首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
G protein-coupled receptor kinase 2 (GRK2) and beta-arrestin 1 are key regulatory proteins that modulate the desensitization and resensitization of a wide variety of G protein-coupled receptors (GPCRs) involved in brain functions. In this report, we describe the postnatal developmental profile of the mRNA and protein levels of GRK2 and beta-arrestin 1 in rat brain. The expression levels of GRK2 and beta-arrestin 1 display a marked increase at the second and third week after birth, respectively, consistent with an involvement of these proteins in brain maturation processes. However, the expression attained at birth and during the first postnatal week with respect to adult values (45-70% for GRK2, approximately 30% for beta-arrestin 1) is relatively high compared to that reported for several GPCRs, indicating the existence of changes in the ratio of receptors to their regulatory proteins during brain development. On the other hand, we report that experimental hypothyroidism results in changes in the patterns of expression of GRK2 and beta-arrestin 1 in cerebral cortex, leading to a 25-30% reduction in GRK2 levels at several stages of development. Such changes could help to explain the alterations in GPCR signaling that occur during this pathophysiological condition.  相似文献   

2.

G protein-coupled receptor kinases (GRKs), in addition to their role in modulating signal transduction mechanisms associated with activated G protein-coupled receptors (GPCRs), can also interact with many non-GPCR proteins to mediate cellular responses to chemotherapeutics. The rationale for this study is based on the presumption that GRK2 modulates the responses of cancer cells to the chemotherapeutic cisplatin. In this report, we show that GRK2 modulates the responses of cancer cells to cisplatin. Cervical cancer HeLa cells stably transfected with GRK2 shRNA, to decrease GRK2 protein expression, show increased sensitivity to cisplatin. Of interest, these cells also show increased accumulation of NADPH, associating with decreased NADP buildup, at low concentrations of cisplatin tested. These changes in NADPH and NADP levels are also observed in the breast cancer MDA MB 231 cells, which has lower endogenous GRK2 protein expression levels, but not BT549, a breast cancer cell line with higher GRK2 protein expression. This effect of NADPH accumulation may be associated with a decrease in NADPH oxidase 4 (NOX4) protein expression, which is found to correlate with GRK2 protein expression in cancer cells—a relationship which mimics that observed in cardiomyocytes. Furthermore, like in cardiomyocytes, GRK2 and NOX4 interact to form complexes in cancer cells. Collectively, these results suggest that GRK2 interacts with NOX4 to modify cisplatin sensitivity in cancer cells and may also factor into the success of cisplatin-based regimens.

  相似文献   

3.
The G protein-coupled receptor kinase (GRK2) belongs to a family of protein kinases that phosphorylates agonist-activated G protein-coupled receptors, leading to G protein-receptor uncoupling and termination of G protein signaling. GRK2 also contains a regulator of G protein signaling homology (RH) domain, which selectively interacts with α-subunits of the Gq/11 family that are released during G protein-coupled receptor activation. We have previously reported that kinase activity of GRK2 up-regulates activity of the epithelial sodium channel (ENaC) in a Na(+) absorptive epithelium by blocking Nedd4-2-dependent inhibition of ENaC. In the present study, we report that GRK2 also regulates ENaC by a mechanism that does not depend on its kinase activity. We show that a wild-type GRK2 (wtGRK2) and a kinase-dead GRK2 mutant ((K220R)GRK2), but not a GRK2 mutant that lacks the C-terminal RH domain (ΔRH-GRK2) or a GRK2 mutant that cannot interact with Gαq/11/14 ((D110A)GRK2), increase activity of ENaC. GRK2 up-regulates the basal activity of the channel as a consequence of its RH domain binding the α-subunits of Gq/11. We further found that expression of constitutively active Gαq/11 mutants significantly inhibits activity of ENaC. Conversely, co-expression of siRNA against Gαq/11 increases ENaC activity. The effect of Gαq on ENaC activity is not due to change in ENaC membrane expression and is independent of Nedd4-2. These findings reveal a novel mechanism by which GRK2 and Gq/11 α-subunits regulate the activity ENaC.  相似文献   

