首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The absence of a functional ATP Binding Cassette (ABC) protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) from apical membranes of epithelial cells is responsible for cystic fibrosis (CF). Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1). Biochemical and cell biological studies show that the ΔF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the ΔF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-ΔF508 variants exhibited significantly higher folding probabilities than the original NBD1-ΔF508, thereby partially rescuing folding ability of the NBD1-ΔF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of NBD1-ΔF508 are essential information in correcting this pathogenic mutant.  相似文献   

2.
The absence of a functional ATP Binding Cassette (ABC) protein called the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) from apical membranes of epithelial cells is responsible for cystic fibrosis (CF). Over 90% of CF patients carry at least one mutant allele with deletion of phenylalanine at position 508 located in the N-terminal nucleotide binding domain (NBD1). Biochemical and cell biological studies show that the DeltaF508 mutant exhibits inefficient biosynthetic maturation and susceptibility to degradation probably due to misfolding of NBD1 and the resultant misassembly of other domains. However, little is known about the direct effect of the Phe508 deletion on the NBD1 folding, which is essential for rational design strategies of cystic fibrosis treatment. Here we show that the deletion of Phe508 alters the folding dynamics and kinetics of NBD1, thus possibly affecting the assembly of the complete CFTR. Using molecular dynamics simulations, we find that meta-stable intermediate states appearing on wild type and mutant folding pathways are populated differently and that their kinetic accessibilities are distinct. The structural basis of the increased misfolding propensity of the DeltaF508 NBD1 mutant is the perturbation of interactions in residue pairs Q493/P574 and F575/F578 found in loop S7-H6. As a proof-of-principle that the S7-H6 loop conformation can modulate the folding kinetics of NBD1, we virtually design rescue mutations in the identified critical interactions to force the S7-H6 loop into the wild type conformation. Two redesigned NBD1-DeltaF508 variants exhibited significantly higher folding probabilities than the original NBD1-DeltaF508, thereby partially rescuing folding ability of the NBD1-DeltaF508 mutant. We propose that these observed defects in folding kinetics of mutant NBD1 may also be modulated by structures separate from the 508 site. The identified structural determinants of increased misfolding propensity of NBD1-DeltaF508 are essential information in correcting this pathogenic mutant.  相似文献   

3.
In the vast majority of cystic fibrosis (CF) patients, deletion of residue F508 from CFTR is the cause of disease. F508 resides in the first nucleotide binding domain (NBD1) and its absence leads to CFTR misfolding and degradation. We show here that the primary folding defect arises during synthesis, as soon as NBD1 is translated. Introduction of either the I539T or G550E suppressor mutation in NBD1 partially rescues ΔF508 CFTR to the cell surface, but only I539T repaired ΔF508 NBD1. We demonstrated rescue of folding and stability of NBD1 from full-length ΔF508 CFTR expressed in cells to isolated purified domain. The co-translational rescue of ΔF508 NBD1 misfolding in CFTR by I539T advocates this domain as the most important drug target for cystic fibrosis.  相似文献   

4.
The deletion of phenylalanine 508 in the first nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator is directly associated with >90% of cystic fibrosis cases. This mutant protein fails to traffic out of the endoplasmic reticulum and is subsequently degraded by the proteasome. The effects of this mutation may be partially reversed by the application of exogenous osmolytes, expression at low temperature, and the introduction of second site suppressor mutations. However, the specific steps of folding and assembly of full-length cystic fibrosis transmembrane conductance regulator (CFTR) directly altered by the disease-causing mutation are unclear. To elucidate the effects of the ΔF508 mutation, on various steps in CFTR folding, a series of misfolding and suppressor mutations in the nucleotide binding and transmembrane domains were evaluated for effects on the folding and maturation of the protein. The results indicate that the isolated NBD1 responds to both the ΔF508 mutation and intradomain suppressors of this mutation. In addition, identification of a novel second site suppressor of the defect within the second transmembrane domain suggests that ΔF508 also effects interdomain interactions critical for later steps in the biosynthesis of CFTR.  相似文献   

