首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used Eremias brenchleyi as a model animal to examine differences in thermal tolerance, selected body temperature, and the thermal dependence of food assimilation and locomotor performance between juvenile and adult lizards. Adults selected higher body temperatures (33.5 vs. 31.7 degrees C) and were able to tolerate a wider range of body temperatures (3.4-43.6 vs. 5.1-40.8 degrees C) than juveniles. Within the body temperature range of 26-38 degrees C, adults overall ate more than juveniles, and food passage rate was faster in adults than juveniles. Apparent digestive coefficient (ADC) and assimilation efficiency (AE) varied among temperature treatments but no clear temperature associated patterns could be discerned for these two variables. At each test temperature ADC and AE were both higher in adults than in juveniles. Sprint speed increased with increase in body temperature at lower body temperatures, but decreased at higher body temperatures. At each test temperature adults ran faster than did juveniles, and the range of body temperatures where lizards maintained 90% of maximum speed differed between adults (27-34 degrees C) and juveniles (29-37 degrees C). Optimal temperatures and thermal sensitivities differed between food assimilation and sprint speed. Our results not only show strong patterns of ontogenetic variation in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in E. brenchleyi, but also add support for the multiple optima hypothesis for the thermal dependence of behavioral and physiological variables in reptiles.  相似文献   

2.
We studied whether changes in the assimilation and allocation of carbon and nitrogen are associated with plant tolerance to high soil temperatures. Two Agrostis species, thermal Agrostis scabra, a species adapted to high-temperature soils in geothermal areas in Yellowstone National Park (USA), and two cultivars of a cool-season species, Agrostis stolonifera, L-93 and Penncross, were exposed to soil temperatures of 37 or 20 degrees C, while shoots were exposed to 20 degrees C. Net photosynthesis rate, photochemical efficiency, NO(3) (-)-assimilation rate and root viability decreased with increasing soil temperatures in both species. However, the decreases were less pronounced for A. scabra than for both A. stolonifera cultivars. Carbon investment in growth of plants exposed to 37 degrees C decreased more dramatically in both A. stolonifera cultivars than in A. scabra. Nitrogen allocation to shoots was greater in A. scabra than in both creeping bentgrass cultivars at 37 degrees C soil temperature. Our results demonstrate that plant tolerance to high soil temperature is related to efficient expenditure and adjustment of C- and N-allocation patterns between growth and respiration.  相似文献   

3.
Laboratory studies of temperature effects on short-term feeding and growth rates were combined with field data on thermal environments to explore the consequences of temperature variation for growth of caterpillars of the cabbage white butterfly, Pieris rapae. Mean short-term (24-h) consumption and growth rates of fourth-instar P. rapae feeding on collard leaves increased continuously with increasing temperatures between 10 degrees and 35 degrees C, peaked at 35 degrees C, and declined rapidly with temperatures above 35 degrees C. Physical models can mimic temperatures of real fifth-instar caterpillars under collard leaves within 1 degrees -2 degrees C in sunny summer conditions in Seattle, Washington. Continuous recordings of operative temperatures of model caterpillars in a collard garden suggest that, at the timescale of the duration of the fifth instar (5-8 d in the field), P. rapae caterpillars frequently experience temperatures spanning a 25 degrees C range, they spend most of their time at temperatures well below those that maximize growth, and they encounter substantial variation in the frequency distribution of operative temperatures between time periods. Combining these data on growth rate as a function of temperature and the distribution of operative temperatures in the field, I illustrate how growth rates at higher temperatures can make disproportionate contributions to the overall mean growth rates even when higher temperatures are relatively infrequent. Fluctuating thermal conditions may generate variable patterns of selection on reaction norms for growth rate in the field.  相似文献   

