two dimensions. The distribution of clusters versus free surface were shown to be affected by neighbor-dependent association probability. Low fractal dimension clusters were generated by a combination of strong lateral cohesion and neighbor-dependent dissociation to the bulk. By comparing computer simulated aggregation to experimental electron micrographs of adsorbed ferritin layers it is suggested that neighbor-dependent association, neighbor-dependent dissociation and lateral interactions are important factors in the complex dynamics of adsorbed protein layers.  相似文献   

9.
Fouling of chromatographic resins over their operational lifetimes can be a significant problem for commercial bioseparations. In this article, scanning electron microscopy (SEM), batch uptake experiments, confocal laser scanning microscopy (CLSM) and small‐scale column studies were applied to characterize a case study where fouling had been observed during process development. The fouling was found to occur on an anion exchange (AEX) polishing step following a protein A affinity capture step in a process for the purification of a monoclonal antibody. Fouled resin samples analyzed by SEM and batch uptake experiments indicated that after successive batch cycles, significant blockage of the pores at the resin surface occurred, thereby decreasing the protein uptake rate. Further studies were performed using CLSM to allow temporal and spatial measurements of protein adsorption within the resin, for clean, partially fouled and extensively fouled resin samples. These samples were packed within a miniaturized flowcell and challenged with fluorescently labeled albumin that enabled in situ measurements. The results indicated that the foulant has a significant impact on the kinetics of adsorption, severely decreasing the protein uptake rate, but only results in a minimal decrease in saturation capacity. The impact of the foulant on the kinetics of adsorption was further investigated by loading BSA onto fouled resin over an extended range of flow rates. By decreasing the flow rate during BSA loading, the capacity of the resin was recovered. These data support the hypothesis that the foulant is located on the particle surface, only penetrating the particle to a limited degree. The increased understanding into the nature of the fouling can help in the continued process development of this industrial example. Biotechnol. Bioeng. 2013; 110:2425–2435. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
The mass transfer and adsorption kinetics of self-associating apolipoprotein A-I(Milano) (apoA-I(M)) was investigated for the two anion exchangers Q-Sepharose-HP and Macro-Prep-HQ. At high salt where no protein binding occurs and without urea, mass transfer was controlled by hindered pore diffusion of multiple associated forms for both materials. Adding urea suppressed self-association, but resulted in higher viscosity and caused unfolding. As a consequence, the effective diffusivity decreased as urea was added and was greater for the larger pore Macro-Prep-HQ resin. At low salt, under strong binding conditions, the adsorption kinetics followed a more complex mechanism. In this case, the kinetics was very slow for both stationary phases up to 2 M urea. However, at higher urea concentrations, the adsorption kinetics for the smaller pore Q-Sepharose-HP matrix became much faster, suggesting a transition from pore- to surface-dominated diffusion. Microscopic observations confirmed that different transport mechanisms were in play below and above 2 M urea, which marked the approximate boundary above which self-association was suppressed and unfolding occurred. The net result was enhanced uptake kinetics at high urea concentrations (e.g., 4 M) where protein unfolding is thought to lead to a more flexible structure that can reptate along the pore surface. Although the observed enhancement was dependent on the pore size and, thus, the surface area of the resin, it was not limited to apoA-I(M). BSA showed a similar trend as a function of urea when its disulfide bonds were reduced.  相似文献   

11.
The transport of immunoglobulin and ferritin across the intestinal mucosa of adult rats provides an excellent model for transcellular protein transport study. Intestinal uptake and transcellular transport have been extensively studied in the neonatal rat, but not to such an extent in the adult rat. The transport of 125I labelled bovine immunoglobulin G and ferritin was studied in 100 days old rats using intestinally administered proteins. Antigen was estimated in the tissues by reacting extracts against specific immune antiserum prepared in rats, and visualization studies were carried out by fluorescence microscopy and direct deposition autoradiography at electron microscopic level. From these studies, it can be seen that these proteins are taken up by the intestinal cells and transported, antigenically intact, across the barriers to the body organs.  相似文献   

12.
A new metal-chelate adsorbent utilizing 2-methacryloylamidohistidine (MAH) was prepared as a metalchelating ligand. MAH was synthesized using methacryloly chloride and histidine. Monosize nanospheres with an average diameter of 450 nm were produced by emulsion polymerization of 2-hydroxyetylmethacrylate (HEMA) and MAH. Then, Fe3+ ions were chelated directly onto the monosize nanospheres. Mon-poly(HEMA-MAH) nanospheres were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and elemental analysis. Fe3+ chelated monosize nanospheres were used in ferritin adsorption from an aqueous solution. The maximum ferritin adsorption capacity of Fe3+-chelated mon-poly(HEMAMAH) nanospheres was 202 mg/g at pH 4.0 in acetate buffer. The non-specific ferritin adsorption on the monpoly( HEMA-MAH) nanospheres was 20 mg/g. The adsorption behavior of ferritin could be modeled using both Langmuir and Freundlich isotherms. The adsorption capacity decreased with increasing ionic strength of the binding buffer. High desorption ratios (> 95% of the adsorbed ferritin) were achieved with 1.0 M NaCl at pH 7.0. Ferritin could be repeatedly adsorbed and desorbed with the Fe3+-chelated mon-poly(HEMA-MAH) nanospheres without significant loss of adsorption capacity.  相似文献   

