首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of alkaline serine proteases were isolated from the culture filtrate of an alkalophilic actinomycete, Nocardiopsis dassonvillei OPC-210. The enzymes (protease I and protease II) were purified by acetone precipitation, DEAE-Sephadex A-50, CM-Sepharose CL-6B, Sephadex G-75 and phenyl-Toyopearl 650 M column chromatography. The purified enzymes showed a single band on sodium dodecyl sulphate polyacrylamide gel electrophoresis. The molecular weights of proteases I and II were 21,000 and 36,000, respectively. The pIs were 6.4 (protease I) and 3.8 (protease II). The optimum pH levels for the activity of two proteases were pH 10-12 (protease I) and pH 10.5 (protease II). The optimum temperture for the activity of protease I was 70 degrees C and that for protease II was 60 degrees C. Protease I was stable in the range of pH 4.0-8.0 up to 60 degrees C and protease II was stable in the range of pH 6.0-12.0 up to 50 degrees C.  相似文献   

2.
T sujibo , H., M iyamoto , K., H asegawa , T. & I namori , Y. 1990. Purification and characterization of two types of alkaline serine proteases produced by an alkalophilic actinomycete. Journal of Applied Bacteriology 69 , 520–529.
Two types of alkaline serine proteases were isolated from the culture filtrate of an alkalophilic actinomycete, Nocardiopsis dassonvillei OPC-210. The enzymes (protease I and protease II) were purified by acetone precipitation, DEAE-Sephadex A-50, CM-Sepharose CL-6B, Sephadex G-75 and phenyl-Toyopearl 650 M column chromatography. The purified enzymes showed a single band on sodium dodecyl sulphate polyacrylamide gel electrophoresis. The molecular weights of proteases I and II were 21000 and 36000, respectively. The pIs were 6.4 (protease I) and 3.8 (protease II). The optimum pH levels for the activity of two proteases were pH 10–12 (protease I) and pH 10.5 (protease II). The optimum temperature for the activity of protease I was 70°C and that for protease II was 60°C. Protease I was stable in the range of pH 4.0–8.0 up to 60°C and protease II was stable in the range of pH 6.0–12.0 up to 50°C.  相似文献   

3.
Extracellular acid proteases produced by Saccharomycopsis lipolytica.   总被引:8,自引:3,他引:5  
Saccharomycopsis lipolytica CX161-1B produced at least three extracellular acid proteases during exponential growth in medium containing glycerol, Difco Proteose Peptone, and mineral salts at pH 3.4 (Difco Laboratories, Detroit, Mich.). Little extracellular acid protease activity was produced with glutamic acid as the sole nitrogen source, somewhat higher levels were obtained with peptone, and much higher levels were obtained with Difco Proteose Peptone. The relative amounts of the three proteases varied during growth on Difco Proteose Peptone, which suggested that the proteases were not coordinately regulated. The proteases were purified to near homogeneity (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) by use of ultrafiltration, gel filtration, and DEAE-Sephacel and hydroxylapatite chromatography. Protease I had a molecular weight near 28,000, an isoelectric point of pH 4.9, and a pH optimum of 3.5. Protease II had a molecular weight near 32,000 and a pH optimum of 4.2. Protease III had a molecular weight near 36,000, an isoelectric point of 3.8, and a pH optimum of 3.1. All three proteases were glycoproteins; proteases I, II, and III contained 25, 12, and 1.2% carbohydrate, respectively. The proteases were inhibited by pepstatin and 1,2-epoxy-3-(4-nitrophenoxy) propane and were largely insensitive to diazoacetyl-DL-norleucine methylester and to compounds which inhibit the serine, sulfhydryl, or metallo-proteases.  相似文献   

