首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Misono KS  Ogawa H  Qiu Y  Ogata CM 《Peptides》2005,26(6):957-968
The atrial natriuretic peptide (ANP) receptor is a single-span transmembrane receptor that is coupled to its intrinsic intracellular guanylate cyclase (GCase) catalytic activity. To investigate the mechanisms of hormone binding and signal transduction, we have expressed the extracellular hormone-binding domain of the ANP receptor (ANPR) and characterized its structure and function. The disulfide-bond structure, state of glycosylation, binding-site residues, chloride-dependence of ANP binding, dimerization, and binding stoichiometry have been determined. More recently, the crystal structures of both the apoANPR dimer and ANP-bound complex have been determined. The structural comparison between the two has shown that, upon ANP binding, two ANPR molecules in the dimer undergo an inter-molecular twist with little intra-molecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains with essentially no change in the inter-domain distance. This movement alters the relative orientation of the two domains equivalent to counter-clockwise rotation of each by 24 degrees . These results suggest that transmembrane signaling by the ANP receptor is mediated by a novel hormone-induced rotation mechanism.  相似文献   

2.
A cardiac hormone, atrial natriuretic peptide (ANP), plays a major role in blood pressure and volume regulation. ANP activities are mediated by a single span transmembrane receptor carrying intrinsic guanylate cyclase activity. ANP binding to its extracellular domain stimulates guanylate cyclase activity by an as yet unknown mechanism. Here we report the crystal structure of dimerized extracellular hormone-binding domain in complex with ANP. The structural comparison with the unliganded receptor reveals that hormone binding causes the two receptor monomers to undergo an intermolecular twist with little intramolecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains in the dimer with essentially no change in the interdomain distance. This movement alters the relative orientation of the two domains by a shift equivalent to counterclockwise rotation of each by 24 degrees. These results suggest that transmembrane signaling by the ANP receptor is initiated via a hormone-induced rotation mechanism.  相似文献   

3.
Huo X  Abe T  Misono KS 《Biochemistry》1999,38(51):16941-16951
The atrial natriuretic peptide (ANP) receptor is a 130-kDa transmembrane protein containing an extracellular ANP-binding domain, a single transmembrane sequence, an intracellular kinase-homologous domain, and a guanylate cyclase (GCase) domain. We observed that the receptor, when bound with ANP, was rapidly cleaved by endogenous or exogenously added protease to yield a 65-kDa ANP-binding fragment. No cleavage occurred without bound ANP. This ligand-induced cleavage abolished GCase activation by ANP. Cleavage occurred in an extracellular, juxtamembrane region containing six closely spaced Pro residues and a disulfide bond. Such structural features are shared among the A-type and B-type ANP receptors but not by ANP clearance receptors. The potential role of the hinge structure was examined by mutagenesis experiments. Mutation of Pro(417), but not other Pro residues, to Ala abolished GCase activation by ANP. Elimination of the disulfide bond by Cys to Ser mutations yielded a constitutively active receptor. Pro(417), and Cys(423) and Cys(432) forming the disulfide bond are strictly conserved among GCase-coupled receptors, while other residues are largely variable. The conserved Pro(417) and the disulfide bond may represent a consensus signaling motif in the juxtamembrane hinge structure that undergoes a marked conformational change upon ligand binding and apparently mediates transmembrane signal transduction.  相似文献   