13.
The isolate Aspergillus versicolor was obtained from an estuary, which is exposed to metal contamination. It was found to have a good metal tolerance and sorption capacity. Further studies revealed that the rate of metal removal from solution is very rapid in the first 5-10 min, and is favoured by a pH of 6.0. The biosorption data obtained was explained by the Freundlich adsorption isotherm model and followed a pseudo-second order kinetics reaction. The fungus showed a higher accumulation of fatty acids when grown in presence of metals as compared to the mycelium grown in absence of the metal; there was also an increase in the saturation index of fatty acids in presence of Cu(2+) which serves as a protective mechanism for the fungus. Fourier Transform Infrared, scanning electron microscopy and EDAX analysis indicated that metal removal from solution by A. versicolor occurred by a passive adsorption to the fungal cell surface, involving an ion exchange mechanism.  相似文献   

14.
The structure and crystal chemical properties of iron cores of reconstituted recombinant human ferritins and their site-directed variants have been studied by transmission electron microscopy and electron diffraction. The kinetics of Fe uptake have been compared spectrophotometrically. Recombinant L and H-chain ferritins, and recombinant H-chain variants incorporating modifications in the threefold (Asp131----His or Glu134----Ala) and fourfold (Leu169----Arg) channels, at the partially buried ferroxidase sites (Glu62,His65----Lys,Gly), a putative nucleation site on the inner surface (Glu61,Glu64,Glu67----Ala), and both the ferroxidase and nucleation sites (Glu62,His65----Lys,Gly and Glu61,Glu64,Glu67----Ala), were investigated. An additional H-chain variant, incorporating substitution of the last ten C-terminal residues for those of the L-chain protein, was also studied. Most of the proteins assimilated iron to give discrete electron-dense cores of the Fe(III) hydrated oxide, ferrihydrite (Fe2O3.nH2O). No differences were observed for variants modified in the three- or fourfold channels compared with the unmodified H-chain ferritin. The recombinant L-chain ferritin and H-chain variant depleted of the ferroxidase site, however, showed markedly reduced uptake kinetics and comprised cores of increased diameter and regularity. Depletion of the inner surface Glu residues, whilst maintaining the ferroxidase site, resulted in a partially reduced rate of Fe uptake and iron cores of wider particle size distribution. Modification of both ferroxidase and inner surface Glu residues resulted in complete inhibition of iron uptake and deposition. No cores were observed by electron microscopy although negative staining showed that the protein shell was intact. The general requirement of an appropriate spatial charge density across the cavity surface rather than specific amino acid residues could explain how, in spite of an almost complete lack of identity between the amino acid sequences of bacterioferritin and mammalian ferritins, ferrihydrite is deposited within the cavity of both proteins under similar reconstitution conditions.  相似文献   

15.
Interfacial films of whole myelin membrane adsorb at the air-water interface from myelin vesicles. The films show a liquid state and their equilibrium spreading pressure is equal to the collapse pressure (about 47 mN/m). The films appear microheterogeneous as seen by epifluorescence microscopy, consisting in two liquid phases over all the adsorption isotherm, starting with rounded liquid expanded domains (low surface pressure) immersed in a cholesterol enriched phase and reaching a fractal pattern at high surface pressure similar to those previously observed by compressing the film. Vesicles adsorb to the interfacial film mainly at the lateral interfaces. The high surface pressure at equilibrium (almost equal to the collapse pressure) indicates the formation of surface multilayers, also shown by fluorescence microscopy.  相似文献   

16.
Distribution of bovine serum albumin and ferritin inside polyelectrolyte microcapsules was studied by transmission electron and confocal microscopy at the pH range 2-5. It was estimate that protein's distribution depends on isoelectric point (pI) and first polyelectrolyte used for preparation of capsule shell. So peptide is placed in the bulk of capsule if pH values of medium are lower isoelectric point of protein and polycation was used as a first polyelectrolyte layer. If the first polyelectrolyte was polyanion, the protein is located near internal surface of the shell. The protein is situated near internal surface of the shell for both polyelectrolytes when pH is equal to pI.  相似文献   