4.
Extracts from white croaker skeletal muscle showed two alkaline proteases and a trypsin inhibitor when they were chromatographed in DEAE-Sephacel. The activity against azocasein was maximal at pH 8.5 and 9.1 for proteases I and II, respectively. Both enzymes showed optimum activity at 60° C. The molecular masses were found to be 132 kDa for protease 1,363 kDa for protease II, and 65 kDa for the inhibitor. Protease I showed the characteristics of a trypsin-like enzyme, and protease II those of a SH-enzyme. These proteins may play important roles in mechanisms of cellular proteolysis.  相似文献   

5.
Two proteases, designated I and II, have been isolated from sporulating cells of Bacillus subtilis. They were partially purified by ammonium sulfate fractionation, Sephadex chromatography and affinity columns. Protease I was found to be similar to an already characterized B. subtilis protease. Protease II is trypsin-like in its substrate specificity and is distinct from protease I in its pH optimum, pH stability, molecular weight, substrate specificity, heat stability and sensitivity to various inhibitors. While both enzymes were produced primarily during sporulation, they attained maximum levels of activity at different times. Distinct functions for these proteases in post exponential B. subtilis are likely.  相似文献   

6.
Crotalus atrox venom contains agents that render human fibrinogen and plasma incoagulable by thrombin. To elucidate the mechanism of alteration of fibrinogen clotting function by the venom, four immunochemically different proteases, I, II, III, and IV, were purified from the venom by anion-exchange chromatography and column gel filtration. All four proteases had anticoagulant activity rendering purified fibrinogen incoagulable. Proteases I and IV do not affect fibrinogen in plasma but in purified fibrinogen cleave the A alpha chain first and then the B beta and gamma chains. Both enzymes are metalloproteases containing a single polypeptide chain with 1 mol of zinc, are inhibited by (ethylenedinitrilo)tetraacetate and human alpha 2-macroglobulin, and have an optimal temperature of 37 degrees C and an optimal pH of 7. Protease I has a molecular weight (Mr) of 20 000 and is the most cationic. Protease IV has an Mr of 46 000 and is the most anionic glycoprotein with one free sulfhydryl group. Proteases II and III degrade both purified fibrinogen and fibrinogen in plasma, cleaving only the B beta chain and leaving the A alpha and gamma chains intact. Both enzymes are alkaline serine proteases, cleave chromogenic substrates at the COOH terminal of arginine or lysine, are inhibited by diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride, and have an optimal temperature of 50-65 degrees C. Protease II is a single polypeptide chain glycoprotein with an Mr of 31 000. Protease III is a two polypeptide chain protein with an Mr of 24 000, each of the two chains having an Mr of 13 000; its activity is not affected by major protease inhibitors of human plasma. Proteases II and III are enzymes with unique and limited substrate specificity by cleaving only the B beta chain, releasing a peptide of Mr 5000 and generating a fibrinogen derivative of Mr 325 000, with intact A alpha and gamma chains and poor coagulability. Since the two enzymes are active in human plasma and serum, it is postulated that proteases II and III can mediate anticoagulant effects in vivo after envenomation.  相似文献   

7.
Chloroflexus aurantiacus J-10-fl was found to contain two types (protease I and protease II) of thermostable proteases which were separated by Butyl-Toyopearl 650M chromatography. Protease I was purified to electrophoretic homogeneity from the culture broth of C. aurantiacus J-10-fl. The molecular mass of protease I was estimated to be approximately 66 kDa by SDS-PAGE, and the value of approximately 66kDa was also obtained by the Hedrick-Smith method, indicating that protease I was a monomer. The isoelectric point was 6.2. Protease I activity was inhibited by metalloprotease inhibitors such as EDTA, EGTA, and o-phenanthroline. The optimum pH for the activity of protease I was around 8.0. Addition of Ca2+ increased the pH and heat stabilities of protease I. The activity was stable between pH 4.0–11.0 and up to 75°C, and the maximum activity was observed at 70°C in the presence of 2mM CaCl2. Protease I was resistant to the treatment by denaturing reagents (8 M urea or 1% SDS) at pH 8.0 and 20°C for 24 h. The sites of cleavage. in oxidized insulin B chain by protease I were similar to those by other microbial neutral metalloproteases. Elastase activity of protease I was not detected.  相似文献   

