首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the seasonal presence and removal of the pathogenous micro-organisms Escherichia coli, total coliforms (TC), Clostridium perfringens (Cp), faecal streptococci (FS), Giardia cysts, Cryptosporidium oocysts and helminth eggs, in a constructed wetland treatment system. The removal efficiency of this system with respect to the indicator micro-organisms achieved maximum values in spring and autumn at 99.9% for E. coli and TC, respectively, in winter at 97.0% for FS, in summer at 100% for Clostridium and throughout the year, also at 100%, in the case of Giardia cysts, Cryptosporidium oocysts and helminth eggs. In general, very low protozoan and helminth egg counts were found, and the system demonstrated efficient reduction of the wastewater indicator pathogens.  相似文献   

2.
Fecal samples were taken from wild ducks on the lower Rio Grande River around Las Cruces, N. Mex., from September 2000 to January 2001. Giardia cysts and Cryptosporidium oocysts were purified from 69 samples by sucrose enrichment followed by cesium chloride (CsCl) gradient centrifugation and were viewed via fluorescent-antibody (FA) staining. For some samples, recovered cysts and oocysts were further screened via PCR to determine the presence of Giardia lamblia and Crytosporidium parvum. The results of this study indicate that 49% of the ducks were carriers of Cryptosporidium, and the Cryptosporidium oocyst concentrations ranged from 0 to 2,182 oocysts per g of feces (mean ± standard deviation, 47.53 ± 270.3 oocysts per g); also, 28% of the ducks were positive for Giardia, and the Giardia cyst concentrations ranged from 0 to 29,293 cysts per g of feces (mean ± standard deviation, 436 ± 3,525.4 cysts per g). Of the 69 samples, only 14 had (oo)cyst concentrations that were above the PCR detection limit. Samples did test positive for Cryptosporidium sp. However, C. parvum and G. lamblia were not detected in any of the 14 samples tested by PCR. Ducks on their southern migration through southern New Mexico were positive for Cryptosporidium and Giardia as determined by FA staining, but C. parvum and G. lamblia were not detected.  相似文献   

3.
A waste stabilisation pond (WSP) system formed by two anaerobic ponds, a facultative pond and a maturation pond was studied from December 2003 to September 2004 in north-western Spain in order to evaluate its efficiency in the removal of faecal indicator bacteria (total coliforms, Escherichia coli, faecal streptococci), coliphages, helminth eggs and protozoan (oo)cysts (Cryptosporidium and Giardia). Furthermore, sediment samples were collected from the bottom of the ponds to assess the settling rates and thus determine the main pathogen removal mechanisms in the WSPs system. The overall removal ranged from 1.4 log units for coliphages in the cold period to 5.0 log units for E. coli in the hot period. Cryptosporidium oocysts were reduced by an average of 96%, Giardia cysts by 98% and helminth eggs by 100%. The anaerobic ponds showed significantly higher surface removal rates (4.6, 5.2 and 3.7 log (oo)cysts/eggs removed m−2 day−1, respectively) than facultative and maturation ponds. Sunlight and water physicochemical conditions were the main factors influencing C. parvum oocysts removal both in the anaerobic and maturation ponds, whereas other factors like predation or natural mortality were more important in the facultative pond. Sedimentation, the most commonly proposed mechanism for cyst removal had, therefore, a negligible influence in the studied ponds.  相似文献   