17.
The kinetics of in vivo expression of the polysialosyl (K1) capsular antigen in Escherichia coli has been studied. Growth of E. coli K1 strains at 15 degrees C prevents K1 polysaccharide synthesis (F. A. Troy and M. A. McCloskey, J. Biol. Chem. 254:7377-7387, 1979). Synthesis is reactivated in cells grown at 15 degrees C after upshift to 37 degrees C. The early expression and resultant morphology of K1 capsular antigen was monitored in temperature upshift experiments by using electron microscopy. Morphological stabilization of the capsule was achieved by treatment of cells with an antiserum specific for the alpha, 2-8-linked polysialosyl antigen. The kinetics of K1 capsule expression in growing cells was measured by bacteriophage adsorption with phage K1F, which required the K1 capsule for binding. The results of temperature upshift experiments showed that capsule first appeared on the cell surface after 10 min. Subsequent bacteriophage binding increased linearly with time until a fully encapsulated state was reached 45 min after upshift. The initiation of K1 capsule appearance was dependent on protein synthesis and the addition of chloramphenicol before temperature upshift prevented any expression of the K1 antigen. Chloramphenicol reduced the rate of K1 synthesis when added after temperature upshift. We conclude from these results that protein synthesis is a prerequisite for activation of capsule expression in vivo, but not for subsequent elongation of polysialosyl chains.  相似文献   

18.
The resolution of indirect immunoperoxidase methods for localizing antigens on the surface of plasma membranes of cultured cells was tested using dissociated monolayer cultures of ciliary ganglion neurons prelabeled with cationic ferritin. Clusters of ferritin were produced on the cell surface by warming the cells to 37 degrees C after the ferritin, rabbit anti-ferritin, and goat anti-rabbit immunoglobulin coupled to horseradish peroxidase had all been applied. Intense 3,3'-diaminobenzidine tetrahydrochloride (DAB) staining was limited to the regions immediately surrounding the ferritin clusters. The lateral spread of the DAB reaction product beyond the outer ferritin particles in each cluster averaged 54-81 nm in four experiments. A second type of increased density, coinciding with the thickness of the plasma membrane, was also seen. These stained plasma membranes extended 161-339 nm from the ferritin clusters.  相似文献   

19.
Entry of Vesicular Stomatitis Virus into L Cells   总被引:13,自引:10,他引:3       下载免费PDF全文
Early stages of the entry of vesicular stomatitis (VS) virus into L cells were followed by electron microscopy with the aid of ferritin antibody labeling. Cells which were infected at 0 C and incubated for 10 min at 37 C were reacted first with antiviral-antiferritin hybrid antibody and then with ferritin or fluorescein-labeled apoferritin. Extensive ferritin labeling of the cell surface was detected by both electron and fluorescence microscopy. The labeled regions of the cell surface were continuous with and indistinguishable from the rest of the host cell membrane, suggesting incorporation of viral antigens into the cell surface during viral penetration. Fusion of parental viral membrane with host cell membrane was further demonstrated by examining the localization of (3)H-labeled viral structural proteins in cells infected at 0 C and incubated for short periods at 37 C. Viral nucleoprotein was found in a soluble fraction of the cells which was derived primarily from the cytoplasm, whereas a particulate fraction from the cells was enriched in viral envelope proteins. Cytoplasmic membrane was isolated from these cells, and this membrane contained viral envelope proteins. These results suggest that penetration by VS virus occurs by fusion of the viral and cellular membranes followed by release of nucleo-protein into the cytoplasm.  相似文献   

20.
Abstract. The potential for thermal acclimation of photosynthetic electron transport by guard cell chloropiasts (GC ch) was assessed in epidermal peels taken from the abaxial side of Saxifraga cernua leaves grown at 20°C and 10°C. Chlorophyll a fluorescence induction kinetics measured in pairs of guard cells in individual stomata from tissue grown at 10 °C demonstrated a rise in the fluorescence to a maximum and a larger amplitude in variable fluorescence when measured at temperatures below 18°C than was seen in GC ch from tissue grown at 20°C. The rates of fluorescence quenching in 10°C-grown tissue were also faster than in 20°C-grown tissue when measured at temperatures below 18°C. State 1-State 2 transitions by GC ch were measured at selected temperatures between 5 and 25 °C as changes in the magnitude of the fluorescence emission maxima at 685, 695 and 730nm (F685, F695 and F730) measured at 77K. At measuring temperatures of 5 and 10°C, GC ch in tissue grown at 10 °C showed a greater transition to State 2 (a larger F730/F695 ratio) than did GC ch in tissue grown at 20 °C. At measuring temperatures of 20 and 25 °C, there was no difference in either the kinetics or the magnitude of the State 1 to State 2 transition in the two tissues. The ultrastructure of GC ch from tissues grown at 10 and 20 °C was also examined using transmission electron microscopy. Less than half (48%) of the grana from the higher temperature grown tissue had more than nine thylakoids/grana. Grana in GC ch which had developed at 10 °C showed a dramatic reduction in stacking, such that 85% of the grana contained no more than two thylakoids. The reduction in grana stacking was also accompanied by a decrease in the degree of appression of thylakoid membranes. The results demonstrate a capacity for thermal acclimation of GC ch function to low temperatures. This acclimation is associated with alterations in the chloroplast ultrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号