8.
We purified a glutamyl endopeptidase that is a major foliar endopeptidase in cucumber. The endopeptidase had a molecular mass of 400 kDa, consisted of four subunits of 97 kDa, and was inactivated by SH-modifying reagents. Its optimum pH and optimum temperature were 8.0 and 30-37 degrees C, respectively. An internal amino acid sequence of the endopeptidase was highly homologous to a partial sequence of unidentified proteins deduced from genetic information for Arabidopsis thaliana, soybean and rice, but not to the sequences of bacterial glutamyl endopeptidases or animal proteases. Therefore, the unidentified proteins might be glutamyl endopeptidases and be widely distributed only among plant species. The activity of the cucumber glutamyl endopeptidase was inhibited by at least three inhibitors existing in cucumber leaves. One of the inhibitors was a competitive inhibitor of 25 kDa, which did not significantly inhibit commercial endopeptidases derived from animals and microorganisms. This suggests that the cucumber glutamyl endopeptidase might be controlled by endogenous inhibitors in vivo.  相似文献   

9.
《Insect Biochemistry》1987,17(5):653-658
Two alkaline proteases were isolated from whole-body extracts of Galleria mellonella larvae. The two proteases were separated by cation-exchange chromatography on CM-Sepharose CL6B and further purified by gel filtration on Ultrogel ACA 54. The optimal pH of activity using Azocoll as substrate was 10.5 for protease P-1 and 11.2 for protease P-2. The molecular weights of the two enzymes determined by gel filtration were respectively 12,500 and 10,500. Protease P-1 was inhibited by soybean trypsin inhibitor, TPCK, TLCK and activated by non-ionic detergents. Protease P-2 was inhibited by soybean trypsin inhibitor, 4-aminobenzamidine, ovomucoid and activated by dithiothreitol. Both enzymes were partially inhibited by PMSF.Distribution studies suggested that the two proteases were digestive enzymes.  相似文献   

10.
Two isozymes (AIV I and AIV II) of soluble acid invertase (EC 3.2.1.26) were purified from Japanese pear fruit through procedures including (NH(4))(2)SO(4) precipitating, DEAE-Sephacel column chromatography, Concanavalin A (ConA)-Sepharose affinity chromatography, hydroxyapatite column chromatography and Mono Q HR 5/5 column chromatography. The specific activities of purified AIV I and AIV II were 2670 and 2340 (nkat/mg protein), respectively. AIV I was a monomeric enzyme of 80 kDa, while AIV II may be also a monomeric enzyme, which is easy to be cleaved to 52 kDa and 34 kDa polypeptide during preparation by SDS-PAGE. The Km values for sucrose of AIV I and AIV II were 3.33 and 4.58 mM, respectively, and optimum pH of both enzyme activities was pH 4.5.  相似文献   