4.
Cryptosporidium and Giardia species are two of the most prevalent protozoa that cause waterborne diarrheal disease outbreaks worldwide. To better characterize the prevalence of these pathogens, EPA Method 1623 was developed and used to monitor levels of these organisms in US drinking water supplies 12. The method has three main parts; the first is the sample concentration in which at least 10 L of raw surface water is filtered. The organisms and trapped debris are then eluted from the filter and centrifuged to further concentrate the sample. The second part of the method uses an immunomagnetic separation procedure where the concentrated water sample is applied to immunomagnetic beads that specifically bind to the Cryptosporidium oocysts and Giardia cysts allowing for specific removal of the parasites from the concentrated debris. These (oo)cysts are then detached from the magnetic beads by an acid dissociation procedure. The final part of the method is the immunofluorescence staining and enumeration where (oo)cysts are applied to a slide, stained, and enumerated by microscopy.Method 1623 has four listed sample concentration systems to capture Cryptosporidium oocysts and Giardia cysts in water: Envirochek filters (Pall Corporation, Ann Arbor, MI), Envirochek HV filters (Pall Corporation), Filta-Max filters (IDEXX, Westbrook, MA), or Continuous Flow Centrifugation (Haemonetics, Braintree, MA). However, Cryptosporidium and Giardia (oo)cyst recoveries have varied greatly depending on the source water matrix and filters used1,14. A new tangential flow hollow-fiber ultrafiltration (HFUF) system has recently been shown to be more efficient and more robust at recovering Cryptosporidium oocystsand Giardia cysts from various water matrices; moreover, it is less expensive than other capsule filter options and can concentrate multiple pathogens simultaneously1-3,5-8,10,11. In addition, previous studies by Hill and colleagues demonstrated that the HFUF significantly improved Cryptosporidium oocysts recoveries when directly compared with the Envirochek HV filters4. Additional modifications to the current methods have also been reported to improve method performance. Replacing the acid dissociation procedure with heat dissociation was shown to be more effective at separating Cryptosporidium from the magnetic beads in some matrices9,13 .This protocol describes a modified Method 1623 that uses the new HFUF filtration system with the heat dissociation step. The use of HFUF with this modified Method is a less expensive alternative to current EPA Method 1623 filtration options and provides more flexibility by allowing the concentration of multiple organisms.  相似文献   

5.

Aims

This study developed and systematically evaluated performance and limit of detection of an off‐the‐slide genotyping procedure for both Cryptosporidium oocysts and Giardia cysts.

Methods and Results

Slide standards containing flow‐sorted (oo)cysts were used to evaluate the off‐the‐slide genotyping procedure by microscopy and PCR. Results show approximately 20% of cysts and oocysts are lost during staining. Although transfer efficiency from the slide to the PCR tube could not be determined by microscopy, it was observed that the transfer process aided in the physical lysis of the (oo)cysts likely releasing DNA. PCR detection rates for a single event on a slide were 44% for Giardia and 27% for Cryptosporidium, and a minimum of five cysts and 20 oocysts are required to achieve a 90% PCR detection rate. A Poisson distribution analysis estimated the relative PCR target densities and limits of detection, it showed that 18 Cryptosporidium and five Giardia replicates are required for a 95% probability of detecting a single (oo)cyst on a slide.

Conclusions

This study successfully developed and evaluated recovery rates and limits of detection of an off‐the‐slide genotyping procedure for both Cryptosporidium and Giardia (oo)cysts from the same slide.

Significance and Impact of the Study

This off‐the‐slide genotyping technique is a simple and low cost tool that expands the applications of US EPA Method 1623 results by identifying the genotypes and assemblages of the enumerated Cryptosporidium and Giardia. This additional information will be useful for microbial risk assessment models and watershed management decisions.  相似文献   

6.
7.
PCR detection of intestinal protozoa is often restrained by a poor DNA recovery or by inhibitors present in feces. The need for an extraction protocol that can overcome these obstacles is therefore clear. QIAamp® DNA Stool Mini Kit (Qiagen) was evaluated for its ability to recover DNA from oocysts/cysts directly from feces. Twenty-five Giardia-positive, 15 Cryptosporidium-positive, 15 Entamoeba histolytica-positive, and 45 protozoa-free samples were processed as control by microscopy and immunoassay tests. DNA extracts were amplified using 3 sets of published primers. Following the manufacturer''s protocol, the kit showed sensitivity and specificity of 100% towards Giardia and Entamoeba. However, for Cryptosporidium, the sensitivity and specificity were 60% (9/15) and 100%, respectively. A series of optimization experiments involving various steps of the kit''s protocol were conducted using Cryptosporidium-positive samples. The best DNA recoveries were gained by raising the lysis temperature to the boiling point for 10 min and the incubation time of the InhibitEX tablet to 5 min. Also, using a pre-cooled ethanol for nucleic acid precipitation and small elution volume (50-100 µl) were valuable. The sensitivity of the amended protocol to Cryptosporidium was raised to 100%. Cryptosporidium DNA was successfully amplified by either the first or the second primer set. When applied on parasite-free feces spiked with variable oocysts/cysts counts, ≈ 2 oocysts/cysts were theoretically enough for detection by PCR. To conclude, the Qiagen kit with the amended protocol was proved to be suitable for protozoan DNA extraction directly from feces and support PCR diagnosis.  相似文献   

