首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus subtilis protease (Amano protease N) was examined as a catalyst for peptide bond formation via both the kinetically and thermodynamically controlled approaches. In general, the latter approach proved to be superior to the former, and a series of dipeptide syntheses and several segment condensations were achieved in good to high yields using the immobilized enzyme on Celite in acetonitrile with low water content.  相似文献   

2.
The coupling between the carbamoylmethyl ester of an N-protected amino acid or dipeptide (at 25 mM) and an amino acid amide (at 100 mM) was achieved using Aspergillus melleus protease in 1,1,1,3,3,3-hexafluoro-2-propanol/N,N-dimethylformamide (1:1, v/v); the coupling efficiencies were dependent largely on the combination of amino acid residues: e.g. the dipeptide yields after 48 h were for l-Ala + Gly, 100% and for l-Leu + l-Leu, 16%.  相似文献   

3.
Bacillus cereus AU004, isolated from soil samples, secreted a complex of hydrolytic enzymes into the culture broth when it was grown aerobically in a medium containing crude chitosan flakes. The presence of the AU004 culture supernatant substantially influenced the growths of the plant-pathogenic fungi Fusarium oxysporum, F. solani and Pythium ultimum in terms of dry weight. AU004 excreted a protease when cultivated in a medium that contained 4% (w/v) chitosan as the major nutritional source. The protease was purified by sequential chromatography and characterized as a novel extracellularly neutral protease. The protease had an Mr of 28.8 kDa. The optimal pH and temperature for protease activity were 7 and 50°C, respectively. Antifungal activity of the protease was observed using an assay based on the inhibition of spore germination and hyphal extension of the fungal Pythium ultimum. This investigation is the first report of the production of an anti-fungal protease from Bacillus spp.  相似文献   

4.
In this communication, we report the presence of a newly identified serine alkaline protease producing bacteria, Virgibacillus pantothenticus (MTCC 6729) in the fresh chicken meat samples and the factors affecting biosynthesis as well as characterization of protease. The strain produced only 14.3 U ml−1 protease in the standard medium after 72 h of incubation, while in optimized culture conditions the production of protease was increased up to 18.2 U ml−1. The strain was able to produce protease at 40°C at pH 9.0. The addition of dextrose and casein improved protease production. The protease was partially purified and characterized in terms of pH and temperature stability, effect of metal ions and inhibitors. The protease was found to be thermostable alkaline by retaining its 100% and 85% stability at pH 10.0 and at 50°C respectively. The protease was compatible with some of the commercial detergents tested, and was effective in removing protein stains from cotton fabrics. The V. pantothenticus, MTCC 6729 protease appears to be potentially useful as an additive in detergents as a stain remover and other bio-formulations.  相似文献   

5.
Aspergillus strains are being considered as potential hosts for recombinant heterologous protein production because of their excellent extracellular enzyme production characteristics. However, Aspergillus proteases are problematic in that they modify and degrade the heterologous proteins in the extracellular medium. In previous studies we observed that media adjustments and maintenance of a filamentous morphology greatly reduced protease activity and that a low concentration of the aspartic protease inhibitor pepstatin inhibited the latter protease activity to the extent of approximately 90%. In this paper we report that when the serine protease inhibitor chymostatin is used in combination with pepstatin 99–100% of total protease activity in Aspergillus cultures is inhibited. In protease assays a concentration of 30 μM chymostatin combined with 0.075 μM pepstatin was required for maximum inhibition. Inhibitor concentrations of chymostatin and pepstatin of 120 and 0.3 μM, respectively, when added to Aspergillus cultures, has no significant effect on biomass production, glucose utilization or culture pH pattern. The potential of using these protease inhibitors in cultures of recombinant Aspergillus strains producing heterologous proteins will now be investigated to determine if the previously observed recombinant protein denaturing effects of Aspergillus proteases can be negated.  相似文献   

6.
While about 80% of the cell-bound intracellular serine protease of Bacillus subtilis A-50 have been recovered in the soluble fraction upon disruption of cells, the rest of the enzyme was found to be associated with the membrane fraction. Soluble cytoplasmic intracellular serine protease, as well as membrane-bound serine protease liberated by nonionic detergent treatment, have been isolated in a pure state and shown to be identical. The same protease might also be found extracellularly, due presumably to cell lysis or altered membrane permeability. Intracellular serine protease of Bacillus subtilis A-50 was clearly related to Bacillus subtilis serine proteases W1 and bacillopeptidase F described as extracellular enzymes.Abbreviations ISP intracellular serine protease - ISP-A-Bsu A-50 and ISP-B-Bsu A-50 molecular forms A and B of B. subtilis A-50 intracellular serine protease, respectively - SDS sodium dodecyl sulfate - PMSF phenylmethyl sulfonylfluoride - pNA p-nitroanilide - Buffer A 50 mM Tris-(hydroxymethyl)aminomethane-1 mM CaCl2 adjusted to pH 8.5 with HCl  相似文献   