4.
Proteinase-activated receptor 2 (PAR(2)), a seven-transmembrane G protein-coupled receptor, is activated at inflammatory sites by proteolytic cleavage of its extracellular N terminus by trypsin-like enzymes, exposing a tethered, receptor-activating ligand. Synthetic agonist peptides (AP) that share the tethered ligand sequence also activate PAR(2), often measured by Ca(2+) release. PAR(2) contributes to inflammation through activation of NF-kappaB-regulated genes; however, the mechanism by which this occurs is unknown. Overexpression of human PAR(2) in HEK293T cells resulted in concentration-dependent, PAR(2) AP-inducible NF-kappaB reporter activation that was protein synthesis-independent, yet blocked by inhibitors that uncouple G(i) proteins or sequester intracellular Ca(2+). Because previous studies described synergistic PAR(2)- and TLR4-mediated cytokine production, we hypothesized that PAR(2) and TLR4 might interact at the level of signaling. In the absence of TLR4, PAR(2)-induced NF-kappaB activity was inhibited by dominant negative (DN)-TRIF or DN-TRAM constructs, but not by DN-MyD88, findings confirmed using cell-permeable, adapter-specific BB loop blocking peptides. Co-expression of TLR4/MD-2/CD14 with PAR(2) in HEK293T cells led to a synergistic increase in AP-induced NF-kappaB signaling that was MyD88-dependent and required a functional TLR4, despite the fact that AP exhibited no TLR4 agonist activity. Co-immunoprecipitation of PAR(2) and TLR4 revealed a physical association that was AP-dependent. The response to AP or lipopolysaccharide was significantly diminished in TLR4(-/-) and PAR (-/-)(2) macrophages, respectively, and SW620 colonic epithelial cells exhibited synergistic responses to co-stimulation with AP and lipopolysaccharide. Our data suggest a unique interaction between two distinct innate immune response receptors and support a novel paradigm of receptor cooperativity in inflammatory responses.  相似文献   

5.
6.
HAMP domains connect extracellular sensory with intracellular signaling domains in over 7500 proteins, including histidine kinases, adenylyl cyclases, chemotaxis receptors, and phosphatases. The solution structure of an archaeal HAMP domain shows a homodimeric, four-helical, parallel coiled coil with unusual interhelical packing, related to the canonical packing by rotation of the helices. This suggests a model for the mechanism of signal transduction, in which HAMP alternates between the observed conformation and a canonical coiled coil. We explored this mechanism in vitro and in vivo using HAMP domain fusions with a mycobacterial adenylyl cyclase and an E. coli chemotaxis receptor. Structural and functional studies show that the equilibrium between the two forms is dependent on the side-chain size of residue 291, which is alanine in the wild-type protein.  相似文献   

7.
Modulatory signal transduction commonly requires efficient "on demand" assembly of specific multicomponent cellular machines that convert signals to cellular actions. This article suggests that for these signaling machines to detect and respond to fluctuations in signal strength, they must be continuously disassembled in an energy-dependent process that probably involves molecular chaperones.  相似文献   

8.
We previously have demonstrated that intramolecular interactions between alpha beta-alpha beta subunits are necessary for insulin-dependent activation of the protein kinase domain within a single alpha 2 beta 2 heterotetrameric insulin-receptor complex (Wilden, P. A., Morrison, B. D., and Pessin, J. E. (1989) Biochemistry 28, 785-792). To evaluate the role of the beta subunit transmembrane domain in the insulin-dependent signalling mechanism, mutant human insulin receptors containing a series of nested transmembrane domain deletions (amino acids 941-945) were generated and stable Chinese hamster ovary-transfected cell lines were obtained. In addition, a substitution of Val-938 for Glu (E/V938) similar to the oncogenic mutation found in the neu transmembrane domain was also introduced into the insulin receptor. Scatchard analysis of insulin binding to the stable Chinese hamster ovary cell lines expressing either wild type or mutant insulin receptors indicated equivalent receptor number (2-4 x 10(6)/cell) and similar high affinity binding constants (Kd 0.1-0.3 nM). 125I-Insulin affinity cross-linking demonstrated that all of the expressed insulin receptors were assembled and processed into alpha 2 beta 2 heterotetrameric complexes. Surprisingly, all the mutant insulin receptors retained insulin-stimulated autophosphorylation both in vivo and in vitro. Furthermore, endogenous substrate phosphorylation in vivo as well as insulin-stimulated thymidine incorporation into DNA were unaffected by the transmembrane domain mutations. These data demonstrate that marked structural alterations in the insulin receptor transmembrane domain do not interfere with insulin-dependent signal transduction.  相似文献   