8.
The structural integrity of Cryptosporidium oocysts and Giardia cysts in the Norwegian winter environment was investigated. During winter 2001/2002, Cryptosporidium oocysts and Giardia cysts were placed in the upper layers of soil in different matrices contained in chambers and exposed to the Norwegian climate. Morphological characteristics and inclusion/exclusion of vital dyes were monitored and compared to refrigerated controls. Reduction in parasite numbers was recorded for all parasites, geographical locations, and matrices. Shear forces generated during freeze–thaw cycles are postulated to have disintegrated the parasites exposed to the Norwegian winter and retrospective laboratory studies support this theory. Increased dye inclusion, possibly indicative of viability loss, was also noted. The refrigerated control parasites exhibited no decline in numbers, and alteration in dye inclusion characteristics for refrigerated parasites was slower. Cryptosporidium oocysts were apparently more robust than Giardia cysts; differences between isolates were also noted. These results suggest Cryptosporidium oocysts and Giardia cysts do not persist in the Norwegian terrestrial environment over winter, and when detected, will have been excreted since the previous winter. Differences in the morphological characteristics, matrix effects, and the possible relationship of the dye data to parasite survival are discussed in relation to further studies.  相似文献   

9.
In order to acquire prevalence and genetic data on Cryptosporidium infections in captive lizards and snakes kept as pets, a survey was conducted on 150 individual reptiles from southern Italy. Fecal samples were preserved in 5% formalin and analyzed using a commercial immunofluorescence assay (IFA) for the detection of Cryptosporidium oocysts and Giardia cysts. IFA revealed the presence of Cryptosporidium oocysts in nine of the 150 samples examined (6.0%), precisely in 6/125 snakes (4.8%) and in 3/25 lizards (12.0%); all fecal samples tested negative for the presence of Giardia cysts. Molecular characterization based on nested PCR amplification and sequencing of the SSU-rRNA gene, revealed the presence of Cryptosporidium serpentis in three samples from snakes (Boa constrictor constrictor, Elapheguttata guttata guttata and Python molurus).  相似文献   

10.
To identify the animal sources for Cryptosporidium and Giardia contamination, we genotyped Cryptosporidium and Giardia spp. in wildlife from Sydney’s water catchments using sequence analysis at the 18S rRNA locus for Cryptosporidium and 18S rRNA and glutamate dehydrogenase (gdh) for Giardia. A total of 564 faecal samples from 16 different host species were analysed. Cryptosporidium was identified in 8.5% (48/564) samples from eight host species and Giardia was identified in 13.8% (78/564) from seven host species. Eight species/genotypes of Cryptosporidium were identified. Five G. duodenalis assemblages were detected including the zoonotic assemblages A and B.  相似文献   

11.
We evaluated the efficiency of five membrane filters for recovery of Cryptosporidium parvum oocysts and Giardia lamblia cysts. These filters included the Pall Life Sciences Envirochek (EC) standard filtration and Envirochek high-volume (EC-HV) membrane filters, the Millipore flatbed membrane filter, the Sartorius flatbed membrane filter (SMF), and the Filta-Max (FM) depth filter. Distilled and surface water samples were spiked with 10 oocysts and 10 cysts/liter. We also evaluated the recovery efficiency of the EC and EC-HV filters after a 5-s backwash postfiltration. The backwashing was not applied to the other filtration methods because of the design of the filters. Oocysts and cysts were visualized by using a fluorescent monoclonal antibody staining technique. For distilled water, the highest percent recovery for both the oocysts and cysts was obtained with the FM depth filter. However, when a 5-s backwash was applied, the EC-HV membrane filter (EC-HV-R) was superior to other filters for recovery of both oocysts (n = 53 ± 15.4 per 10 liters) and cysts (n = 59 ± 11.5 per 10 liters). This was followed by results of the FM depth filter (oocysts, 28.2 ± 8, P = 0.015; cysts, 49.8 ± 12.2, P = 0.4260), and SMF (oocysts, 16.2 ± 2.8, P = 0.0079; cysts, 35.2 ± 3, P = 0.0079). Similar results were obtained with surface water samples. Giardia cysts were recovered at higher rates than were Cryptosporidium oocysts with all five filters, regardless of backwashing. Although the time differences for completion of filtration process were not significantly different among the procedures, the EC-HV filtration with 5-s backwash was less labor demanding.  相似文献   