4.
G protein-coupled receptor kinase 2 (GRK2) is a key modulator of G protein-coupled receptors (GPCR). Altered expression of GRK2 has been described to occur during pathological conditions characterized by impaired GPCR signaling. We have reported recently that GRK2 is rapidly degraded by the proteasome pathway and that beta-arrestin function and Src-mediated phosphorylation are involved in targeting GRK2 for proteolysis. In this report, we show that phosphorylation of GRK2 by MAPK also triggers GRK2 turnover by the proteasome pathway. Modulation of MAPK activation alters the degradation of transfected or endogenous GRK2, and a GRK2 mutant that mimics phosphorylation by MAPK shows an enhanced degradation rate, thus indicating a direct effect of MAPK on GRK2 turnover. Interestingly, MAPK-mediated modulation of wild-type GRK2 stability requires beta-arrestin function and is facilitated by previous phosphorylation of GRK2 on tyrosine residues by c-Src. Consistent with an important physiological role, interfering with this GRK2 degradation process results in altered GPCR responsiveness. Our data suggest that both c-Src and MAPK-mediated phosphorylation would contribute to modulate GRK2 degradation, and put forward the existence of new feedback mechanisms connecting MAPK cascades and GPCR signaling.  相似文献   

5.
6.
Oxidative mechanisms of injury are involved in many neurodegenerative diseases such as stroke, ischemia-reperfusion injury and multiple sclerosis. G protein-coupled receptor kinase 2 (GRK2) plays a key role in G protein-coupled receptor (GPCR) signaling modulation, and its expression levels are decreased after brain hypoxia/ischemia and reperfusion as well as in several inflammatory conditions. We report here that hydrogen peroxide downregulates GRK2 expression in C6 rat glioma cells. The hydrogen peroxide-induced decrease in GRK2 is prevented by a calpain protease inhibitor, but does not involve increased GRK2 degradation or changes in GRK2 mRNA level. Instead we show that hydrogen peroxide treatment impairs GRK2 translation in a process that requires Cdk1 activation and involves the mTOR pathway. This novel mechanism for the control of GRK2 expression in glial cells upon oxidative stress challenge may contribute to the modulation of GPCR signaling in different pathological conditions.  相似文献   

7.
Arrestins and G protein-coupled receptor kinases (GRKs) are key players in homologous desensitization of G protein-coupled receptors. Two non-visual arrestins, arrestin2 and 3, and five GRKs (GRK2, 3, 4, 5 and 6) are involved in desensitization of many receptors. Here, we demonstrate a steady increase in arrestin2 expression during prenatal development. The density of arrestin2 mRNA is higher in differentiated areas as compared with proliferative zones, whereas arrestin3 mRNA shows the opposite distribution. At embryonic day 14, concentrations of arrestin proteins are similar (32-34 nM). Later in development, arrestin2 expression rises, leading to a fourfold excess of arrestin2 over arrestin3 at birth (48 vs. 11 ng/mg protein or 102 vs. 25 nM). Among GRKs, only GRK5 increased with embryonic age from 124 nm at E14 to 359 nM at birth. Similarly, in vitro differentiation of cultured precursor cells, neurospheres, leads to a significant up-regulation of arrestin2 resulting in > 20-fold excess of arrestin2 (160 vs. 7 nM). GRK5 is the only subtype increased with neurosphere differentiation, although the change is only about twofold. The data demonstrate selective increases in the expression of arrestin2 associated with neural development and suggest specific yet unappreciated roles for arrestin2 in neural differentiation.  相似文献   