11.
Two methyl viologen hydrogenase (MVH) enzymes from Methanobacterium thermoautotrophicum delta H have been separated (resolution, Rs at 1.0) on a Mono Q column after chromatography on DEAE-Sephacel and Superose 6 Prep Grade. The newly discovered MVH (MVH II) was eluted at 0.5 M NaCl with a linear gradient of 0.45 to 0.65 M NaCl (100 ml). The previously described MVH (MVH I) eluted in a NaCl gradient at 0.56 M. The specific activities of MVH I and MVH II were 184.8 and 61.3 U/mg of protein, respectively, when enzyme activity was compared at pH 7.5, the optimal pH for MVH II. Gel electrophoresis in nondenaturing systems indicated that MVH I and MVH II had a similar molecular mass of 145 kDa. Denatured MVH II showed four protein bands (alpha, 50 kDa; beta, 44 kDa; gamma, 36 kDa; delta, 15 kDa), similar to MVH I. The N-terminal amino acid sequences of the alpha, gamma, and delta subunits of MVH II were identical with the sequences of the equivalent subunits of MVH I. However, the N-terminal amino acid sequence of the beta subunit of MVH II was totally different from the sequence of the beta subunit of MVH I. Both MVH I and MVH II had the same optimal temperature of 60 degrees C for maximum activity. The pH optima of MVH I and MVH II were 9.0 and 7.5, respectively. Most of the divalent metal ions tested significantly inhibited MVH I activity, but MVH II activity was only partially inhibited by some divalent cations. Both hydrogenases were shown to be stable for over 8 days at --20 degrees C under anaerobic conditions. When exposed to air, 90% of MVH I activity was lost within 2 min; however, MVH II lost only 50% of its activity in 3 h.  相似文献   

12.
The properties of two cysteine peptidases (macrodontain I and II) isolated from fruits of Pseudananas macrodontes have been compared. The enzymes showed optimum pH ranges near neutrality and were inhibited by E-64 and other cysteine peptidase inhibitors. Molecular masses were 23459 and 23703 kDa, the isoelectric points were 6.1 and 5.9, and the Km values were 13.4 and 8.9 microM (Bz-Phe-Val-Arg-AMC) for macrodontain I and II, respectively. N-alpha-CBZ-L-amino acid p-nitrophenyl esters were tested for both enzymes. The N-terminal sequences of both proteases differed slightly and showed high sequence similarity to other pineapple stem-derived cysteine endopeptidases.  相似文献   

13.
Xenorhabdus nematophila, a bacterium pathogenic for insects associated with the nematode Steinernema carpocapsae, releases high quantities of proteases, which may participate in the virulence against insects. Zymogram assays and cross-reactions of antibodies suggested that two distinct proteases were present. The major one, protease II, was purified and shown to have a molecular mass of 60 kDa and an estimated isoelectric point of 8.5. Protease II digested the chromogenic substrate N-tosyl-Gly-Pro-Arg-paranitroanilide (pNA) with V(max) and K(m) values of 0.0551 microM/min and 234 microM, respectively, and the substrate DL-Val-Leu-Arg-pNA with V(max) and K(m) values of 0.3830 microM/min and 429 microM, respectively. Protease II activity was inhibited 93% by Pefabloc SC and 45% by chymostatin. The optimum pH for protease II was 7, and the optimum temperature was 23C. Proteolytic activity was reduced by 90% at 60 degrees C for 10 min. Sequence analysis was performed on four internal peptides that resulted from the digestion of protease II. Fragments 29 and 45 are 75 and 68% identical to alkaline metalloproteinase produced by Pseudomonas aeruginosa. Fragment 29 is 79% identical to a metalloprotease of Erwinia amylovora and 75% identical to the protease C precursor of Erwinia chrysanthemi. Protease II showed no toxicity to hemocytes but destroyed antibacterial activity on the hemolymph of inoculated insects' larvae and reduced 97% of the cecropin A bacteriolytic activity.  相似文献   

14.
The presence of multiple proteases in the culture filtrate of Streptomyces moderatus was detected. After preliminary purification by ammonium sulfate precipitation and decolorization using DEAE-cellulose, the fractionation of various proteases was carried out using CM-trisacryl cation-exchange chromatography. By this procedure, four different protease fractions (Fr.) were separated (Fr. I, II, III, and IV). The first fraction was further separated into two different proteolytically active fractions (Fr. Ia and Fr. Ib) by DEAE-trisacryl anion-exchange chromatography. Fraction Ia was purified further by affinity chromatography on N-carbobenzoxy-d-phenylalanyl triethylenetetramine-Sepharose 4B. The second fraction (Fr. Ib) was purified by gel filtration on Ultrogel AcA 44. For the purification of the other protease fractions (Fr. II, III, and IV) single-step affinity chromatography methods were employed. Protease fractions II and III were purified by ϵ-aminocaproyl-4-(4-aminophenylazo)phenylarsonic acid Sepharose 4B and protease fraction IV was purified on ϵ-aminocaproyl trialanine-Sepharose 4B. All five proteases purified were found to be apparently homogeneous by gel electrophoretic methods.  相似文献   