12.
Collaborative and in-house laboratory trials were conducted to evaluate Cryptosporidium oocyst and Giardia cyst recoveries from source and finished-water samples by utilizing the Filta-Max system and U.S. Environmental Protection Agency (EPA) methods 1622 and 1623. Collaborative trials with the Filta-Max system were conducted in accordance with manufacturer protocols for sample collection and processing. The mean oocyst recovery from seeded, filtered tap water was 48.4% ± 11.8%, while the mean cyst recovery was 57.1% ± 10.9%. Recovery percentages from raw source water samples ranged from 19.5 to 54.5% for oocysts and from 46.7 to 70.0% for cysts. When modifications were made in the elution and concentration steps to streamline the Filta-Max procedure, the mean percentages of recovery from filtered tap water were 40.2% ± 16.3% for oocysts and 49.4% ± 12.3% for cysts by the modified procedures, while matrix spike oocyst recovery percentages ranged from 2.1 to 36.5% and cyst recovery percentages ranged from 22.7 to 68.3%. Blinded matrix spike samples were analyzed quarterly as part of voluntary participation in the U.S. EPA protozoan performance evaluation program. A total of 15 blind samples were analyzed by using the Filta-Max system. The mean oocyst recovery percentages was 50.2% ± 13.8%, while the mean cyst recovery percentages was 41.2% ± 9.9%. As part of the quality assurance objectives of methods 1622 and 1623, reagent water samples were seeded with a predetermined number of Cryptosporidium oocysts and Giardia cysts. Mean recovery percentages of 45.4% ± 11.1% and 61.3% ± 3.8% were obtained for Cryptosporidium oocysts and Giardia cysts, respectively. These studies demonstrated that the Filta-Max system meets the acceptance criteria described in U.S. EPA methods 1622 and 1623.  相似文献   

13.
Samples of sewage influent from 40 sewage treatment works (STW) throughout Norway were examined for Cryptosporidium oocysts and Giardia duodenalis cysts. Both parasites were detected frequently (80% of STW were Cryptosporidium positive; 93% of STW were Giardia positive) and at maximum concentrations of >20,000 parasites/liter. The data suggest giardiasis is more widespread, and/or occurs with greater infection intensity, than cryptosporidiosis in Norway. STW serving higher person equivalents were more likely to be positive and had higher parasite concentrations. Parasite concentrations were used to estimate the proportion of contributing populations that could be clinically infected. For Cryptosporidium, the highest estimates were up to 5 per 100,000 individuals for two populations in eastern Norway. For Giardia, the highest estimate was 40 infected per 100,000 persons (approximately five times the usual national annual average) contributing to an STW in western Norway. As this population experienced a large waterborne giardiasis outbreak 6 months after sampling, it can be speculated that regular challenge with Giardia may occur here. Most Giardia isolates in sewage influent were assemblage A, although some assemblage B isolates were detected. There was substantial heterogeneity, but most samples contained isolates similar to genotype A3. Removal efficiencies at two STW with secondary treatment processes were estimated to be approximately 50% for Cryptosporidium and >80% for Giardia. An STW with minimal treatment had negligible removal of both parasites. Many STW in Norway have minimal treatment and discharge effluent into rivers and lakes, thus, risk of contamination of water courses by Cryptosporidium and Giardia is considerable.  相似文献   

14.
Cryptosporidium parvum and Giardia lamblia are protozoa capable of causing gastrointestinal diseases. Currently, these organisms are identified using immunofluorescent antibody (IFA)-based microscopy, and identification requires trained individuals for final confirmation. Since artificial neural networks (ANN) can provide an automated means of identification, thereby reducing human errors related to misidentification, ANN were developed to identify Cryptosporidium oocyst and Giardia cyst images. Digitized images of C. parvum oocysts and G. lamblia cysts stained with various commercial IFA reagents were used as positive controls. The images were captured using a color digital camera at 400× (total magnification), processed, and converted into a binary numerical array. A variety of “negative” images were also captured and processed. The ANN were developed using these images and a rigorous training and testing protocol. The Cryptosporidium oocyst ANN were trained with 1,586 images, while Giardia cyst ANN were trained with 2,431 images. After training, the best-performing ANN were selected based on an initial testing performance against 100 images (50 positive and 50 negative images). The networks were validated against previously “unseen” images of 500 Cryptosporidium oocysts (250 positive, 250 negative) and 282 Giardia cysts (232 positive, 50 negative). The selected ANNs correctly identified 91.8 and 99.6% of the Cryptosporidium oocyst and Giardia cyst images, respectively. These results indicate that ANN technology can be an alternate to having trained personnel for detecting these pathogens and can be a boon to underdeveloped regions of the world where there is a chronic shortage of adequately skilled individuals to detect these pathogens.  相似文献   