4.
Ceratothripoides claratris (Shumsher) is a serious pest attacking tomatoes in Thailand. Temperature-dependent development of C. claratris was studied at seven constant temperatures, i.e. 22, 25, 27, 30, 34, 35 and 40 degrees C. Pre-adult survivorship was greatest (95%) at 25 and 30 degrees C and shortest at 22 degrees C. Egg-to-adult time decreased within the range of 20 to 30 degrees C and at 34 degrees C it started to increase. The lower thermal threshold for egg-to-adult development was estimated at 16 and 18 degrees C by linear regression and the modified Logan model, respectively. The optimum temperature for egg-to-adult development was estimated at 32-33 degrees C by the modified Logan model. The influence of temperature on reproduction and longevity of C. claratris was determined at 25, 30 and 35 and 40 degrees C. Both inseminated and virgin females failed to reproduce at 40 degrees C. Virgin females produced only male offspring, confirming arrhenotoky. The sex ratio of the offspring of fertilized females was strongly female-biased, except at 25 degrees C. Mean total fecundity per female and mean daily total fecundity per female were highest for both virgin and inseminated females at 30 degrees C. Female longevity was longest at 25 degrees C and shortest at 40 degrees C. Male longevity was longest at 30 degrees C and shortest at 40 degrees C. The net reproductive rate (R0) and intrinsic rate of natural increase (rm) was greatest at 30 degrees C while, mean generation time (G) and the doubling time (t) were highest at 25 degrees C. The finite rate of increase (lambda) was fairly constant (1.1-1.5 days) over the three temperatures tested. The pest potential of C. claratris for tropical Asia is discussed.  相似文献   

5.
Energy budgets were computed from data obtained for Daphnia pulex cultured under nine light intensities, polarized light and four wavelength ranges. The percent assimilation of preadult animals is highest at intensities above 7 ft-c. Net efficiency of growth was highest (> 50%) and the net efficiency of respiration was lowest ( < 49%) at intensities less than 28 ft-c. The percent assimilation of adult animals was highest ( > 10%) at 110, 55 and 14 ft-c. Under the nine intensities the gross efficiencies of growth were less than 1 % and net efficiencies of growth varied from 3.9 to 7.3%. Gross efficiencies of respiration were highest above 7 ft-c. The net efficiency of respiration usually varied between 20 and 30% and the lowest was 9.8% at 1.7 ft-c. and the highest was 50.1% at 110 ft-c. Gross efficiency of reproduction varied from 2.6% at 3.5 ft-c to 12.6% at 14 ft-c and generally varied between 4 and 7.5%. Net efficiency of reproduction varied from 45.9% at 110 ft-c to 84.3% at 1.7 ft-c and usually varied from 62 to 75% at other light intensities. The ratio of energy of respiration to energy of growth and reproduction ranged from 12% to 1.7 ft-c to 105.3% at 110 ft-c. This ratio usually varied from 25 to 34% at 14 ft-c or less and exceeded 37% at intensities above 14 ft-c. The percent assimilation (3.5%), gross (2.0%), and net (56.3%) efficiencies of respiration of preadult animals raised under polarized light were higher than for those at a similar, nonpolarized, intensity. The net efficiency of growth (43.7%) was lower under polarized light. The percent assimilation, gross efficiencies of growth, reproduction and respiration, net efficiencies of growth and reproduction of adult animals under polarized light (6.6 ft-c) were lower than for those under 7 ft-c. For preadult animals assimilation efficiencies were lower in wavelength treatments than in white light or darkness. The gross efficiencies of growth and respiration were lowest under red wavelengths and the net efficiencies of growth were lowest and respiration highest under green wavelengths. For adult animals, the assimilation efficiencies were lower in the wavelength treatments than those obtained in other light treatments. While the gross efficiencies of growth, reproduction and respiration were generally lower, the net efficiencies of growth and reproduction were generally within the range of values for other light conditions. The net efficiencies of respiration, except for red wavelengths, were lower than those for other light conditions except at 1.7 ft-c. The ratio of energy of respiration to energy of growth and reproduction showed similar trends. The effects of wavelength are generally separable from the effects of light intensity.  相似文献   