7.
A serine protease and an enzyme preparation consisting of six chitinases, previously semi-purified from a liquid culture of Paecilomyces lilacinus strain 251, were applied to Meloidogyne javanica eggs to study the effect of the enzymes on eggshell structures. Transmission electron microscopic studies revealed that the protease and chitinases drastically altered the eggshell structures when applied individually or in combination. In the protease-treated eggs, the lipid layer disappeared and the chitin layer was thinner than in the control. The eggs treated with chitinases displayed large vacuoles in the chitin layer, and the vitelline layer was split and had lost its integrity. The major changes in the eggshell structures occurred by the combined effect of P. lilacinus protease and chitinases. The lipid layer was destroyed; the chitin layer hydrolyzed and the vitelline layer had lost integrity. The effect of P. lilacinus protease and chitinase enzymes on the hatching of M. javanica juveniles was also compared with a commercially available bacterial chitinase. The P. lilacinus protease and chitinase enzymes, either individually or in combination, reduced hatching of M. javanica juveniles whereas a commercial bacterial chitinase had an enhancing effect. Some juveniles hatched when the eggs were exposed to a fungal protease and chitinase mixture. We also established that P. lilacinus chitinases retained their activity in the presence of endogenous protease activity.  相似文献   

8.
The alkaline protease gene from Aspergillus oryzae was cloned, and then it was successfully expressed in the heterologous Pichia pastoris GS115 with native signal peptide or α-factor secretion signal peptide. The yield of the recombinant alkaline protease with native signal peptide was about 1.5-fold higher than that with α-factor secretion signal peptide, and the maximum yield of the recombinant alkaline protease was 513 mg/L, which was higher than other researches. The recombinant alkaline protease was purified by ammonium sulfate precipitation, ion exchange chromatography and gel filtration chromatography. The purified recombinant alkaline protease showed on SDS–PAGE as a single band with an apparent molecular weight of 34 kDa. The recombinant alkaline protease was identical to native alkaline protease from A. oryzae with regard to molecular weight, optimum temperature for activity, optimum pH for activity, stability to pH, and similar sensitivity to various metal ions and protease inhibitors. The native enzyme retained 61.18% of its original activity after being incubated at 50 °C for 10 min, however, the recombinant enzyme retained 56.22% of its original activity with same disposal. The work demonstrates that alkaline protease gene from A. oryzae can be expressed largely in P. pastoris without affecting its enzyme properties and the recombinant alkaline protease could be widely used in various industrial applications.  相似文献   

9.
A Bacillus amyloliquefaciens neutral protease gene was cloned and expressed in Bacillus subtilis.The chromosomal DNA of B. amyloliquefaciens strain F was partially digested with restriction endonuclease Sau3AI, and 2 to 9 kb fragments isolated were ligated into the BamHI site of plasmid pUB110. Then, B. subtilis strain 1A289 was transformed with the hybrid plasmids by the method of protoplast transformation and kanamycin-resistant transformants were screened for the formation of large halo on a casein plate. A transformant that produced a large amount of an extracellular neutral protease harbored a plasmid, designated as pNP150, which contained a 1.7 kb insert.The secreted neutral protease of the transformant was found to be indistinguishable from that of DNA donor strain B. amyloliquefaciens by double immunodiffusion test and SDS-polyacrylamide gel electrophoresis.The amount of the neutral protease activity excreted into culture medium by the B. subtilis transformed with pNP150 was about 50-fold higher than that secreted by B. amyloliquefaciens. The production of the neutral protease in the transformant was partially repressed by addition of glucose to the medium.  相似文献   

10.
A novel homomultimeric protease (>669 kDa), based on 31 kDa subunits, was purified from cell extracts of the hyperthermophilic bacterium Thermotoga maritima. This protease exhibits activity toward chymotrypsin and trypsin substrates, optimally at 90°C and pH 7.1, and has a half-life of 36 min at 95°C. Transmission electron microscopy established that the protease consists of a large globular assembly which appears circular from the front view. The function of this protease in T. maritima remains unclear, although putative homologs include a 29 kDa antigen from Mycobacterium tuberculosis and a 31 kDa monomer of a high molecular weight bacteriocin produced by Brevibacterium linens [Valdes-Stauber, N. and Scherer, S. (1996) Appl. Environ. Microbiol. 62, 1283–1286]. The relationship of these mesophilic proteins to the T. maritima protease suggests that their antibacterial activity may involve elements of proteolysis, and raises the prospect for anti-microbial ecological strategies in hyperthermophilic niches.  相似文献   