15.
We have isolated from a Kentucky stream a bacterial strain capable of killing the cyst form of Giardia lamblia. This bacterium, designated Sun4, is a Gram-negative, aerobic rod which produces a yellow pigment, but not of the flexirubin-type. Although true gliding motility has not been observed in Sun4, this strain does exhibit a spreading colony morphology when grown on R2A agar. Strain Sun4 has been identified by 16S rRNA sequencing and phylogenetic analysis as belonging to the genus Flavobacterium, and is most closely related to Cytophaga sp. strain Type 0092 and associated Flavobacterium columnare strains. Lipid analysis also identified fatty acids characteristic of the Cytophaga–Flavobacterium group of bacteria. In culture, Sun4 is able to degrade casein and cellulose, but not chitin, gelatin, starch, or agar. Degradation of Giardia cysts by Sun4 appears to require direct cellular contact as neither cell-free extracts nor cells separated from the cysts by dialysis membranes showed any activity against cysts. Activity against Giardia cysts is rapid, with Sun4 killing over 90% of cysts within 48 h. Strain Sun4 requires elevated levels of Ca2+ for optimal growth and degradative activity against Giardia cysts. We propose that bacterial strains such as Sun4 could be used as biological control agents against Giardia cysts in drinking water treatment systems.  相似文献   

16.
The standard procedure outlined by the United States Environmental Protection Agency (US EPA) in Method 1623 for analyzingGiardia lamblia cysts andCryptosporidium parvum oocysts in water samples consists of filtration, elution, centrifugal concentration, immunomagnetic separation (IMS), and immunofluorescence assay (IFA) followed by microscopic examination. In this study, the extent of (oo)cyst loss in each step of this procedure was evaluated by comparing recovery yields in segmented analyses: (i) IMS+IFA, (ii) concentration +IMS+IFA, and (iii) filtration/elution + concentration +IMS+IFA. The complete (oo)cyst recovery by the full procedure was 52–57%. The (oo)cyst loss in the IMS step was only 0–6%, implying that IMS is a fairly reliable method for (oo)cyst purification. Centrifugal concentration of the eluted sample and pellet collection before IMS resulted in a loss of 8–14% of the (oo)cysts. The largest (oo)cyst loss occurred in the elution step, with 68–71% of the total loss. The permeated loss of (oo)cysts was negligible during filtration of the water sample with a 1.0-μm pore polyethersulfone (PES) capsule. These results demonstrated that the largest fraction of (oo)cyst loss in this procedure occurred due to poor elution from the filter matrix. Improvements in the elution methodology are therefore required to enhance the overall recovery yield and the reliability of the detection of these parasitic protozoa.  相似文献   

17.
Cryptosporidium and Giardia are 2 protozoan parasites responsible for waterborne diseases outbreaks worldwide. In order to assess the prevalence of these protozoans in drinking water samples in the northern part of Portugal and the risk of human infection, we have established a long term program aiming at pinpointing the sources of surface water, drinking water, and environmental contamination, working with the water-supply industry. Total 43 sources of drinking water samples were selected, and a total of 167 samples were analyzed using the Method 1623. Sensitivity assays regarding the genetic characterization by PCR and sequencing of the genes, 18S SSU rRNA, for Cryptosporidium spp. and β,-giardin for G. duodenalis were set in the laboratory. According to the defined criteria, molecular analysis was performed over 4 samples. Environmental stages of the protozoa were detected in 25.7% (43 out of 167) of the water samples, 8.4% (14 out of 167) with cysts of Giardia, 10.2% (17 out of 167) with oocysts of Cryptosporidium and 7.2% (12 out of 167) for both species. The mean concentrations were 0.1-12.7 oocysts of Cryptosporidium spp. per 10 L and 0.1-108.3 cysts of Giardia duodenalis per 10 L. Our results suggest that the efficiency in drinking water plants must be ameliorated in their efficiency in reducing the levels of contamination. We suggest the implementation of systematic monitoring programs for both protozoa. To authors'' knowledge, this is the first report evaluating the concentration of environmental stages of Cryptosporidium and Giardia in drinking water samples in the northern part of Portugal.  相似文献   