6.
AIMS: To investigate the thermal biology of entomopathogenic fungi being examined as potential microbial control agents of Varroa destructor, an ectoparasite of the European honey bee Apis mellifera. METHODS AND RESULTS: Colony extension rates were measured at three temperatures (20, 30 and 35 degrees C) for 41 isolates of entomopathogenic fungi. All of the isolates grew at 20 and 30 degrees C but only 11 isolates grew at 35 degrees C. Twenty-two isolates were then selected on the basis of appreciable growth at 30-35 degrees C (the temperature range found within honey bee colonies) and/or infectivity to V. destructor, and their colony extension rates were measured at 10 temperatures (12.5-35 degrees C). This data were then fitted to Schoolfield et al. [J Theor Biol (1981)88:719-731] re-formulation of the Sharpe and DeMichele [J Theor Biol (1977)64:649-670] model of poikilotherm development. Overall, this model accounted for 87.6-93.9% of the data variance. Eleven isolates exhibited growth above 35 degrees C. The optimum temperatures for extension rate ranged from 22.9 to 31.2 degrees C. Only three isolates exhibited temperature optima above 30 degrees C. The super-optimum temperatures (temperature above the optimum at which the colony extension rate was 10% of the maximum rate) ranged from 31.9 to 43.2 degrees C. CONCLUSIONS: The thermal requirements of the isolates examined against V. destructor are well matched to the temperatures in the broodless areas of honey bee colonies, and a proportion of isolates, should also be able to function within drone brood areas. SIGNIFICANCE AND IMPACT OF THE STUDY: Potential exists for the control of V. destructor with entomopathogenic fungi in honey bee colonies. The methods employed in this study could be utilized in the selection of isolates for microbial control prior to screening for infectivity and could help in predicting the activity of a fungal control agent of V. destructor under fluctuating temperature conditions.  相似文献   

7.
Ice algae are a case study in photo-autotrophic growth and metabolism under chronically low temperature and irradiance. We measured the allocation of 14C-labelled photosynthate among major classes of intracellular carbon (low molecular weight compounds, or LMW; lipid; protein; and polysaccharide) and found light-dependent changes in allocation broadly similar to photo-adaptive responses known in phytoplankton at higher temperatures; average relative allocation to protein varied inversely (10–37%) and allocation to lipids and polysaccharides directly (10–23%, and 16–21%, respectively) with the sub-inhibiting irradiance levels we employed (3.5–33.0 μE.M−2. s−1). Unlike many observations at higher temperatures, ours indicated (on average) a large and light-insensitive allocation to LMW (ca. 40%) and a greater light-sensitivity in lipid than in polysaccharide allocation. At the higher incubation irradiances, resembling in situ levels typical of areas with little (0–5 cm) snow cover, allocation to protein was often low (10–13%) compared to many observations of nutrient-sufficient or light-limited phytoplankton. Allocation to protein increased substantially (to ca. 40%) during a period of intensified tidal mixing, and assimilation numbers also attained a maximum at about the same time. Such dynamics show that the ice algae are not constrained to their often protein-poor allocation by the constantly low ambient temperature. Rather, they display marked shifts in metabolism consistent with major changes in light and inorganic nutrient supply, driven in part by the physical process of tidal mixing.  相似文献   

8.
Synopsis Tahoe sucker, Catostomus tahoensis, were fed at three ration levels (starvation, 50% of repletion, and repletion) at three constant and cyclic temperature regimes (4–12°, 8°, 8–18°, 13°, and 13°–23°, 18° C) to examine growth rate and gross growth efficiencies. Growth rates increased with increasing temperature and ration level. Growth rates were not different between cyclic temperatures and the constant temperature equivalent to the mean of the cycle. Growth efficiencies were similar for cyclic and constant temperature regimes. Maintenance rations increased from 0.9% of the initial wet weight per day at low temperatures to 2.0 and 1.7% at intermediate and high temperatures, respectively. Assimilation efficiencies (not measured at low temperatures) did not differ between constant and cyclic temperatures. Tahoe sucker growth rates and assimilation efficiencies may not be enhanced in small streams because of this species' inability to mediate temperature cycles through behavioral thermoregulation.  相似文献   

