首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Infectious disease and other health hazards have been hypothesized to pose serious threats to the persistence of wild ape populations. Respiratory disease outbreaks have been shown to be of particular concern for several wild chimpanzee study sites, leading managers, and researchers to hypothesize that diseases originating from and/or spread by humans pose a substantial risk to the long-term survival of chimpanzee populations. The total chimpanzee population in Gombe National Park, Tanzania, has declined from 120–150 in the 1960s to about 100 by the end of 2007, with death associated with observable signs of disease as the leading cause of mortality. We used a historical data set collected from 1979 to 1987 to investigate the baseline rates of respiratory illness in chimpanzees at Gombe National Park, Tanzania, and to analyze the impact of human-related factors (e.g., banana feeding, visits to staff quarters) and non-human-related factors (e.g., sociality, season) on chimpanzee respiratory illness rates. We found that season and banana feeding were the most significant predictors of respiratory health clinical signs during this time period. We discuss these results in the context of management options for the reduction of disease risk and the importance of long-term observational data for conservation.  相似文献   

2.
The ecological pressures shaping chimpanzee anatomy and behavior are the subject of much discussion in primatology and paleoanthropology, yet empirical data on fundamental parameters including body size, morbidity, and mortality are rare for wild chimpanzees. Here, we present skeletal pathology and body size data for 20 (19 crania, 12 postcrania) chimpanzees (Pan troglodytes schweinfurthii) from Kibale National Park, Uganda. We compare these data with other East African populations, especially Gombe National Park. Estimated body size for Kibale chimpanzees was similar to other East African populations and significantly larger than Gombe chimpanzees. The high rates of trauma and other skeletal pathology evident in the Kibale chimpanzee skeletons were similar to those in the Gombe skeletal sample. Much of the major skeletal trauma in the Kibale skeletons was attributable to falls, although other pathologies were noted as well, including apparent injuries from snares, degenerative arthritis, and minor congenital abnormalities.  相似文献   

3.
What determines the number of cultural traits present in chimpanzee (Pan troglodytes) communities is poorly understood. In humans, theoretical models suggest that the frequency of cultural traits can be predicted by population size. In chimpanzees, however, females seem to have a particularly important role as cultural carriers. Female chimpanzees use tools more frequently than males. They also spend more time with their young, skewing the infants'' potential for social learning towards their mothers. In Gombe, termite fishing has been shown to be transmitted from mother to offspring. Lastly, it is female chimpanzees that transfer between communities and thus have the possibility of bringing in novel cultural traits from other communities. From these observations we predicted that females are more important cultural carriers than males. Here we show that the reported number of cultural traits in chimpanzee communities correlates with the number of females in chimpanzee communities, but not with the number of males. Hence, our results suggest that females are the carriers of chimpanzee culture.  相似文献   

4.
Mortality rates among wild chimpanzees   总被引:9,自引:0,他引:9  
In order to compare evolved human and chimpanzees' life histories we present a synthetic life table for free-living chimpanzees, derived from data collected in five study populations (Gombe, Ta?, Kibale, Mahale, Bossou). The combined data from all populations represent 3711 chimpanzee years at risk and 278 deaths. Males show higher mortality than females and data suggest some inter-site variation in mortality. Despite this variation, however, wild chimpanzees generally have a life expectancy at birth of less than 15 years and mean adult lifespan (after sexual maturity) is only about 15 years. This is considerably lower survival than that reported for chimpanzees in zoos or captive breeding colonies, or that measured among modern human hunter-gatherers. The low mortality rate of human foragers relative to chimpanzees in the early adult years may partially explain why humans have evolved to senesce later than chimpanzees, and have a longer juvenile period.  相似文献   