5.
Recent advances in our understanding of translational dynamics indicate that codon usage and mRNA secondary structure influence translation and protein folding. The most frequent cause of cystic fibrosis (CF) is the deletion of three nucleotides (CTT) from the cystic fibrosis transmembrane conductance regulator (CFTR) gene that includes the last cytosine (C) of isoleucine 507 (Ile507ATC) and the two thymidines (T) of phenylalanine 508 (Phe508TTT) codons. The consequences of the deletion are the loss of phenylalanine at the 508 position of the CFTR protein (ΔF508), a synonymous codon change for isoleucine 507 (Ile507ATT), and protein misfolding. Here we demonstrate that the ΔF508 mutation alters the secondary structure of the CFTR mRNA. Molecular modeling predicts and RNase assays support the presence of two enlarged single stranded loops in the ΔF508 CFTR mRNA in the vicinity of the mutation. The consequence of ΔF508 CFTR mRNA “misfolding” is decreased translational rate. A synonymous single nucleotide variant of the ΔF508 CFTR (Ile507ATC), that could exist naturally if Phe-508 was encoded by TTC, has wild type-like mRNA structure, and enhanced expression levels when compared with native ΔF508 CFTR. Because CFTR folding is predominantly cotranslational, changes in translational dynamics may promote ΔF508 CFTR misfolding. Therefore, we propose that mRNA “misfolding” contributes to ΔF508 CFTR protein misfolding and consequently to the severity of the human ΔF508 phenotype. Our studies suggest that in addition to modifier genes, SNPs may also contribute to the differences observed in the symptoms of various ΔF508 homozygous CF patients.  相似文献   

6.
Premature degradation of CFTRΔF508 causes cystic fibrosis (CF). CFTRΔF508 folding defects are conditional and folding correctors are being developed as CF therapeutics. How the cellular environment impacts CFTRΔF508 folding efficiency and the identity of CFTRΔF508''s correctable folding defects is unclear. We report that inactivation of the RMA1 or CHIP ubiquitin ligase permits a pool of CFTRΔF508 to escape the endoplasmic reticulum. Combined RMA1 or CHIP inactivation and Corr-4a treatment enhanced CFTRΔF508 folding to 3–7-fold greater levels than those elicited by Corr-4a. Some, but not all, folding defects in CFTRΔF508 are correctable. CHIP and RMA1 recognize different regions of CFTR and a large pool of nascent CFTRΔF508 is ubiquitinated by RMA1 before Corr-4a action. RMA1 recognizes defects in CFTRΔF508 related to misassembly of a complex that contains MSD1, NBD1, and the R-domain. Corr-4a acts on CFTRΔF508 after MSD2 synthesis and was ineffective at rescue of ΔF508 dependent folding defects in amino-terminal regions. In contrast, misfolding caused by the rare CF-causing mutation V232D in MSD1 was highly correctable by Corr-4a. Overall, correction of folding defects recognized by RMA1 and/or global modulation of ER quality control has the potential to increase CFTRΔF508 folding and provide a therapeutic approach for CF.  相似文献   

7.
Protein folding is the primary role of proteostasis network (PN) where chaperone interactions with client proteins determine the success or failure of the folding reaction in the cell. We now address how the Phe508 deletion in the NBD1 domain of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein responsible for cystic fibrosis (CF) impacts the binding of CFTR with cellular chaperones. We applied single ion reaction monitoring mass spectrometry (SRM-MS) to quantitatively characterize the stoichiometry of the heat shock proteins (Hsps) in CFTR folding intermediates in vivo and mapped the sites of interaction of the NBD1 domain of CFTR with Hsp90 in vitro. Unlike folding of WT-CFTR, we now demonstrate the presence of ΔF508-CFTR in a stalled folding intermediate in stoichiometric association with the core Hsps 40, 70 and 90, referred to as a 'chaperone trap'. Culturing cells at 30 C resulted in correction of ΔF508-CFTR trafficking and function, restoring the sub-stoichiometric association of core Hsps observed for WT-CFTR. These results support the interpretation that ΔF508-CFTR is restricted to a chaperone-bound folding intermediate, a state that may contribute to its loss of trafficking and increased targeting for degradation. We propose that stalled folding intermediates could define a critical proteostasis pathway branch-point(s) responsible for the loss of function in misfolding diseases as observed in CF.  相似文献   