9.
Predation risk has strong effects on organismal physiology that can cascade to impact ecosystem structure and function. Physiological processes in general are sensitive to temperature. Thus, the temperature at which predators and prey interact may shape physiological response to predation risk. We measured and evaluated how temperature and predation risk affected growth rates of predaceous damselfly nymphs (Enallagma vesperum, Odonata: Coenagrionidae). First, we conducted growth trials at five temperatures crossed with two levels of predation risk (fish predator present versus absent) and measured growth rates, consumption rates, assimilation efficiencies, and production efficiencies of 107 individual damselflies. Second, we used a model to evaluate if and how component physiological responses to predation risk affected growth rates across temperatures. In the absence of mortality threat, growth rates of damselflies increased with warming until about 23.5 °C and then began to decline, a typical unimodal response to changes in temperature. Under predation risk, growth rates were lower and the shape of the thermal response was less apparent. Higher metabolic and survival costs induced by predation risk were only partially offset by changes in consumption rates and assimilation efficiencies and the magnitude of non-consumptive effects varied as a function of temperature. Furthermore, we documented that thermal physiology was mediated by predation risk, a known driver of organismal physiology that occurs in the context of species interactions. A general understanding of climatic impacts on ectothermic populations requires consideration of the community context of thermal physiology, including non-consumptive effects of predators.  相似文献   

10.
Psychrotrophic strains of Bacillus cereus producing enterotoxin   总被引:3,自引:0,他引:3  
In investigations on three outbreaks of Bacillus cereus food poisoning in Spain and The Netherlands, the causative strains grew within a temperature range of 4-37 degrees C, but not at 43 degrees C. Such psychrotrophic types were found to occur in various dairy products (including ca 25% of 35 samples of pasteurized milk) and some mousses and cook/chill meals. Growth of and enterotoxin production by psychrotrophic B. cereus could be prevented by temperatures below 4 degrees C and pH-values not exceeding 5.0.  相似文献   

11.
It is widely believed that turnover of nitrogenous (N) compounds (especially proteins) incurs a high respiratory cost. Thus, if protein turnover costs change with temperature, this would influence the dependence of respiration rate on growth temperature. Here, we examined the extent to which protein turnover cost explained differences in N-utilization costs (nitrate uptake/reduction, ammonium assimilation, amino acid and protein syntheses, protein turnover and amino acid export) and in respiration rate with changes in growth temperature. By measurements and literature data, we evaluated each N-utilization cost in Petunia x hybrida petals grown at 20, 25 or 35 degrees C throughout their whole lifespans. Protein turnover cost accounted for 73% of the integrated N-utilization cost on a whole-petal basis at 35 degrees C. The difference in this cost on a dry weight basis between 25 and 35 degrees C accounted for 75% of the difference in N-utilization cost and 45% of the difference in respiratory cost. The cost of nitrate uptake/reduction was high at low growth temperatures. We concluded that respiratory cost in petals was strongly influenced by protein turnover and nitrate uptake/reduction, and on the shoot basis, C investment in biomass was highest at 25 degrees C.  相似文献   

12.
A continuous reaction norm or performance curve represents a phenotypic trait of an individual or genotype in which the trait value may vary with some continuous environmental variable. We explore patterns of genetic variation in thermal performance curves of short-term caterpillar growth rate in a population of Pieris rapae. We compare multivariate methods, which treat performance at each test temperature as a distinct trait, with function-valued methods that treat a performance curve as a continuous function. Mean growth rate increased with increasing temperatures from 8 to 35 degrees C, was highest at 35 degrees C, and declined at 40 degrees C. There was substantial and significant variation among full-sib families in their thermal performance curves. Estimates of broad-sense genetic variances and covariances showed that genetic variance in growth rate increased more than 30-fold from low (8-11 degrees C) to high (35-40 degrees C) temperatures, even after differences in mean growth rate across temperatures were removed. Growth rate at 35 and 40 degrees C was negatively correlated genetically, suggesting a genetic trade-off in growth rate at these temperatures; this trade-off may represent either a generalist-specialist trade-off and/or variation in the optimal temperature for growth. The estimated genetic variance-covariance function (G function), the function-valued analog of the variance-covariance matrix (G matrix), was quite bumpy compared with the estimated G matrix; and results of principal component analyses of the G function were difficult to interpret. The use of orthogonal polynomials as the basis functions in current function-valued estimation methods may generate artifacts when the true G function has prominent local features, such as strong negative covariances at nearby temperatures (e.g. at 35 and 40 degrees C); this may be a particular issue for thermal performance curves and other highly nonlinear reaction norms.  相似文献   