5.
Whether nonhuman primates show population‐level handedness is a topic of much scientific debate. A previous study of handedness for termite fishing reported population‐level left handedness in the chimpanzees from Gombe National Park, Tanzania. In the current study, we examined whether similar hand preferences were evident in a savanna‐dwelling chimpanzee population with regards to termite fishing. Hand preference data were collected for 27 chimpanzees from February 2007 through July 2008 and November 2011 through January 2012 in southeastern Senegal. Overall, the Fongoli chimpanzees demonstrate a trend toward population‐level handedness, though the results did not reach conventional levels of statistical significance likely due to the limited sample size. Fongoli chimpanzees showed the same pattern of left hand preference as reported at Gombe and the two populations did not differ significantly. When the data were combined across all studies, wild chimpanzees showed a population‐level left hand preference for termite fishing. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Although much research has shown otherwise, chimpanzees are still often classed as rainforest-dwellers. Most long-term studies of wild chimpanzees (Pan troglodytes) are not situated in evergreen, closed-canopy equatorial forests, but instead are conducted in more open habitats. This study aims to elucidate the extent of chimpanzee ecological diversity by scrutinizing (recently) sympatric mammalian fauna at established study sites. We compiled presence or absence data on large mammal species at eight sites: Assirik, Bossou, Budongo, Gombe, Kibale, Lopé, Mahale, and Tai. The sites were rank ordered on the most basic ecological variable: annual total rainfall. Only three of the 65 mammalian genera compiled were sympatric with chimpanzees at all sites: Potamochoerus (bushpig), Syncerus (buffalo), and Panthera pardus (leopard). Some subfamilies (e.g. colobines) were present at most sites, but some families (e.g. hyenids) were absent at most sites. Some taxa (e.g. suids, cercopithecines) correlated better than others (e.g. canids) with basic ecological variables. The most extreme chimpanzee study site for which data are available is Assirik, Senegal. Nowhere else are chimpanzees sympatric with Erythrocebus, Alcelaphus, Hippotragus, and Ourebia. As chimpanzees are often behavioral models for extinct hominins, these living faunal assemblages have implications for paleo-ecological reconstructions of ancestral habitats.  相似文献   

7.
The isolation of phylogenetically distinct primate immunodeficiency viruses from at least seven wild-born, captive chimpanzees indicates that viruses closely related to HIV-1 may be endemic in some wild chimpanzee populations. The search for the chimpanzee population or populations harbouring these viruses is therefore on. This paper attempts to answer the question of whether or not such populations of chimpanzees are likely to exist at all, and, if so, where they are likely to be found. We summarize what is known about gene flow in wild populations of chimpanzees, both between major phylogeographical subdivisions of the species, and within these subdivisions. Our analysis indicates that hitherto undocumented reproductively isolated chimpanzee populations may in fact exist. This conclusion is based on the observation that, despite limited geographical sampling and limited numbers of genetic loci, conventional notions of the nature and extent of chimpanzee gene flow have recently been substantially revised. Molecular genetic studies using mitochondrial DNA sequences and hypervariable nuclear microsatellite markers have indicated the existence of heretofore undocumented barriers to chimpanzee gene flow. These studies have identified at least one population of chimpanzees genetically distinct enough to be classified into a new subspecies (Pan troglodytes vellerosus). At the same time, they have called into question the long-accepted genetic distinction between eastern chimpanzees (Pan troglodytes schweinfurthii) and western equatorial chimpanzees (Pan troglodytes troglodytes). The same studies have further indicated that gene flow between local populations is more extensive than was previously thought, and follows patterns sometimes inconsistent with those documented through direct behavioural observation. Given the apparently incomplete nature of the current understanding of chimpanzee gene flow in equatorial Africa, it seems reasonable to speculate that a chimpanzee population or populations may exist which both harbour the putative HIV-1 ancestor, and which have remained reproductively isolated from other chimpanzee populations over the time-scale relevant to the evolution of the SIVcpz-HIV-1 complex of viruses. Continued extensive sampling of wild chimpanzee populations, both for their genes and their viruses, should be performed quickly considering the high probability of extinction that many wild chimpanzee populations face today. The history of human-chimpanzee contacts is discussed.  相似文献   