8.
Misfolding accounts for the endoplasmic reticulum-associated degradation of mutant cystic fibrosis transmembrane conductance regulators (CFTRs), including deletion of Phe508 (DeltaF508) in the nucleotide-binding domain 1 (NBD1). To study the role of Phe508, the de novo folding and stability of NBD1, NBD2 and CFTR were compared in conjunction with mutagenesis of Phe508. DeltaF508 and amino acid replacements that prevented CFTR folding disrupted the NBD2 fold and its native interaction with NBD1. DeltaF508 caused limited alteration in NBD1 conformation. Whereas nonpolar and some aliphatic residues were permissive, charged residues and glycine compromised the post-translational folding and stability of NBD2 and CFTR. The results suggest that hydrophobic side chain interactions of Phe508 are required for vectorial folding of NBD2 and the domain-domain assembly of CFTR, representing a combined co- and post-translational folding mechanism that may be used by other multidomain membrane proteins.  相似文献   

9.
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.  相似文献   

10.
11.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride channel comprising two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs) and a unique regulatory (R) domain. The most frequent cystic fibrosis (CF) mutation, a deletion of Phe508 in NBD1, results in the retention of the DeltaF508 CFTR in the endoplasmic reticulum, as do many other natural or constructed mutations located within the first NBD. In order to further define the role of NBD1 in CFTR folding and to determine whether the higher frequency of mutations in NBD1 with respect to NBD2 results from its position in the molecule or is related to its primary sequence, we constructed and expressed chimeric CFTRs wherein NBD domains were either exchanged or deleted. Synthesis, maturation and activity of the chimeras were assessed by Western blotting and iodide efflux assay after transient or stable expression in COS-1 or CHO cells respectively. The data showed that deletion of NBD1 prevented transport of CFTR to the cytoplasmic membrane whereas deletion of NBD2 did not impair this process but resulted in an inactive chloride channel. On the other hand, substituting or inverting NBDs in the CFTR molecule impaired its processing. In addition, while the NBD1 R555K mutation is known to partially correct the processing of CFTR DeltaF508 and to increase activity of both wild-type and DeltaF508 individual channels, it showed no positive effect when introduced into the double NBD1 chimera. Taken together, these observations suggest that the proper folding process of CFTR results from complex interactions between NBDs and their surrounding domains (MSDs and/or R domain).  相似文献   

12.
Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR.  相似文献   

13.
Deletion of F508 in the first nucleotide binding domain (NBD1) of cystic fibrosis transmembrane conductance regulator protein (CFTR) is the commonest cause of cystic fibrosis (CF). Functional interactions between CFTR and CK2, a highly pleiotropic protein kinase, have been recently described which are perturbed by the F508 deletion. Here we show that both NBD1 wild type and NBD1 DeltaF508 are phosphorylated in vitro by CK2 catalytic alpha-subunit but not by CK2 holoenzyme unless polylysine is added. MS analysis reveals that, in both NBD1 wild type and DeltaF508, the phosphorylated residues are S422 and S670, while phosphorylation of S511 could not be detected. Accordingly, peptides encompassing the 500-518 sequence of CFTR are not phosphorylated by CK2; rather they inhibit CK2alpha catalytic activity in a manner which is not competitive with respect to the specific CK2 peptide substrate. In contrast, 500-518 peptides promote the phosphorylation of NBD1 by CK2 holoenzyme overcoming inhibition by the beta-subunit. Such a stimulatory efficacy of the CFTR 500-518 peptide is dramatically enhanced by deletion of F508 and is abolished by deletion of the II507 doublet. Kinetics of NBD1 phosphorylation by CK2 holoenzyme, but not by CK2alpha, display a sigmoid shape denoting a positive cooperativity which is dramatically enhanced by the addition of the DeltaF508 CFTR peptide. SPR analysis shows that NBD1 DeltaF508 interacts more tightly than NBD1 wt with the alpha-subunit of CK2 and that CFTR peptides which are able to trigger NBD1 phosphorylation by CK2 holoenzyme also perturb the interaction between the alpha- and the beta-subunits of CK2.  相似文献   

14.
Cheung JC  Deber CM 《Biochemistry》2008,47(6):1465-1473
Understanding the structural basis for defects in protein function that underlie protein-based genetic diseases is the fundamental requirement for development of therapies. This situation is epitomized by the cystic fibrosis transmembrane conductance regulator (CFTR)-the gene product known to be defective in CF patients-that appears particularly susceptible to misfolding when its biogenesis is hampered by mutations at critical loci. While the primary CF-related defect in CFTR has been localized to deletion of nucleotide binding fold (NBD1) residue Phe508, an increasing number of mutations (now ca. 1,500) are being associated with CF disease of varying severity. Hundreds of these mutations occur in the CFTR transmembrane domain, the site of the protein's chloride channel. This report summarizes our current knowledge on how mutation-dependent misfolding of the CFTR protein is recognized on the cellular level; how specific types of mutations can contribute to the misfolding process; and describes experimental approaches to detecting and elucidating the structural consequences of CF-phenotypic mutations.  相似文献   