9.
Abstract

To evaluate the mechanism of ligand activation of the insulin receptor we have generated mutant receptor cDNAs which encode proteins with oligopeptide linkers between the carboxy terminus of the extracellular domain and the transmembrane domain of the molecule. Mutant cDNAs encoding a rigid α helical insert (HIR NQDVD) or a flexible polyglycine insert (HIR G12) were expressed in CHO KI cells. Both basal and insulin stimulated autophosphorylation in vitro and in vivo of the expressed receptors were indistinguishable from those of wild type receptor expressed in the same cells. These findings suggest that ligand binding can activate the insulin receptor by an intermolecular dimerization mechanism.  相似文献   

10.
Adrenomedullin is a vascular tissue peptide and a member of the calcitonin family of peptides, which includes calcitonin, calcitonin-gene-related peptide (CGRP) and amylin. Its many biological actions are mediated via CGRP type 1 (CGRP(1)) receptors and by specific adrenomedullin receptors. Although the pharmacology of these receptors is distinct, they are both represented in molecular terms by the type II family G-protein-coupled receptor, calcitonin-receptor-like receptor (CRLR). The specificity here is defined by co-expression of receptor-activity-modifying proteins (RAMPs). CGRP(1) receptors are represented by CRLR and RAMP1, and specific adrenomedullin receptors by CRLR and RAMP2 or 3. Here we discuss how CRLR/RAMP2 relates to adrenomedullin binding, pharmacology and pathophysiology, and how chemical cross-linking of receptor-ligand complexes in tissue relates to that in CRLR/RAMP2-expressing cells. CRLR, like other type II family G-protein-coupled receptors, signals via G(s) and adenylate cyclase activation. We demonstrated that adrenomedullin signalling in cell lines expressing specific adrenomedullin receptors followed this expected pattern.  相似文献   

11.
Wingless (Wg) is a secreted ligand that differentially activates gene expression in target tissues. It belongs to the Wnt family of secreted signaling molecules that regulate cell-to-cell interactions during development. Activation of Wg targets is dependent on the ligand concentration in the extracellular milieu; cellular mechanisms that govern the synthesis, delivery and receipt of Wg are elaborate and complex. We have identified sprinter (srt), which encodes a novel, evolutionarily conserved transmembrane protein required for the transmission of the Wg signal. Mutations in srt cause the accumulation of Wg in cells that express it, and retention of the ligand prevents activation of its target genes in signal-receiving cells. In the absence of Srt activity, levels of Wg targets (including Engrailed in embryos lacking maternal and zygotic srt, and Senseless and Achaete in wing discs) are reduced. Activation of Wg targets in the receiving cells does not require srt. Hence, the function of Srt is restricted to events occurring within the Wg-producing cells. We show that srt is not required for any aspect of Hedgehog (Hh) signal transduction, suggesting specificity of srt for the Wg pathway. We propose that srt encodes a protein required for Wg secretion that regulates maturation, membrane targeting or delivery of Wg. Loss of srt function in turn diminishes Wg-pathway activation in receiving cells.  相似文献   

12.
Hematopoietic cytokine receptors, such as the erythropoietin receptor (EpoR), are single membrane-spanning proteins. Signal transduction through EpoR is crucial for the formation of mature erythrocytes. Structural evidence shows that in the unliganded form EpoR exists as a preformed homodimer in an open scissor-like conformation precluding the activation of signaling. In contrast to the extracellular domain of the growth hormone receptor (GHR), the structure of the agonist-bound EpoR extracellular region shows only minimal contacts between the membrane-proximal regions. This evidence suggests that the domains facilitating receptor dimerization may differ between cytokine receptors. We show that the EpoR transmembrane domain (TM) has a strong potential to self interact in a bacterial reporter system. Abolishing self assembly of the EpoR TM by a double point mutation (Leu 240-Leu 241 mutated to Gly-Pro) impairs signal transduction by EpoR in hematopoietic cells and the formation of erythroid colonies upon reconstitution in erythroid progenitor cells from EpoR(-/-) mice. Interestingly, inhibiting TM self assembly in the constitutively active mutant EpoR R129C abrogates formation of disulfide-linked receptor homodimers and consequently results in the loss of ligand-independent signal transduction. Thus, efficient signal transduction through EpoR and possibly other preformed receptor oligomers may be determined by the dynamics of TM self assembly.  相似文献   