8.
The G protein-coupled receptor kinases (GRKs) are best known for their role in phosphorylating and desensitising G protein-coupled receptors (GPCRs). The GRKs also regulate signalling downstream of other families of receptors and have a number of non-receptor substrates and binding partners. Here we identify RhoAGTP and Raf1 as novel binding partners of GRK2 and report a previously unsuspected function for this kinase. GRK2 is a RhoA effector that serves as a RhoA-activated scaffold protein for the ERK MAP kinase cascade. The ability of GRK2 to bind to Raf1, MEK1 and ERK2 is dependent on RhoAGTP binding to the catalytic domain of the kinase. Exogenous GRK2 has previously been shown to increase ERK activation downstream of the epidermal growth factor receptor (EGFR). Here we find that GRK2-mediated ERK activation downstream of the EGFR is Rho-dependent and that treatment with EGF promotes RhoAGTP binding and ERK scaffolding by GRK2. Depletion of GRK2 expression by RNAi reveals that GRK2 is required for EGF-induced, Rho- and ERK-dependent thymidine incorporation in vascular smooth muscle cells (VSMCs). We therefore hypothesise that Rho-dependent ERK MAPK scaffolding by GRK2 downstream of the EGFR may have an important role in the vasculature, where increased levels of both GRK2 and RhoA have been associated with hypertension.  相似文献   

9.
10.
Chemical genetic engineering of G protein-coupled receptor kinase 2   总被引:2,自引:0,他引:2  
G protein-coupled receptor kinases (GRKs) play a pivotal role in receptor regulation. Efforts to study the acute effects of GRKs in intact cells have been limited by a lack of specific inhibitors. In the present study we have developed an engineered version of GRK2 that is specifically and reversibly inhibited by the substituted nucleotide analog 1-naphthyl-PP1 (1Na-PP1), and we explored GRK2 function in regulated internalization of the mu-opioid receptor (muOR). A previously described method that conferred analog sensitivity on various kinases, by introducing a space-creating mutation in the conserved active site, failed when applied to GRK2 because the corresponding mutation (L271G) rendered the mutant kinase (GRK2-as1) catalytically inactive. A sequence homology-based approach was used to design second-site suppressor mutations. A C221V second-site mutation produced a mutant kinase (GRK2-as5) with full functional activity and analog sensitivity as compared with wild-type GRK2 in vitro and in intact cells. The role of GRK2-as5 activity in the membrane trafficking of the muOR was also characterized. Morphine-induced internalization was completely blocked when GRK2-as5 activity was inhibited before morphine application. However, inhibition of GRK2-as5 during recycling and reinternalization of the muOR did not attenuate these processes. These results suggest there is a difference in the GRK requirement for initial ligand-induced internalization of a G protein-coupled receptor compared with subsequent rounds of reinternalization.  相似文献   

11.
G protein-coupled receptor kinase 2 (GRK2) is a serine/threonine-specific protein kinase that mediates agonist-dependent phosphorylation of numerous G protein-coupled receptors. In an effort to identify proteins that regulate GRK2 function, we searched for interacting proteins by immunoprecipitation of endogenous GRK2 from HL60 cells. Subsequent analysis by gel electrophoresis and mass spectrometry revealed that GRK2 associates with heat shock protein 90 (Hsp90). GRK2 interaction with Hsp90 was confirmed by co-immunoprecipitation and was effectively disrupted by geldanamycin, an Hsp90-specific inhibitor. Interestingly, geldanamycin treatment of HL60 cells decreased the expression of endogenous GRK2 in a dose- and time-dependent manner, and metabolic labeling demonstrated that geldanamycin rapidly accelerated the degradation of newly synthesized GRK2. The use of various protease inhibitors suggested that GRK2 degradation induced by geldanamycin was predominantly through the proteasome pathway. To test whether Hsp90 plays a general role in regulating GRK maturation, additional GRKs were studied by transient expression in COS-1 cells and subsequent treatment with geldanamycin. These studies demonstrate that GRK3, GRK5, and GRK6 are also stabilized by interaction with Hsp90. Taken together, our work revealed that GRK interaction with heat shock proteins plays an important role in regulating GRK maturation.  相似文献   