15.
Deletion of phenylalanine 508 (ΔF508) in the cystic fibrosis transmembrane conductance regulator (CFTR) plasma membrane chloride channel is the most common cause of cystic fibrosis (CF). Though several maneuvers can rescue endoplasmic reticulum-retained ΔF508CFTR and promote its trafficking to the plasma membrane, rescued ΔF508CFTR remains susceptible to quality control mechanisms that lead to accelerated endocytosis, ubiquitination, and lysosomal degradation. To investigate the role of scaffold protein interactions in rescued ΔF508CFTR surface instability, the plasma membrane mobility of ΔF508CFTR was measured in live cells by quantum dot single particle tracking. Following rescue by low temperature, chemical correctors, thapsigargin, or overexpression of GRASP55, ΔF508CFTR diffusion was more rapid than that of wild-type CFTR because of reduced interactions with PDZ domain-containing scaffold proteins. Knock-down of the plasma membrane quality control proteins CHIP and Hsc70 partially restored ΔF508CFTR-scaffold association. Quantitative comparisons of CFTR cell surface diffusion and endocytosis kinetics suggested an association between reduced scaffold binding and CFTR internalization. Our surface diffusion measurements in live cells indicate defective scaffold interactions of rescued ΔF508CFTR at the cell surface, which may contribute to its defective peripheral processing.  相似文献   

16.
The cystic fibrosis transmembrane conductance regulator (CFTR) epithelial anion channel is a large multidomain membrane protein that matures inefficiently during biosynthesis. Its assembly is further perturbed by the deletion of F508 from the first nucleotide-binding domain (NBD1) responsible for most cystic fibrosis. The mutant polypeptide is recognized by cellular quality control systems and is proteolyzed. CFTR NBD1 contains a 32-residue segment termed the regulatory insertion (RI) not present in other ATP-binding cassette transporters. We report here that RI deletion enabled F508 CFTR to mature and traffic to the cell surface where it mediated regulated anion efflux and exhibited robust single chloride channel activity. Long-term pulse-chase experiments showed that the mature ΔRI/ΔF508 had a T1/2 of ∼ 14 h in cells, similar to the wild type. RI deletion restored ATP occlusion by NBD1 of ΔF508 CFTR and had a strong thermostabilizing influence on the channel with gating up to at least 40 °C. None of these effects of RI removal were achieved by deletion of only portions of RI. Discrete molecular dynamics simulations of NBD1 indicated that RI might indirectly influence the interaction of NBD1 with the rest of the protein by attenuating the coupling of the F508-containing loop with the F1-like ATP-binding core subdomain so that RI removal overcame the perturbations caused by F508 deletion. Restriction of RI to a particular conformational state may ameliorate the impact of the disease-causing mutation.  相似文献   

17.
Relative contributions of folding kinetics versus protein quality control (QC) activity in the partitioning of non-native proteins between life and death are not clear. Cystic fibrosis transmembrane conductance regulator (CFTR) biogenesis serves as an excellent model to study this question because folding of nascent CFTR is inefficient and deletion of F508 causes accumulation of CFTRΔF508 in a kinetically trapped, but foldable state. Herein, a novel endoplasmic reticulum (ER)-associated Hsp40, DNAJB12 (JB12) is demonstrated to play a role in control of CFTR folding efficiency. JB12 cooperates with cytosolic Hsc70 and the ubiquitin ligase RMA1 to target CFTR and CFTRΔF508 for degradation. Modest elevation of JB12 decreased nascent CFTR and CFTRΔF508 accumulation while increasing association of Hsc70 with ER forms of CFTR and the RMA1 E3 complex. Depletion of JB12 increased CFTR folding efficiency up to threefold and permitted a pool of CFTRΔF508 to fold and escape the ER. Introduction of the V510D misfolding suppressor mutation into CFTRΔF508 modestly increased folding efficiency, whereas combined inactivation of JB12 and suppression of intrinsic folding defects permitted CFTRΔF508 to fold at 50% of wild-type efficiency. Therapeutic correction of CFTRΔF508 misfolding in cystic fibrosis patients may require repair of defective folding kinetics and suppression of ER QC factors, such as JB12.  相似文献   