18.
We report a method for detecting Giardia duodenalis cysts on lettuce, which we subsequently use to examine salad products for the presence of Giardia cysts and Cryptosporidium oocysts. The method is based on four basic steps: extraction of cysts from the foodstuffs, concentration of the extract and separation of the cysts from food materials, staining of the cysts to allow their visualization, and identification of cysts by microscopy. The concentration and separation steps are performed by centrifugation, followed by immunomagnetic separation using proprietary kits. Cyst staining is also performed using proprietary reagents. The method recovered 46.0% ± 19.0% (n = 30) of artificially contaminating cysts in 30 g of lettuce. We tested the method on a variety of commercially available natural foods, which we also seeded with a commercially available internal control, immediately prior to concentration of the extract. Recoveries of the Texas Red-stained Giardia cyst and Cryptosporidium oocyst internal controls were 36.5% ± 14.3% and 36.2% ± 19.7% (n = 20), respectively. One natural food sample of organic watercress, spinach, and rocket salad contained one Giardia cyst 50 g−1 of sample as an indigenous surface contaminant.  相似文献   

19.
Because the excreted sporocysts and/or oocysts of various species of Sarcocystis may not be discriminated morphologically, we sought to validate a diagnostic technique based on variation in the 18S rDNA sequence. Oocysts and/or sporocysts from three taxa of Sarcocystis were collected from human, feline, and canine definitive hosts that had fed upon meats infected with the muscle cysts of Sarcocystis hominis, Sarcocystis fusiformis and a species of Sarcocystis from water buffalo that could not be distinguished from Sarcocystis cruzi. Using a new collection method employing filter paper, these excreted oocysts and sporocysts were subjected to DNA extraction, as were the corresponding muscle cysts. Methods employing PCR–RFLP and DNA sequencing of a partial 18S rDNA gene (ssrRNA) sequence were then used to successfully distinguish among the three taxa. The same, unique restriction digestion pattern characterizes the tissue cysts and oocysts and/or sporocysts of each parasite taxon. The technique makes possible amplification and identification of species specific gene sequences based on DNA extracted from as few as 7 excreted sporocysts (the equivalent of 3 and 1/2 oocysts) from freshly prepared material, or as few as 50 sporocysts from feces samples that had been stored in potassium dichromate (K2Cr2O7) for as long as 6 years. This represents the first report using molecular diagnostic procedures to diagnose oocysts of Sarcocystis in faecal samples, describing a valuable new tool for studying the epidemiology of various Sarcocystis species.  相似文献   

20.
Giardia Cysts in Wastewater Treatment Plants in Italy   总被引:1,自引:2,他引:1       下载免费PDF全文
Reductions in annual rainfall in some regions and increased human consumption have caused a shortage of water resources at the global level. The recycling of treated wastewaters has been suggested for certain domestic, industrial, and agricultural activities. The importance of microbiological and parasitological criteria for recycled water has been repeatedly emphasized. Among water-borne pathogens, protozoa of the genera Giardia and Cryptosporidium are known to be highly resistant to water treatment procedures and to cause outbreaks through contaminated raw or treated water. We conducted an investigation in four wastewater treatment plants in Italy by sampling wastewater at each stage of the treatment process over the course of 1 year. The presence of the parasites was assessed by immunofluorescence with monoclonal antibodies. While Cryptosporidium oocysts were rarely observed, Giardia cysts were detected in all samples throughout the year, with peaks observed in autumn and winter. The overall removal efficiency of cysts in the treatment plants ranged from 87.0 to 98.4%. The removal efficiency in the number of cysts was significantly higher when the secondary treatment consisted of active oxidation with O2 and sedimentation instead of activated sludge and sedimentation (94.5% versus 72.1 to 88.0%; P = 0.05, analysis of variance). To characterize the cysts at the molecular level, the β-giardin gene was PCR amplified, and the products were sequenced or analyzed by restriction. Cysts were typed as assemblage A or B, both of which are human pathogens, stressing the potential risk associated with the reuse of wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号