13.
The development, survival, and reproduction of the black citrus aphid Toxoptera aurantii (Boyer de Fonscolombe) were evaluated at ten constant temperatures (4, 7, 10, 15, 20, 25, 28, 30, 32 and 35 degrees C). Development was limited at 4 and 35 degrees C. Between 7 and 32 degrees C, developmental periods of immature stages varied from 44.2 days at 7 degrees C to 5.3 days at 28 degrees C. Overall immature development required 129.9 degree-days above 3.8 degrees C. The upper temperature thresholds of 32.3, 28.6, 29.3, 27.2, and 28.6 degrees C were determined from a non-linear biophysical model for the development of instars 1-4 and overall immature stages, respectively. Immature survivorship varied from 82.1 to 97.7% within the temperature range of 10-30 degrees C. However, immature survivorship was reduced to 26.3% at 7 degrees C and 33.1% at 32 degrees C. Mean adult longevity was the longest (44.2 days) at 15 degrees C and the shortest (6.2 days) at 32 degrees C. The predicted upper temperature limit for adult survivorship was at 32.3 degrees C. Total nymph production increased from 16.3 nymphs per female at 10 degrees C to 58.7 nymphs per female at 20 degrees C, declining to 6.1 nymphs per female at 32 degrees C. The estimation of lower and upper temperature limits for reproduction was at 8.2 and 32.5 degrees C, respectively. The population reared at 28 degrees C had the highest intrinsic rate of increase (0.394), the shortest population doubling time (1.8 days), and shortest mean generation time (9.5 days) compared with the populations reared at six other temperatures. The population reared at 20 degrees C had the highest net reproductive rate (54.6). The theoretical lower and upper temperature limits for population development, survival and reproduction were estimated at 9.4 and 30.4 degrees C, respectively. The biology of T. aurantii was also compared with three other citrus aphid species.  相似文献   

14.
Snails were kept in self-cleaning housing chambers in an artificially controlled environment. Mating was frequent under long days (18 h light) and rare under short days (8 h light) regardless of whether the snails were kept at 15 degrees C or 20 degrees C. An interaction between photoperiod and temperature was observed for egg laying. The number of eggs laid (45-50/snail) and the frequency of egg laying (90-130%) were greater in long than in short days (16-35/snail and 27-77%) but a temperature of 20 degrees C redressed, to some extent, the inhibitory effect of short days. At both temperatures only long photoperiods brought about cyclic reproduction over a period of 16 weeks, confirming the synchronizing role of photoperiod on the neuroendocrine control of egg laying in this species of snail.  相似文献   

15.
Chilled embryos of pelicans, Pelecanus erythrorhynchos, begin to vocally solicit parental heat at the pipped-egg stage. Honest signalling models predict that if vocal heat solicitation is a true reflection of need, then solicitation should be costly and costs should increase with the embryo's need for warmth. Using open-flow respirometry, we measured the metabolic costs associated with vocal heat solicitation by exposing embryos to either a decreasing or increasing series of body temperatures, ranging from 25 to 37.8 degrees C. We measured baseline costs (stable temperature, embryo silent) and costs associated with cold-induced calling at each temperature. At natural incubation temperature (37.8 degrees C), call rates and costs associated with calling were negligible, as was thermal need. Metabolic costs relative to baseline costs and costs per call increased with thermal need as body temperature declined. Absolute metabolic costs increased between 37.8 and 35 degrees C, then remained stable down to 25 degrees C. Call rates increased as embryos were chilled within the range of temperatures most frequently experienced in nature (35-37.8 degrees C), then decreased significantly for all lower temperatures, probably owing to reduced overall metabolic rate at lower temperatures (25-37.8 degrees C). The results generally support the honest signalling prediction that vocal heat solicitation is metabolically costly, and that costs increase with need. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