15.
Two acetyl esterases (EC 3.1.1.6) were purified to gel electrophoretic homogeneity from Thermoanaerobacterium sp. strain JW/SL-YS485, an anaerobic, thermophilic endospore former which is able to utilize various substituted xylans for growth. Both enzymes released acetic acid from chemically acetylated larch xylan. Acetyl xylan esterases I and II had molecular masses of 195 and 106 kDa, respectively, with subunits of 32 kDa (esterase I) and 26 kDa (esterase II). The isoelectric points were 4.2 and 4.3, respectively. As determined by a 2-min assay with 4-methylumbelliferyl acetate as the substrate, the optimal activity of acetyl xylan esterases I and II occurred at pH 7.0 and 80 degrees C and at pH 7.5 and 84 degrees C, respectively. Km values of 0.45 and 0.52 mM 4-methylumbelliferyl acetate were observed for acetyl xylan esterases I and II, respectively. At pH 7.0, the temperatures for the 1-h half-lives for acetyl xylan esterases I and II were 75 degrees and slightly above 100 degrees C, respectively.  相似文献   

16.
The isoelectric points of three proteases (I, II and III), separated from culture supernatants of Pseudomonas aeruginosa strain PAKS-I by isoelectric focusing, were 8.5, 6.6 and 4.5 respectively. Collagenase activity was not detected. More than 75% of the extracellular protease activity of this strain was due to protease II. This enzyme also possessed elastase activity. When purified by ammonium sulphate precipitation, isoelectric focusing and gel chromatography, protease II showed one band on disc electrophoresis and one band on conventional immunoelectrophoresis. The pH optimum, stability and effect of inhibitors and substrate concentration were examined. The molecular weight was 23000 +/- 5000. Protease II was lethal for mice when injected intraperitoneally at a high dose (minimum lethal dose 0.1 mg). Dermonecrosis and subcutaneous haemorrhages were produced in new-born mice upon subcutaneous injection of 10 microgram protease II. A sensitive test for cytotoxicity showed no evidence of cytoplasmic membrane damage to HeLa cells or human diploid embryonic lung fibroblasts by protease II. Morphological changes similar to those produced by trypsin were found.  相似文献   

17.
A novel treatment has been devised in our studies of the purification of inhibin from porcine and human follicular fluids (pFFl and hFFl, respectively). Both pFFl and hFFl were precipitated with acetone and extracted with acetic acid to provide a starting material for subsequent gel filtration and reverse-phase high-pressure liquid chromatography (HPLC). Inhibin from pFFl was purified 4200-fold using this methodology. Inhibin from hFFl could not be purified to this degree since recoveries were relatively poorer than for pFFl and yielded too little material for the HPLC step. In our fractionation scheme, protease activities were assessed with a gel electrophoresis assay system. Protease activity at approximately 90 kDa was observed in raw pFFl. When inhibin was fractionated by extraction or chromatography, additional bands of protease activity appeared near 150 kDa, 66 kDa and at less than 45 kDa. In raw hFFl, only faint bands of protease activity were observed at approximately 90 kDa and at 85-90 kDa. Upon further fractionation of hFFl, protease activity was reduced below the ability of this method to detect it. Our results suggest that, with our treatment of follicular fluid, protease activity is present in pFFl and additional protease activity appears upon fractionation; proteases, although present, do not eliminate the possibility of obtaining a highly purified inhibin preparation with acceptable recoveries of inhibin activity during purification; and although protease activity could be reduced or eliminated from hFFl, the low yields of inhibin activity from this method mandate a different approach to purification of inhibin from hFFl.  相似文献   