8.
Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002-2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of -6.5% to -7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002-2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen.  相似文献   

9.
All great ape species are endangered, and infectious diseases are thought to pose a particular threat to their survival. As great ape species vary substantially in social organisation and gregariousness, there are likely to be differences in susceptibility to disease types and spread. Understanding the relation between social variables and disease is therefore crucial for implementing effective conservation measures. Here, we simulate the transmission of a range of diseases in a population of orang-utans in Sabangau Forest (Central Kalimantan) and a community of chimpanzees in Budongo Forest (Uganda), by systematically varying transmission likelihood and probability of subsequent recovery. Both species have fission-fusion social systems, but differ considerably in their level of gregariousness. We used long-term behavioural data to create networks of association patterns on which the spread of different diseases was simulated. We found that chimpanzees were generally far more susceptible to the spread of diseases than orang-utans. When simulating different diseases that varied widely in their probability of transmission and recovery, it was found that the chimpanzee community was widely and strongly affected, while in orang-utans even highly infectious diseases had limited spread. Furthermore, when comparing the observed association network with a mean-field network (equal contact probability between group members), we found no major difference in simulated disease spread, suggesting that patterns of social bonding in orang-utans are not an important determinant of susceptibility to disease. In chimpanzees, the predicted size of the epidemic was smaller on the actual association network than on the mean-field network, indicating that patterns of social bonding have important effects on susceptibility to disease. We conclude that social networks are a potentially powerful tool to model the risk of disease transmission in great apes, and that chimpanzees are particularly threatened by infectious disease outbreaks as a result of their social structure.  相似文献   

10.
Power  M. 《Human Evolution》1986,1(3):251-265
Current understandings of chimpanzee behavior and social organization are based largely on twenty years of studies of provisioned chimpanzees in Gombe and Mahale National Parks. These data indicate that chimpanzees are aggressive, dominance-seeking and fiercely territorial. Reports from a number of naturalistic (nonprovisioning, unobtrusive) field studies contrast sharply. All report open groups of nonaggressive, nonhierarchical chimpanzees, which repeatedly fission for foraging and reunite as a larger social group. Because of the authority accorded the Mahale and Gombe reports, the naturalistic studies are often discounted. In this paper foraging theory is used to show that the recent behaviors of the artificially fed apes are maladaptive, while those of the nonprovisioned, wild chimpanzees are excellent foraging strategy. It is suggested, but not concluded, that the recent behaviors of the Gombe and Mahale chimpanzees may be frustration-induced responses to feeding methods which introduce a blockage between the apes and the desirable bait foods.  相似文献   

11.
Rates of chimpanzee predation on mammals are calculated using data on 75 kills recorded during focal observation in Gombe National Park, Tanzania, from January 1972 to April 1975. The chimpanzees were members of two study communities (Kanyawara, or Northern, and Kahama, or Southern, community), and were observed as focal individuals for 14,583 hr by more than 30 researchers and field assistants working in pairs. The rate of predation by females was too low to allow reasonable estimates. For males, the mean rate of killing during the study period was 0.31 kills per male per 100 hr (N=17 males), or 4.65 kills per 100 hr in the two communities. In contrast to results from Mahale Mountains, there was no difference in predation rate between wet and dry seasons. However, predation rates varied over time, increasing by four times between the first three and last four seasons of the sample period. In an average year the 15 adult and subadult male chimpanzees are calculated to have killed 204 prey per year in an area of 16 km2, varying between 99 and 420 prey per year in periods of low and high predation rate. Red colobus were the most frequent prey, followed by bushpig and bushbuck. Predation rates varied greatly on different prey species, and were not related to either the proportion of time spent within 200 m of male chimpanzees, or to their population densities. In relation to encounter rates and population density, baboons, blue monkeys, and redtail monkeys were killed at a fraction of the rate of red colobus monkeys, which suffered severe mortality from chimpanzee predation. Predation on bushpig and bushbuck also appears to have been high in relation to population density. The amount of food provided by predation is estimated to have averaged 600 kg per year for chimpanzees in the two communities (totalling 14–17 adult or subadult males, 18–20 adult of subadult females, and about 19 infants or juveniles). This suggests that adult males consumed around 25 kg of meat per year, although any average figure undoubtedly masks considerable individual variation. Present data suggest that chimpanzees in Gombe and Tai National Park, Ivory Coast, prey on mammals at rates higher than other populations.  相似文献   