12.
G protein-coupled kinase 2 (GRK2) has a key role in regulating signaling activities of a variety of G protein-coupled receptors (GPCRs). Several recent studies have directly implicated GRK2 phosphorylation in desensitization of GPCRs. In addition, binding by G(betagamma) or phosphorylation by PKC or c-Src [corrected] has been shown to activate or enhance GRK2 activity, respectively. Conversely, the calcium binding protein calmodulin or the serine/threonine kinase ERK has been implicated in inhibiting GRK2 activity. However, with the exception of a recent report indicating that activation of beta2-adrenergic receptor results in the ubiquitination and rapid degradation of GRK2, very little is known about cellular mechanisms that alter the protein levels of GRK2 [corrected]. Here, we report a novel serendipitous observation regarding alteration of GRK2 [corrected] protein levels. Exposure of CHO cells stably expressing the m1 muscarinic acetylcholine receptor (mAChR) to transient hypoxia caused near ablation of the GRK2 protein. In contrast, GRK2 protein levels remained unchanged in the parental CHO cells or in CHO cells stably expressing the m2 mAChR when exposed to transient hypoxia. The present study reports a novel observation that is unveiled by transient hypoxia in which GRK2 protein levels are altered by cellular mechanisms involving the m1 mAChR.  相似文献   

13.
The G protein-coupled receptor kinase 2 (GRK2) phosphorylates and shuts down signaling from 7-transmembrane receptors (7TMs). Although, receptor activity controls GRK2 expression levels, the underlying molecular mechanisms are poorly understood. We have previously shown that extracellular signal-regulated kinase (ERK1/2) activation increases GRK2 expression [J. Theilade, J. Lerche Hansen, S. Haunso, S.P. Sheikh, Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2), FEBS Lett. 518 (2002) 195-199]. In the present study, we found that ERK1/2 regulates GRK2 degradation rather than synthesis. ERK1/2 blockade using PD98059 decreased GRK2 cellular levels to 0.25-fold of control in Cos7 cells. This effect was due to enhanced degradation of the GRK2 protein, since proteasome blockade prevented down-regulation of GRK2 protein levels in the presence of PD98059. Further, ERK blockade had no effect on GRK2 synthesis as probed using a reporter construct carrying the GRK2 promoter upstream of the luciferase gene. We predict ERK1/2 mediated GRK2 protection could be a general phenomenon as proteasome inhibition increased GRK2 expression in two other cell lines, HEK293 and NIH3T3.  相似文献   

14.
G蛋白偶联受体激酶(G protein-coupled receptor kinase,GRK)特异地使活化的G蛋白偶联受体(G protein-coupled receptor,GPCR)发生磷酸化及脱敏化,从而终止后者介导的信号转导通路。研究表明,GRK的功能被高度调控,并具有下行调节GPCR的能力。调控GRK功能的机制包括两个层次:(1)多种途径调控激酶的亚细胞定位及活性,包括GPCR介导、G蛋白偶联、磷脂作用、Ca^2 结合蛋白调控、蛋白激酶C活化、MAPK反馈抑制、小窝蛋白抑制等;(2)调控GRK表达水平,主要体现在其与某些疾病的联系。  相似文献   

15.
Many modulators of inflammation, including chemokines, neuropeptides, and neurotransmitters signal via G protein-coupled receptors (GPCR). GPCR kinases (GRK) can phosphorylate agonist-activated GPCR thereby promoting receptor desensitization. Here we describe that in leukocytes from patients with active relapsing-remitting multiple sclerosis (MS) or with secondary progressive MS, GRK2 levels are significantly reduced. Unexpectedly, cells from patients during remission express even lower levels of GRK2. The level of GRK2 in leukocytes of patients after stroke, a neurological disorder with paralysis but without an autoimmune component, was similar to GRK2 levels in cells from healthy individuals. In addition, we demonstrate that the course of recombinant myelin oligodendrocyte glycoprotein (1-125)-induced experimental autoimmune encephalomyelitis (EAE), an animal model for MS, is markedly different in GRK2(+/-) mice that express 50% of the GRK2 protein in comparison with wild-type mice. Onset of EAE was significantly advanced by 5 days in GRK2(+/-) mice. The earlier onset of EAE was associated with increased early infiltration of the CNS by T cells and macrophages. Although disease scores in the first phase of EAE were similar in both groups, GRK2(+/-) animals did not develop relapses, whereas wild-type animals did. The absence of relapses in GRK2(+/-) mice was associated with a marked reduction in inflammatory infiltrates in the CNS. Recombinant myelin oligodendrocyte glycoprotein-induced T cell proliferation and cytokine production were normal in GRK2(+/-) animals. We conclude that down-regulation of GRK2 expression may have important consequences for the onset and progression of MS.  相似文献   