13.
14.
Most of the classical physiological effects of the octapeptide angiotensin II (AngII) are produced by activating the AT1 receptor which belongs to the G-protein coupled receptor family (GPCR). Peptidic GPCRs may be functionally divided in three regions: (i) extracellular domains involved in ligand binding; (ii) intracellular domains implicated in agonist-induced coupling to G protein and (iii) seven transmembrane domains (TM) involved in signal transduction. The TM regions of such receptors have peculiar characteristics such as the presence of proline residues. In this project we aimed to investigate the participation of two highly conserved proline residues (Pro82 and Pro162), located in TM II and TM IV, respectively, in AT1 receptor signal transduction. Both mutations did not cause major alterations in AngII affinity. Functional assays indicated that the P162A mutant did not influence the signal transduction. On the other hand, a potent deleterious effect of P82A mutation on signal transduction was observed. We believe that the Pro82 residue is crucial to signal transduction, although it is not possible to say yet if this is due to a direct participation or if due to a structural rearrangement of TM II. In this last hypothesis, the removal of proline residue might be correlated to a removal of a kink, which in turn can be involved in the correct positioning of residues involved in signal transduction.  相似文献   

15.
16.
The existence of a novel receptor on human polymorphonuclear leukocytes (PMNLs) and monocytes was demonstrated, named soluble elastin peptide receptor. Soluble elastin peptides, like K-elastin, which are liberated from elastin fibres, can be found in the sera, and they possess several biological activities such as chemotaxis. Studying the effects of elastin peptides on leukocytes, it was found that: (i) the elastin peptide stimulates the oxidative burst, the intracellular free Ca2+ elevation through a specific receptor; and (ii) in the signal transduction mechanism of this elastin peptide receptor, the phosphatidylinositol breakdown is involved.  相似文献   

17.
18.
19.
The caveolin family proteins are typically associated with microdomains that are found in the plasma membrane of numerous cells. These microdomains are referred to as/called caveolae. Caveolins are small proteins (18-24 kDa) that have a hairpin loop conformation with both the N and C termini exposed to the cytoplasm. Apart from having a structural function within caveolae, these proteins have the capacity to bind cholesterol as well as a variety of proteins, such as receptors, Src-like kinases, G-proteins, H-Ras, MEK/ERK kinases and nitric oxide synthases, which are involved in signal transduction processes. Considerable data allow the assumption to be made that the majority of the interactions with signaling molecules hold them in an inactive or repressed state. The activity of caveolins seems to be dependent on its specific post-translation modifications. It is suggested that caveolins fulfill a role in the modulation of cellular signaling cascades.  相似文献   

20.
Rhodopsin was the first G protein-coupled receptor (GPCR) for which a high-resolution crystal structure was obtained. Several crystal structures have now been solved representing different activation states of the receptor. These structures, together with those from lower resolution techniques (e.g. electron microscopy), shed light on the stepwise process by which energy from an extracellular photon is transduced across the membrane to the intracellular compartment thereby activating signalling mechanisms responsible for very low-level light detection. Controversy remains in several areas including: (i) transmembrane helix movements responsible for the transduction process, (ii) the stoichiometry of coupling to G proteins and their mode of activation, (iii) the role, if any, of receptor oligomerisation and (iv) the suitability of using structures of this GPCR as templates for modelling the structures of other GPCRs, and their mechanisms of activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号