12.
The rate of predation on mammals by chimpanzees was determined from carcasses and from fecal specimens found on fresh trails during a 16-month period in the montane forest of Kahuzi-Biega National Park, Zaire. A unit-group of semi-habituated chimpanzees, composed of 22 – 23 individuals including 8 adult or adolescent males, appeared to kill about 18 – 30 mammalian prey (16 – 28Cercopithecus monkeys) per year, if the multiple kills by chimpanzees were not considered. A juvenile l'Hoest's monkey was recorded for the first time as the prey of chimpanzees in this study. Predation occurred in the late dry and the early rainy seasons, when the diversity of ripe fruits was the highest during the year. The Kahuzi chimpanzees tended to kill mammals less frequently but to killCercopithecus monkeys more frequently than chimpanzees in other habitats. The absence of red colobus monkeys, which are the most frequent prey in Gombe, Mahale, and Tai, might be responsible for the low predation rate. However, the estimated rate of predation onCercopithecus monkeys is the highest record among various chimpanzee habitats. At least 11 – 18% of theCercopithecus population seemed to be lost annually as a result of being killed by chimpanzees. Chimpanzees may be the most important predators on these monkeys in the absence of leopards at Kahuzi. The examination of fecal samples and carcasses suggested that adult (probably male) or adolescent chimpanzees tended to eat juvenile or subadult monkeys most frequently, as is also seen for chimpanzees in Gombe, Mahale, and Tai.  相似文献   

13.
This report provides a longitudinal demographic profile for a small study population of chimpanzees living in the Gombe National Park of Tanzania, East Africa. The size and composition of this study population, and the trends in mortality, natality and migratory patterns it experienced over a span of ten years, are described and analysed within various ethological and ecological frameworks. The validity of the demographic profile is examined in relation to field methodology, as the study population was intensively provisioned with bananas for several years. The results yield some guidelines for managing and conserving wild chimpanzee populations, and special emphasis is placed upon protection from diseases that involve human vectors. The data presented here may also offer some novel insights to the evolution of pongid and hominid populations, so tentative steps are taken to place the Gombe profile into a broader demographic perspective.  相似文献   

14.
With respect to prey selectivity and predation frequency, chimpanzees (Pan troglodytes) show local differences as well as diachronic variability within the same population. When data on predation from three long-term studies at Mahale, Gombe, and Tai are compared, some differences and similarities emerge; Mahale is more like Gombe than Tai in regard of prey selection but features of hunting at Tai with respect to predation frequency are not conspicuous. The most responsible factor for diversity in prey selectivity is a distinct “prey image” maintained by chimpanzees of different populations, although it is necessary to clarify in future studies why and how such tradition develops. Relative body size of chimpanzees to prey species and/or the degree of cooperation among members of a hunting party may explain the variability in prey size selected at each site, the latter influencing the frequency of successful hunts at the same time. Although various degrees of habituation and different sampling methods including artificial feeding might have obscured the real differences, recent data from the three populations do not seem to be biased greatly by such factors. Nevertheless, it is still difficult to make strict comparisons due to the lack of sufficient standardized data across the three populations on the frequency of hunting and predation. It is suggested that the size or demographic trend of a chimpanzee unit-group, especially the number of adult males included, necessarily influences its hunting frequency as well as its prey profile. It is also suggested that factors which bring these males together into a party (e.g. fruit abundance, swollen females, conflict between unit-groups etc.) strongly affect theactual hunting and kill rates. Other possible factors responsible for the local differences are forest structure (e.g. tree height), skilful “hero” chimpanzees, and competition with sympatric carnivorous animals. A total of at least 32 species have been recorded as prey mammals of chimpanzees from 12 study sites and the most common prey mammals are primates (18 species), of which 13 species are forest monkeys. Forest monkeys, colobine species in particular, are often the most common victims of the predation by chimpanzees at each site. We may point out a tendency toward selective hunting for the forest monkeys in terms of the selectivity of prey fauna among all three subspecies of chimpanzees, including populations living in drier environment. The mode of chimpanzee hunting seems to correspond to the highest available biomass of gregarious, arboreal monkeys in the forest, colobine species in particular. In contrast, bonobos (P. paniscus) are less carnivorous than chimpanzees, only rarely preying on a few species of small mammals. The sharp contrast of the two allied species in their predatory tendencies appears to have something to do with the differences in the structure of primary production between their habitats.  相似文献   