18.
Numerous attempts have been made to replace calf rennet with other milk clotting proteases because of limited supply and increasingly high prices. The aim of this work was to investigate the characteristic of the milk-clotting enzyme from Nocardiopsis sp. The partial purification extract was obtained by fractional precipitation with ammonium sulphate. Of the fractions obtained by precipitation, 40-60% possessed the milk-clotting activity (156.25 U/mg). The chromatography of 40-100% ammonium sulphate fraction in DEAE-cellulose yielded four fractions (F4, F5, F6, F7) with milk-clotting activity. The F5 yielded the best milk-clotting activity (20 U/ml). Both crude and partially purified extract were active at the range pH 4.5-11.0, however, optimum activity was displayed at pH 11.0 and pH 7.5, respectively. The milk-clotting activity was highest at 55 degrees C for both crude and partially purified extract. The crude and partial purification extract were inactivated at 65 and 75 degrees C after 30 min.  相似文献   

19.
Two dynorphin-degrading cysteine proteases, I and II, were extracted with Triton X-100 from neuroblastoma cell membrane, isolated from accompanying dynorphin-degrading trypsin-like enzyme by affinity chromatography on columns of soybean trypsin inhibitor-immobilized Sepharose and p-mercuribenzoate-Sepharose, and separated by ion-exchange chromatography on diethylaminoethyl (DEAE)-cellulose and TSK gel DEAE-5PW columns. Cysteine protease II was purified further by hydroxyapatite chromatography and gel filtration. The molecular weights of cysteine proteases I and II were estimated to be 100,000 and 70,000, respectively, by gel filtration. Both of the enzymes, were inhibited by p-chloromercuribenzoate, N-ethylmaleimide, and high-molecular-weight kininogen, but not or only slightly inhibited by diisopropylphosphorofluoridate, antipain, leupeptin, E-64, calpain inhibitor, and phosphoramidon. Cysteine protease I cleaved dynorphin(1-17) at the Arg6-Arg7 bond with the optimum pH of 8.0, whereas II cleaved dynorphin(1-17) at the Lys11-Leu12 bond and the Leu12-Lys13 bond with the optimum pH values of 8.0 and 6.0, respectively. These bonds corresponded to those that had been proposed as the initial sites of degradation by neuroblastoma cell membrane. Cysteine protease I was further found to show strict specificity toward the Arg-Arg doublet, when susceptibilities of various peptides containing paired basic residues were examined as substrates for the enzyme.  相似文献   

20.
A new papain-like cysteine peptidase isolated from fruits of Pseudananas macrodontes (Morr.) Harms, a species closely related to pineapple (Ananas comosus L.), has been purified and characterized. The enzyme, named macrodontain I, is the main proteolytic component present in fruit extracts and was purified by acetone fractionation followed by anion-exchange chromatography. Separation was improved by selecting both an adequate pH value and a narrow saline gradient. Optimum pH range (more than 90% of maximum activity with casein) was achieved at pH 6.1-8.5. Homogeneity of the enzyme was confirmed by bidimensional electrophoresis and mass spectroscopy (MS). Molecular mass of the enzyme was 23,459 (MS) and its isoelectric point was 6.1. The alanine, glutamine, and tyrosine derivatives were strongly preferred when the enzyme was assayed on N-alpha-CBZ-l-amino acid p-nitrophenyl esters. The N-terminal sequence of macrodontain (by comparison with the N-terminus of 30 plant proteases with more than 50% homology) showed a great deal of sequence similarity to the other pineapple-stem-derived cysteine endopeptidases, being 85.7, 85. 2, and 77.8% identical to comosain, stem bromelain, and ananain, respectively. It seems clear that the Bromeliaceae endopeptidases are more closely related to each other than to other members of the papain family, suggesting relatively recent divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号