首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Composition and density of the soil seed banks, together with seedling emergence in the field, were examined on Svalbard. 1213 soil samples were collected from six drymesic habitats in three regions representing various stages of colonization from bare moraines to full vegetation cover and spanning a range of typical nutrient and thermal regimes. Of the 165 vascular plant species native to Svalbard, 72 were present as mature plants at the study sites and of these 70% germinated seed. Proglacial soil had 12 seedlings per m2, disturbed Dryas heath 131, intact Dryas heath 91, polar heath 715, thermophilic heath 3113, and a bird cliff 10437 seedlings. Highest seed bank species richness was at the thermophilic heath (26 species). Seedlings of 27 species emerged in the field, with fewer seedlings in disturbed habitats (60 seedlings per m2) than in intact Dryas heath (142), suggesting that an absence of ‘safe sites’ limited seedling establishment in disturbed habitats. Measurement of seedling emergence in the field increased awareness of which species are able to germinate naturally. This may be underestimated by up to 31% if greenhouse trials alone are used, owing partly to unsuitability of greenhouse conditions for germination of some species and also to practical limitations of amount of soil sampled. Most thermophilic species failed to germinate and some species present at several sites only germinated from the thermophilic heath seed bank, suggesting that climate constrains recruitment from seeds in the High Arctic.  相似文献   

2.
本文研究了杨树清理1、2年后迹地的土壤种子库结构、多样性及其与地上植被和土壤因子的关系,并以未清理杨树洲滩为对照,探讨洞庭湖杨树清理迹地土壤种子库在植被自然恢复中的潜力。结果表明: 研究样地土壤种子库萌发出的植物种子分属23科59属65种,各样地土壤种子库密度和物种数大小为:1年迹地(11810粒·m-2,49种)>2年迹地(9686粒·m-2,44种)>对照(6735粒·m-2,29种)。与未清理洲滩相比,清理迹地土壤种子库与地上植被多年生中生和湿生植物物种多样性和相似性系数增加,土壤含水率和养分含量升高,pH值降低。土壤含水率和有机质与水蓼等湿生植物分布的关系密切,全钾和全磷对虉草等多年生植物分布的影响较大。在杨树清理迹地自然恢复过程中,随着土壤理化性质的变化,土壤种子库的物种数目和密度显著增加,以致地上植被物种多样性升高,因此,土壤种子库成为迹地湿地植被恢复的重要繁殖体来源。  相似文献   

3.
Many invasive plants originate as cultivated species. The growing demand for renewable energy has stimulated agricultural production of native and non-native perennial grasses, but little is known about their potential to become invasive outside cultivation, particularly at the early establishment phase. We evaluated effects of propagule pressure and establishment limitations for early establishment of four potential bioenergy grasses in agricultural field margins and forest understory across a 6.3° latitudinal gradient (Ontario, Canada; Illinois and Virginia, USA). We used multiple seed introductions in different years and followed their fate for up to three growing seasons. High interannual variability in establishment indicates that the frequency of propagule introduction is important for invasion outside cultivation. Establishment limitations were stronger in forest than field margins; of 328,800 seeds added, only 1 of 505 persisting seedlings occurred in forest. Removal of competing vegetation had small and variable effects on establishment among sites and species. Unlike previous short-term experiments, our results indicate the potential for the persistence of these bioenergy grasses in both vegetation and seed bank, and highlight the importance of long-term experiments in evaluating invasion risk.  相似文献   

4.
Arctic plant species are expected to lose range due to climate change. One approach to preserve the genetic and species diversity for the future is to store propagules in seed vaults. However, germinability of seeds is assumed to be low for Arctic species. We evaluated ex situ storage potential of 113 of the 161 native angiosperms of Svalbard by studying seed ripening and germination. Seeds or bulbils were collected, and germinability was tested after one winter of storage in the Svalbard Global Seed Vault. Twenty-six of the species did not produce ripe propagules, 8 produced bulbils, and 79 produced seeds. Bulbils sprouted to high percentages. Seeds of 10 species did not germinate, 22 had low germination (<20 %), 34 had germination of 21–70 %, and 13 had high germination percentages (>70 %). More than 70 % of the species belonging to Asteraceae, Brassicaceae, Caryophyllaceae, Juncaceae, Rosaceae, and Saxifragaceae germinated. Cold tolerant, common species had higher germination percentages than relatively thermophilous, rare species. Germination percentages were six times higher than observed in 1969 (n = 51) and 0.7 times that observed in 2008 (n = 22), indicating that recent climate warming improves germination in the Arctic. While in situ conservation is of vital importance, ex situ conservation in seed banks is a potential complementary conservation strategy for the majority of Arctic vascular plant species. For species that did not germinate, other methods for ex situ conservation should be sought, for example, growing in botanical gardens.  相似文献   

5.
Many invasive plant species are able to establish within a wide range of community types. This establishment success depends on high propagule pressure and successful recruitment of seedlings following propagule dispersal into receptive environments. This study aimed to investigate interactions between propagule pressure and environmental resistance to seedling recruitment of the invasive shrub, glossy buckthorn (Frangula alnus Mill.), over a range of wetland habitat types. We measured propagule deposition using seed traps and recruitment success using sown plots, while characterizing vegetation and abiotic environmental conditions in five adjacent wetland habitat types. Drier habitats, which included Cedar Swamp, Shrub Carr, and String, had lower resistance to buckthorn establishment than the wetter Flark and Cattail Marsh. The drier habitats supported more woody species and provided more raised hummock surfaces essential for successful buckthorn recruitment and establishment. Propagule pressure was also higher in dry habitats that supported higher densities of adult glossy buckthorn, while long-distance dispersal into areas with low adult density was uncommon. Natural recruitment was highest in sites with intense propagule pressure, but experimental sowing of seeds demonstrated that buckthorn establishes in wet sites with higher resistance if propagule pressure is increased and seeds are deposited on hummocks. This study demonstrates the affinity of glossy buckthorn for drier wetland sites, and provides empirical evidence that environmental resistance can be overcome by higher propagule pressure.  相似文献   