15.
Populations of an organism living in marked geographical or evolutionary isolation from other populations of the same species are often termed subspecies and expected to show some degree of genetic distinctiveness. The common chimpanzee (Pan troglodytes) is currently described as four geographically delimited subspecies: the western (P. t. verus), the nigerian‐cameroonian (P. t. ellioti), the central (P. t. troglodytes) and the eastern (P. t. schweinfurthii) chimpanzees. Although these taxa would be expected to be reciprocally monophyletic, studies have not always consistently resolved the central and eastern chimpanzee taxa. Most studies, however, used data from individuals of unknown or approximate geographic provenance. Thus, genetic data from samples of known origin may shed light on the evolutionary relationship of these subspecies. We generated microsatellite genotypes from noninvasively collected fecal samples of 185 central chimpanzees that were sampled across large parts of their range and analyzed them together with 283 published eastern chimpanzee genotypes from known localities. We observed a clear signal of isolation by distance across both subspecies. Further, we found that a large proportion of comparisons between groups taken from the same subspecies showed higher genetic differentiation than the least differentiated between‐subspecies comparison. This proportion decreased substantially when we simulated a more clumped sampling scheme by including fewer groups. Our results support the general concept that the distribution of the sampled individuals can dramatically affect the inference of genetic population structure. With regard to chimpanzees, our results emphasize the close relationship of equatorial chimpanzees from central and eastern equatorial Africa and the difficult nature of subspecies definitions. Am J Phys Anthropol 156:181–191, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The skeletons of Gombe chimpanzees provide an opportunity for analysis of bony tissue with reference to known sex and parity in combination with observations on other life history variables and behavior. Measurements of the pelvic bones show a mosaic of sex differences. Well-defined resorption areas on the dorsomedial aspect of the pubis and the preauricular area of the ilium have been associated with sex and parity in humans and other species. However, these are not present in either females or males in this chimpanzee skeletal series.  相似文献   

17.
Chimpanzees regularly hunt a variety of prey species. However, they rarely scavenge, which distinguishes chimpanzee carnivory from that of some modern hunter-gatherers and, presumably, at least some Plio-Pleistocene hominins. I use observations made over an 11-year period to document all known opportunities for scavenging encountered by chimpanzees at Ngogo, Kibale National Park, Uganda, and describe all cases of scavenging. I also review data on scavenging from other chimpanzee research sites. Chimpanzees at Ngogo encountered scavenging opportunities only about once per 100 days and ate meat from scavenged carcasses only four times. Scavenging opportunities are also rare at other sites, even where leopards are present (Mahale, Ta?, Gombe), and scavenging of leopard kills is known only from Mahale. Feeding on prey that chimpanzees had hunted but then abandoned is the most common form of scavenging reported across study sites. For example, several individuals at Ngogo ate meat from a partially consumed red colobus carcass abandoned after a hunt the previous day. Such behavior probably was not common among Oldowan hominins. Ngogo data and those from other sites also show that chimpanzees sometimes eat meat from carcasses of prey that they did not see killed and that were not killed by chimpanzees, and that scavenging allows access to carcasses larger than those of any prey items. However, chimpanzees ignore relatively many opportunities to obtain meat from such carcasses. Scavenging may be rare because fresh carcasses are rare, because the risk of bacterial infections and zoonoses is high, and because chimpanzees may not recognize certain species as potential prey or certain size classes of prey species as food sources. Its minimal nutritional importance, along with the absence of technology to facilitate confrontational scavenging and rapid carcass processing, apparently distinguishes chimpanzee foraging strategies from those of at least some Oldowan hominins.  相似文献   