16.
Laboratory clip-cage studies were conducted to quantify the temperature-dependent development, survivorship, and reproduction and to generate life history characteristics and population growth parameters of the cotton aphid, Aphis gossypii Glover, on phenologically standardized greenhouse-grown cottons at 10, 15, 20, 25, 30, and 35 degrees C. The developmental thresholds were estimated to be 6.3, 6.7, 5.9, 5.9, and 6.3 degrees C for first to fourth instars and for total nymphal development, respectively. The maximum rate of development were estimated to occur at 32.2, 30.8, 30.4, 30.0, and 30.2 degrees C for first to fourth instars and for total nymphal development, respectively. Increased temperature resulted in more rapid decline in survivorship, which was particularly sharp at 35 degrees C, dropping from 94 to 17% in 5 d. Number of days elapsed until first deposition of progeny increased progressively and sharply at temperatures 10 (26 d) to 15 (15 d) to 20 degrees C (8 d) and stabilized at 5 d for 25, 30, and 35 degrees C. Average lifetime fecundity of females rose from a low of 9.76 progeny at 10 degrees C to a peak of 58.9 progeny at 30 degrees C and declined sharply to 17.3 at 35 degrees C. Finite rate of population growth was highest at 25 degrees C and lowest at 10 degrees C. Although stage-specific developmental maxima occurred between 30 and 32 degrees C, a nonlinear regression model estimated 28.6 degrees C to be the optimum temperature for overall cotton aphid development, reproduction, and population increase.  相似文献   

17.
Goldfish (Carasius auratus) primary culture cells derived from caudal fin were incubated over a temperature range of 20-35 degrees C. The population doubling time of cells cultured at 20, 25, 30 and 35 degrees C were 34, 29, 17 and 14 h, respectively. Interestingly, cDNA-representational difference analysis revealed type I collagen alpha chain (colalpha(I)) as a candidate for a warm temperature-specific gene. mRNA levels of colalpha(I) increased with an increase of incubation temperature and days of culture. Furthermore, the cell growth rate and colalpha(I) mRNA levels were rapidly changed following temperature shifts. To examine the effects of culture temperature shift on the cellular physiological states, mRNA levels of HSP70 were additionally investigated. HSP70 mRNA levels in the cells cultured at 30 and 35 degrees C were again 2-3 times higher than those at 20 and 25 degrees C. When the culture temperature was shifted from 20 to 35 degrees C, HSP70 mRNA levels were rapidly increased within 1 h. Subsequently, mRNA levels of the 35 degrees C-treated cells decreased, but remained doubled compared with those of the 20 degrees C-treated cells, even 4 h following the temperature shift. When the culture temperature was lowered from 35 to 20 degrees C, HSP70 mRNA levels decreased to about 70% of the original levels in 4 h. These results indicate that goldfish cells cultured at different temperatures easily develop temperature-associated steady physiological states within 4 h of temperature shifts.  相似文献   

18.
Ice algae are a case study in photo-autotrophic growth and metabolism under chronically low temperature and irradiance. We measured the allocation of 14C-labelled photosynthate among major classes of intracellular carbon (low molecular weight compounds, or LMW; lipid; protein; and polysaccharide) and found light-dependent changes in allocation broadly similar to photo-adaptive responses known in phytoplankton at higher temperatures; average relative allocation to protein varied inversely (10–37%) and allocation to lipids and polysaccharides directly (10–23%, and 16–21%, respectively) with the sub-inhibiting irradiance levels we employed (3.5–33.0 μE·M−2·s−1). Unlike many observations at higher temperatures, ours indicated (on average) a large and light-insensitive allocation to LMW (ca. 40%) and a greater light-sensitivity in lipid than in polysaccharide allocation. At the higher incubation irradiances, resembling in situ levels typical of areas with little (0–5 cm) snow cover, allocation to protein was often low (10–13%) compared to many observations of nutrient-sufficient or light-limited phytoplankton. Allocation to protein increased substantially (to ca. 40%) during a period of intensified tidal mixing, and assimilation numbers also attained a maximum at about the same time. Suck dynamics show that the ice algae are not constrained to their often protein-poor allocation by the constantly low ambient temperature. Rather, they display marked shifts in metabolism consistent with major changes in light and inorganic nutrient supply, driven in part by the physical process of tidal mixing.  相似文献   