16.
Cell motility and adhesion involves dynamic microtubule (MT) acetylation/deacetylation, a process regulated by enzymes as HDAC6, a major cytoplasmic α-tubulin deacetylase. We identify G protein-coupled receptor kinase 2 (GRK2) as a key novel stimulator of HDAC6. GRK2, which levels inversely correlate with the extent of α-tubulin acetylation in epithelial cells and fibroblasts, directly associates with and phosphorylates HDAC6 to stimulate α-tubulin deacetylase activity. Remarkably, phosphorylation of GRK2 itself at S670 specifically potentiates its ability to regulate HDAC6. GRK2 and HDAC6 colocalize in the lamellipodia of migrating cells, leading to local tubulin deacetylation and enhanced motility. Consistently, cells expressing GRK2-K220R or GRK2-S670A mutants, unable to phosphorylate HDAC6, exhibit highly acetylated cortical MTs and display impaired migration and protrusive activity. Finally, we find that a balanced, GRK2/HDAC6-mediated regulation of tubulin acetylation differentially modulates the early and late stages of cellular spreading. This novel GRK2/HDAC6 functional interaction may have important implications in pathological contexts.  相似文献   

17.
G protein-coupled receptor kinases (GRKs) are important regulators of G protein-coupled receptor function and mediate receptor desensitization, internalization, and signaling. While GRKs also interact with and/or phosphorylate many other proteins and modify their function, relatively little is known about the cellular localization of endogenous GRKs. Here we report that GRK5 co-localizes with γ-tubulin, centrin, and pericentrin in centrosomes. The centrosomal localization of GRK5 is observed predominantly at interphase and although its localization is not dependent on microtubules, it can mediate microtubule nucleation of centrosomes. Knockdown of GRK5 expression leads to G2/M arrest, characterized by a prolonged G2 phase, which can be rescued by expression of wild type but not catalytically inactive GRK5. This G2/M arrest appears to be due to increased expression of p53, reduced activity of aurora A kinase and a subsequent delay in the activation of polo-like kinase 1. Overall, these studies demonstrate that GRK5 is localized in the centrosome and regulates microtubule nucleation and normal cell cycle progression.  相似文献   

18.
The H1 histamine receptor (H1HR) is a member of the G protein-coupled receptor superfamily and regulates numerous cellular functions through its activation of the G(q/11) subfamily of heterotrimeric G proteins. Although the H1HR has been shown to undergo desensitization in multiple cell types, the mechanisms underlying the regulation of H1HR signaling are poorly defined. To address this issue, we examined the effects of wild type and mutant G protein-coupled receptor kinases (GRKs) on the phosphorylation and signaling of human H1HR in HEK293 cells. Overexpression of GRK2 promoted H1HR phosphorylation in intact HEK293 cells and completely inhibited inositol phosphate production stimulated by H1HR, whereas GRK5 and GRK6 had lesser effects on H1HR phosphorylation and signaling. Interestingly, catalytically inactive GRK2 (GRK2-K220R) also significantly attenuated H1HR-mediated inositol phosphate production, as did an N-terminal fragment of GRK2 previously characterized as a regulator of G protein signaling (RGS) protein for Galpha(q/11). Disruption of this RGS function in holo-GRK2 by mutation (GRK2-D110A) partially reversed the quenching effect of GRK2, whereas deletion of both the kinase activity and RGS function (GRK2-D110A/K220R) effectively relieved the inhibition of inositol phosphate generation. To evaluate the role of endogenous GRKs on H1HR regulation, we used small interfering RNAs to selectively target GRK2 and GRK5, two of the primary GRKs expressed in HEK293 cells. A GRK2-specific small interfering RNA effectively reduced GRK2 expression and resulted in a significant increase in histamine-promoted calcium flux. In contrast, knockdown of GRK5 expression was without effect on H1HR signaling. These findings demonstrate that GRK2 is the principal kinase mediating H1 histamine receptor desensitization in HEK293 cells and suggest that rapid termination of H1HR signaling is mediated by both the kinase activity and RGS function of GRK2.  相似文献   