18.
The ATP-binding cassette (ABC) family of membrane transport proteins is the largest class of transporters in humans (48 members). The majority of ABC transporters function at the cell surface. Therefore, defective folding and trafficking of the protein to the cell surface can lead to serious health problems. The classic example is cystic fibrosis (CF). In most CF patients, there is a deletion of Phe508 in the CFTR protein (ΔF508 CFTR) that results in defective folding and intracellular retention of the protein (processing mutant). A potential treatment for most patients with CF would be to use a ligand(s) of CFTR that acts a pharmacological chaperone to correct the folding defect. The feasibility of such an approach was first demonstrated with the multidrug transporter P-glycoprotein (P-gp), an ABC transporter, and a sister protein of CFTR. It was found that P-gps with mutations at sites equivalent to those found in CFTR processing mutants were rescued when they were expressed in the presence of drug substrates or modulators of P-gp. These compounds acted as pharmacological chaperones and functioned by promoting interactions among the various domains in the protein during the folding process. Several groups have attempted to identify compounds that could rescue the folding defect in ΔF508 CFTR. The best compound identified through high-throughout screening is a quinazoline derivative (CFcor-325). Expression of ΔF508 CFTR as well as other CFTR processing mutants in the presence of 1 μM CFcor-325 promoted folding and trafficking of the mutant proteins to the cell surface in an active conformation. Therefore, CFcor-325 and other quinazoline derivates could be important therapeutic compounds for the treatment of CF.  相似文献   

19.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic membrane protein that functions as a Cl channel and consists of two membrane spanning domains (MSDs), two cytosolic nucleotide binding domains (NBDs), and a cytosolic regulatory domain. Cytosolic 70-kDa heat shock protein (Hsp70), and endoplasmic reticulum-localized calnexin are chaperones that facilitate CFTR biogenesis. Hsp70 functions in both the cotranslational folding and posttranslational degradation of CFTR. Yet, the mechanism for calnexin action in folding and quality control of CFTR is not clear. Investigation of this question revealed that calnexin is not essential for CFTR or CFTRΔF508 degradation. We identified a dependence on calnexin for proper assembly of CFTR's membrane spanning domains. Interestingly, efficient folding of NBD2 was also found to be dependent upon calnexin binding to CFTR. Furthermore, we identified folding defects caused by deletion of F508 that occurred before and after the calnexin-dependent association of MSD1 and MSD2. Early folding defects are evident upon translation of the NBD1 and R-domain and are sensed by the RMA-1 ubiquitin ligase complex.  相似文献   

20.
Mutations in the cystic fibriosis transmembrane conductance regulator protein (CFTR) often result in a failure of the protein to be propely processed at the level of the endoplasmic reticulum (ER) and subsequently transported to the plasma membrane. The folding defect associated with the most common CFTR mutation (ΔF508) has been shown to be temperature sensitive. Incubation of cells expressing ΔF508 CFTR at lower growth temperatures results in the proper processing of a portion of the mutant CFTR protein. Under these conditions, the mutant protein can move to the plasma membrane where it functions, similar to the wild-type protein, in mediating cholride transport. We set out to identify other methods, which like temperature treatment, would rescue the folding defect associated with the ΔF508 CFTR mutation. Here we show that treatment of cells expressing the ΔF508 mutant with a number of low molecular weight compounds, all known to stabilize proteins in their native conformation, results in the correct processing of the mutant CFTR protein and its deposiotion at the plasma membrane. Such compounds included the cellular osmolytes glycerol and trimethylamine N-oxide, as well as deuterated water. Treatment of the ΔF508 CFTR-expressing cells with any one of these compounds, which we now refer to as ‘chemical chaperones’, restored the ability of the mutant cells to exhibit forskolin-dependent chloride transport, similar to that observed for the cells expressing the wild-type CFTR protein. We suggest that the use of ‘chemical chaperones’ may prove to be effective for the treatment of cystic fibriosis, as well as other genetic diseases whose underlying basis involoves defective protein folding and/or a failure in normal protein trafficking events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号