11.
vanKuyk, P. A., Cheetham, B. F., and Katz, M. E. 2000. Analysis of two Aspergillus nidulans genes encoding extracellular proteases. Characterization of prtAΔ mutants, generated by gene disruption, showed that the prtA gene is responsible for the majority of extracellular protease activity secreted by Aspergillus nidulans at both neutral and acid pH. The prtAΔ mutation was used to map the prtA gene to chromosome V. Though aspartic protease activity has never been reported in A. nidulans and the prtAΔ mutants appear to lack detectable acid protease activity, a gene (prtB) encoding a putative aspartic protease was isolated from this species. Comparison of the deduced amino acid sequence of PrtB to the sequence of other aspergillopepsins suggests that the putative prtB gene product contains an eight-amino-acid deletion prior to the second active site Asp residue of the protease. RT-PCR experiments showed that the prtB gene is expressed, albeit at a low level.  相似文献   

12.
Aspergillus tamarii expresses an extracellular alkaline protease that we show to be effective in removing hair from cattle hide. Large quantities of the enzyme will be required for the optimization of the enzymatic dehairing process so the growth conditions for maximum protease expression by A. tamarii were optimized for both solid-state culture on wheat bran and for broth culture. Optimal protease expression occurred, for both cultural media, at initial pH 9; the culture was incubated at 30 °C for 96 h using a 5% inoculum. The crude enzyme was isolated, purified and characterized using MALDI TOF TOF. The alkaline protease was homologous to the alkaline protease expressed by Aspergillus viridinutans. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

13.
The alkaline protease structural gene (ALP1 gene) was isolated from both the genomic DNA and cDNA of Aureobasidium pullulans 10 by inverse PCR and RT-PCR. An open reading frame of 1248 bp encoding a 415 amino-acid protein with calculated molecular weight of 42.9 kDa was characterized. The gene contained two introns, which had 54 bp and 50 bp, respectively. The promoter of ALP1 gene was located from -62 to -112 and had two CCAAT boxes and one TATA box. The terminator of ALP1gene contained the sequence with a hairpin structure (AAAAAGTT TGGTTTTT). The protein sequence deduced from ALP1 gene exhibited 55.24%, 50.35%, and 31.68% identity with alkaline proteases from Aspergillus fumigatus, Acremonium chrysogenum, and Yarrowia lipolytica, respectively. The protein was found to have the conserved serine active site and histidine active site of serine proteases in the subtilisin family. The recombinant A. pullulans alkaline protease produced in Y. lipolytica formed clear zones on the double plates with 2% casein and alkaline protease activity in the supernatant of the recombinant Y. lipolytica culture was detected, suggesting that the cloned ALP1 gene is expressed in Y. lipolytica and the expressed alkaline protease is secreted into the medium.  相似文献   

14.
Conditions of limited proteolysis of the protease Lon from Escherichia coli that provided the formation of fragments approximately corresponding to the enzyme domains were found for studying the domain functioning. A method of isolation of the domains was developed, and their functional characteristics were compared. The isolated proteolytic domain (LonP fragment) of the enzyme was shown to exhibit both peptidase and proteolytic activities; however, it cleaved large protein substrates at a significantly lower rate than the full-size protease Lon. On the other hand, the LonAP fragment, containing both the ATPase and the proteolytic domains, retained almost all of the enzymatic properties of the full-size protein. Both LonP and LonAP predominantly form dimers unlike the native protease Lon functioning as a tetramer. These results suggest that the N-terminal domain of protease Lon may play a considerable role in the process of the enzyme oligomerization.  相似文献   

15.
Burkholderia pseudomallei is a causative agent of melioidosis, a fatal community acquired septicemia in Southeast Asia and Northern Australia. A protease has been proposed to be one of the major pathogenic factors to play a significant role in melioidosis. We have used phage display technology to identify peptides binding to B. pseudomallei protease. By screening a constrained cyclic heptapeptide library, five independent clones with affinity to this protease were isolated and the amino acid sequences were determined. The cyclic heptapeptides from two of the phage clones (Cys-Phe-Phe-Met-Pro-His-Thr-Phe-Cys) were identical and showed the strongest phage-protease interaction as detected by ELISA. Four of the five selected phages at the amount of 1013 phages could inhibit B. pseudomallei protease activity by approximately 50%.  相似文献   