19.
G protein-coupled receptors (GPCR) play a crucial role in the regulation of the immune response by, e.g., chemokines, PGs, and beta(2)-adrenergic agonists. The responsiveness of these GPCRs is turned off by the family of G protein-coupled receptor kinases (GRK1-6). These kinases act by phosphorylating the GPCR in an agonist-dependent manner, resulting in homologous desensitization of the receptor. Although GRKs are widely expressed throughout the body, leukocytes express relatively high levels of GRKs, in particular GRK2, -3, and -6. We investigated whether in vivo the inflammatory disease adjuvant arthritis (AA) induces changes in GRK expression and function in the immune system. In addition, we analyzed whether the systemic effects of AA also involve changes in GRKs in nonimmune organs. At the peak of the inflammatory process, we observed a profound down-regulation of GRK2, -3, and -6 in splenocytes and mesenteric lymph node cells from AA rats. Interestingly, no changes in GRK were observed in thymocytes and in nonimmune organs such as heart and pituitary. During the remission phase of AA, GRK levels in spleen and mesenteric lymph nodes are returning to baseline levels. The decrease in GRK2 at the peak of AA is restricted to CD45RA(+) B cells and CD4(+) T cells, and was not observed in CD8(+) T cells. In conclusion, we demonstrate in this study, for the first time, that an inflammatory process in vivo induces a tissue-specific down-regulation of GRKs in the immune system.  相似文献   

20.
The smooth muscle of the gut expresses mainly G(s) protein-coupled vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide receptors (VPAC(2) receptors), which belong to the secretin family of G protein-coupled receptors. The extent to which PKA and G protein-coupled receptor kinases (GRKs) participate in homologous desensitization varies greatly among the secretin family of receptors. The present study identified the novel role of PKA in homologous desensitization of VPAC(2) receptors via the phosphorylation of GRK2 at Ser(685). VIP induced phosphorylation of GRK2 in a concentration-dependent fashion, and the phosphorylation was abolished by blockade of PKA with cell-permeable myristoylated protein kinase inhibitor (PKI) or in cells expressing PKA phosphorylation-site deficient GRK2(S685A). Phosphorylation of GRK2 increased its activity and binding to G betagamma. VIP-induced phosphorylation of VPAC(2) receptors was abolished in muscle cells expressing kinase-deficient GRK2(K220R) and attenuated in cells expressing GRK2(S685A) or by PKI. VPAC(2) receptor internalization (determined from residual (125)I-labeled VIP binding and receptor biotinylation after a 30-min exposure to VIP) was blocked in cells expressing GRK2(K220R) and attenuated in cells expressing GRK2(S685A) or by PKI. Finally, VPAC(2) receptor degradation (determined from residual (125)I-labeled VIP binding and receptor expression after a prolonged exposure to VIP) and functional VPAC(2) receptor desensitization (determined from the decrease in adenylyl cyclase activity and cAMP formation after a 30-min exposure to VIP) were abolished in cells expressing GRK2(K220R) and attenuated in cells expressing GRK2(S685A). These results demonstrate that in gastric smooth muscle VPAC(2) receptor phosphorylation is mediated by GRK2. Phosphorylation of GRK2 by PKA enhances GRK2 activity and its ability to induce VPAC(2) receptor phosphorylation, internalization, desensitization, and degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号