19.
Here, we investigated the impact of temperature on the carbon economy of two Plantago species from contrasting habitats. The lowland Plantago major and the alpine Plantago euryphylla were grown hydroponically at three constant temperatures: 13, 20 and 27 degrees C. Rates of photosynthetic CO(2) uptake (P) and respiratory CO(2) release (R) in shoots and R in roots were measured at the growth temperature using intact plants. At each growth temperature, air temperatures were changed to establish short-term temperature effects on the ratio of R to P (R/P). In both species, R/P was essentially constant in plants grown at 13 and 20 degrees C. However, R/P was substantially greater in 27 degrees C-grown plants, particularly in P. euryphylla. The increase in R/P at 27 degrees C would have been even greater had biomass allocation to roots not decreased with increasing growth temperature. Short-term increases in air temperature increased R/P in both species, with the effects of air temperature being most pronounced in 13 degrees C-grown plants. We conclude that temperature-mediated changes in biomass allocation play an important role in determining whole-plant R/P values, and, while homeostasis of R/P is achieved across moderate growth temperatures, homeostasis is not maintained when plants are exposed to growth temperatures higher than usually experienced in the natural habitat.  相似文献   

20.
The acclimation of C(4) photosynthesis to low temperature was studied in the montane grass Muhlenbergia montana in order to evaluate inherent limitations in the C(4) photosynthetic pathway following chilling. Plants were grown in growth cabinets at 26 degrees C days, but at night temperatures of either 16 degrees C (the control treatment), 4 degrees C for at least 28 nights (the cold-acclimated treatment), or 1 night (the cold-stress treatment). Below a measurement temperature of 25 degrees C, little difference in the thermal response of the net CO(2) assimilation rate (A) was observed between the control and cold-acclimated treatment. By contrast, above 30 degrees C, A in the cold-acclimated treatment was 10% greater than in the control treatment. The temperature responses of Rubisco activity and net CO(2) assimilation rate were similar below 22 degrees C, indicating high metabolic control of Rubisco over the rate of photosynthesis at cool temperatures. Analysis of the response of A to intercellular CO(2) level further supported a major limiting role for Rubisco below 20 degrees C. As temperature declined, the CO(2) saturated plateau of A exhibited large reductions, while the initial slope of the CO(2) response was little affected. This type of response is consistent with a Rubisco limitation, rather than limitations in PEP carboxylase capacity. Stomatal limitations at low temperature were not apparent because photosynthesis was CO(2) saturated below 23 degrees C at air levels of CO(2). In contrast to the response of photosynthesis to temperature and CO(2) in plants acclimated for 4 weeks to low night temperature, plants exposed to 4 degrees C for one night showed substantial reduction in photosynthetic capacity at temperatures above 20 degrees C. Because these reductions were at both high and low CO(2), enzymes associated with the C(4) carbon cycle were implicated as the major mechanisms for the chilling inhibition. These results demonstrate that C(4) plants from climates with low temperature during the growing season can fully acclimate to cold stress given sufficient time. This acclimation appears to involve reversal of injury to the C(4) cycle following initial exposure to low temperature. By contrast, carbon gain at low temperatures generally appears to be constrained by the carboxylation capacity of Rubisco, regardless of acclimation time. The inability to overcome the Rubisco limitation at low temperature may be an inherent limitation restricting C(4) photosynthetic performance in cooler climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号