16.
Five out of the nine benzene–toulene–ethylbenzene-xylene (BTEX) tolerant bacteria that demonstrated high protease activity on skim milk agar were isolated. Among them, isolate 115b identified as Bacillus pumilus exhibited the highest protease production. The protease produced was stable in 25% (v/v) benzene and toluene and it was activated 1.7 and 2.5- fold by n-dodecane and n-tetradecane, respectively. The gene encoding the organic solvent tolerant protease was cloned and its nucleotide sequence determined. Sequence analysis revealed an open reading frame (ORF) of 1,149 bp that encoded a polypeptide of 383 amino acid residues. The polypeptide composed of 29 residues of signal peptide, a propeptide of 79 residues and a mature protein of 275 amino acids with a calculated molecular mass of 27,846 Da. This is the only report available to date on organic solvent tolerant protease from B. pumilus.  相似文献   

17.
Sea anemones are rich in biologically active polypeptides such as toxins and protease inhibitors. These polypeptides have so far been isolated from whole bodies, tentacles or secreted mucus. Recently, two novel peptide toxins with crab lethality have been isolated from acrorhagi (specialized aggressive organs elaborated by only certain species of sea anemones belonging to the family Actiniidae) of Actinia equina. This prompted us to survey biologically active polypeptides in the acrorhagi of two species of sea anemones, Anthopleura aff. xanthogrammica and Anthopleura fuscoviridis. No potent crab lethality was displayed by the acrorhagial extracts of both species. However, significantly high protease inhibitory activity was instead detected in the acrorhagial extracts of the two species and also in that of A. equina. From the acrorhagi of A. equina, A. aff. xanthogrammica and A. fuscoviridis, one (AEAPI), one (AXAPI) and two (AFAPI-I and AFAPI-III) protease inhibitors were isolated, respectively. The complete amino acid sequences of the four inhibitors were elucidated by N-terminal sequencing and sequencing of the C-terminal peptide fragment produced upon asparaginylendopeptidase digestion. The determined amino acid sequences revealed that all the four inhibitors are new members of the Kunitz-type protease inhibitor family.  相似文献   

18.
The effect of various organic solvents on the activity and stability of an extracellular protease produced by the haloalkaliphilic archaeon Natrialba magadii was tested. This protease was active and stable in aqueous-organic solvent mixtures containing 1.5 M NaCl and glycerol, dimethylsulfoxide (DMSO), N,N-dimethyl formamide, propylenglycol, and dioxane. Among the solvents tested, DMSO, propylenglycol, and glycerol were effective in preserving enzyme stability in suboptimal NaCl concentrations. The stabilizing effect of DMSO on this haloalkaliphilic protease was more efficient at pH 8 than at pH 10, suggesting that DMSO may not substitute for salt to allow halophilic proteins to withstand the effect of high pH values. These results show that Nab. magadii extracellular protease is a solvent tolerant enzyme and suggest a potential application of this haloalkaliphilic protease in aqueous-organic solvent biocatalysis.  相似文献   

19.
An extracellular thermostable alkaline protease isolated from Bacillus laterosporus-AK1 was purified by sephadex G-200 gel filtration and DEAE cellulose ion-exchange chromatography techniques. The purified protease showed a maximum relative activity of 100% on casein substrate and appeared as a single band on SDS-PAGE with the molecular mass of 86.29 kDa. The protease was purified to 11.1-folds with a yield of 34.3%. Gelatin zymogram also revealed a clear hydrolytic zone due to proteolytic activity, which corresponded to the band obtained with SDS-PAGE. The protease enzyme had on optimum pH of 9.0 and exhibited highest activity at 75°C. The enzyme activity was highly susceptible to the specific serine protease inhibitor PMSF, suggesting the presence of serine residues at the active sites. Enzyme activity strongly enhanced by the metal ions Ca2+ and Mg2+ and this enzyme compatible with aril detergent stability retained 75% even 1-h incubation. The purified protease remove bloodstain completely when used with Wheel detergent.  相似文献   

20.
Summary The recombinant plasmid pIJ3070 isolated from a genomic library of Xanthomonas campestris pv. campestris constructed in the conjugal cosmid pLAFR3 contains protease gene(s) which can be expressed in Escherichia coli. Tn5 mutagenesis and subcloning revealed that the protease structural gene(s) is(are) located in a ca. 10 kb EcoRI fragment. Several protease-minus mutants of X. c. campestris were obtained by Tn5 mutagenesis of pIJ3070 and marker exchange techniques. Studies of pathogenicity of these Tn5 mutants showed that the protease is not critically important for the pathogenicity of X. c. campestris on turnip plants but may play a minor role in disease development.Abbreviations Gm gentamicin - Km kanamycin - Rif rifampicin - Spc spectinomycin - Sm streptomycin - Tc tetracycline  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号