18.
Over the past decade Ebola hemorrhagic fever has emerged repeatedly in Gabon and Congo, causing numerous human outbreaks and massive die-offs of gorillas and chimpanzees. Why Ebola has emerged so explosively remains poorly understood. Previous studies have tended to focus on exogenous factors such as habitat disturbance and climate change as drivers of Ebola emergence while downplaying the contribution of transmission between gorilla or chimpanzee social groups. Here we report recent observations on behaviors that pose a risk of transmission among gorilla groups and between gorillas and chimpanzees. These observations support a reassessment of ape-to-ape transmission as an amplifier of Ebola outbreaks.  相似文献   

19.
The meat-for-sex hypothesis posits that male chimpanzees (Pan troglodytes) trade meat with estrous females in exchange for short-term mating access. This notion is widely cited in the anthropological literature and has been used to construct scenarios about human evolution. Here we review the theoretical and empirical basis for the meat-for-sex hypothesis. We argue that chimpanzee behavioral ecology does not favor the evolution of such exchanges because 1) female chimpanzees show low mate selectivity and require little or no material incentive to mate, violating existing models of commodity exchange; and 2) meat-for-sex exchanges are unlikely to provide reproductive benefits to either partner. We also present new analyses of 28 years of data from two East African chimpanzee study sites (Gombe National Park, Tanzania; Kanyawara, Kibale National Park, Uganda) and discuss the results of previously published studies. In at least three chimpanzee communities, 1) the presence of sexually receptive females did not increase hunting probability, 2) males did not share preferentially with sexually receptive females, and 3) sharing with females did not increase a male's short-term mating success. We acknowledge that systematic meat sharing by male chimpanzees in expectation of, or in return for, immediate copulations might be discovered in future studies. However, current data indicate that such exchanges are so rare, and so different in nature from exchanges among humans, that with respect to chimpanzees, sexual bartering in humans should be regarded as a derived trait with no known antecedents in the behavior of wild chimpanzees.  相似文献   

20.
Socioecological theory suggests that feeding competition shapes female social relationships. Chimpanzees (Pan troglodytes) live in fission–fusion societies that allow them to react flexibly to increased feeding competition by forming smaller foraging parties when food is scarce. In chimpanzees at Gombe and Kibale, female dominance rank can crucially influence feeding competition and reproductive success as high‐ranking females monopolize core areas of relatively high quality, are more gregarious, and have higher body mass and reproductive success than low‐ranking females. Chimpanzee females in Taï National Park do not monopolize core areas; they use the entire territory as do the males of their community and are highly gregarious. Although female chimpanzees in Taï generally exhibit a linear dominance hierarchy benefits of high rank are currently not well understood. We used a multivariate analysis of long‐term data from two Taï chimpanzee communities to test whether high‐ranking females (1) increase gregariousness and (2) minimize their travel costs. We found that high‐ranking females were more gregarious than low‐rankers only when food was scarce. During periods of food scarcity, high rank allowed females to enjoy benefits of gregariousness, while low‐ranking females strongly decreased their gregariousness. High‐ranking females traveled more than low‐ranking females, suggesting that low‐rankers might follow a strategy to minimize energy expenditure. Our results suggest that, in contrast to other chimpanzee populations and depending on the prevailing ecological conditions, female chimpanzees at Taï respond differently to varying levels of feeding competition. Care needs to be taken before generalizing results found in any one chimpanzee population to the species level. Am. J. Primatol. 73:305–313, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号