6.
Resource availability and propagule supply are major factors influencing establishment and persistence of both native and invasive species. Increased soil nitrogen (N) availability and high propagule inputs contribute to the ability of annual invasive grasses to dominate disturbed ecosystems. Nitrogen reduction through carbon (C) additions can potentially immobilize soil N and reduce the competitiveness of annual invasive grasses. Native perennial species are more tolerant of resource limiting conditions and may benefit if N reduction decreases the competitive advantage of annual invaders and if sufficient propagules are available for their establishment. Bromus tectorum, an exotic annual grass in the sagebrush steppe of western North America, is rapidly displacing native plant species and causing widespread changes in ecosystem processes. We tested whether nitrogen reduction would negatively affect B. tectorum while creating an opportunity for establishment of native perennial species. A C source, sucrose, was added to the soil, and then plots were seeded with different densities of both B. tectorum (0, 150, 300, 600, and 1,200 viable seeds m−2) and native species (0, 150, 300, and 600 viable seeds m−2). Adding sucrose had short-term (1 year) negative effects on available nitrogen and B. tectorum density, biomass and seed numbers, but did not increase establishment of native species. Increasing propagule availability increased both B. tectorum and native species establishment. Effects of B. tectorum on native species were density dependent and native establishment increased as B. tectorum propagule availability decreased. Survival of native seedlings was low indicating that recruitment is governed by the seedling stage.  相似文献   

7.
In tallgrass prairie reconstruction, the way desired seeds are arranged on the landscape may affect species establishment, species persistence, and the establishment and persistence of undesired (nonseeded) species from the local propagule pool. To test effects of species seeding pattern on how grasslands develop spatially, we seeded 20—4 × 4–m bare soil plots with 16 tallgrass prairie species. Treatment plots were divided into 16—1 × 1–m subplots, 64—0.5 × 0.5–m subplots, 256—0.25 × 0.25–m subplots, or 1,024—0.125 × 0.125–m subplots. Each species was hand broadcast into separate subplots (1 m2 total area/species) within each plot. An additional treatment included uniformly mixing and broadcasting all seeds across a plot. We recorded species cover at the 0.125 × 0.125–m scale within each plot at the beginning of the second and third growing seasons. While species persistence was greatest within plots seeded with larger subplots, plots with smaller subplots were more spatially diverse and less occupied by nonseeded species over time than larger subplot and mixed plots. As is common in reconstruction efforts, establishment was variable among species and seeding with monospecific subplots enhanced colonization of desired rhizomatous species (e.g., Heliopsis helianthoides, Monarda fistulosa, Elymus virginicus) into unoccupied locations at the expense of species from the local propagule pool. Results suggest that seeding species in smaller, monospecific patches could result in grasslands with a more balanced native species composition than those established with a seed mixture approach.  相似文献   

8.
RL Eckstein  D Ruch  A Otte  TW Donath 《PloS one》2012,7(7):e41887
Since inference concerning the relative effects of propagule pressure, biotic interactions, site conditions and species traits on the invasibility of plant communities is limited, we carried out a field experiment to study the role of these factors for absolute and relative seedling emergence in three resident and three non-resident confamilial herb species on a nutrient-poor temperate pasture. We set up a factorial field experiment with two levels each of the factors litter cover (0 and 400 g m(-2)), gap size (0.01 and 0.1 m(2)) and propagule pressure (5 and 50 seeds) and documented soil temperature, soil water content and relative light availability. Recruitment was recorded in spring and autumn 2010 and in spring 2011 to cover initial seedling emergence, establishment after summer drought and final establishment after the first winter. Litter alleviated temperature and moisture conditions and had positive effects on proportional and absolute seedling emergence during all phases of recruitment. Large gaps presented competition-free space with high light availability but showed higher temperature amplitudes and lower soil moisture. Proportional and absolute seedling recruitment was significantly higher in large than in small gaps. In contrast, propagule pressure facilitated absolute seedling emergence but had no effects on proportional emergence or the chance for successful colonisation. Despite significantly higher initial seedling emergence of resident than non-resident species, seed mass and other species-specific traits may be better predictors for idiosyncratic variation in seedling establishment than status. Our data support the fluctuating resource hypothesis and demonstrate that the reserve effect of seeds may facilitate seedling emergence. The direct comparison of propagule pressure with other environmental factors showed that propagule pressure affects absolute seedling abundance, which may be crucial for species that depend on other individuals for sexual reproduction. However, propagule batch size did not significantly affect the chance for successful colonisation of disturbed plots.  相似文献   

9.
10.
Abstract. The soil seed bank was investigated in four dry Afromontane forests of Ethiopia. At least 167 plant species were identified in the 0–9 cm soil layer with total densities ranging between 12 300 and 24 000 seeds/m2. Herbs were represented with the largest numbers of species and seeds in the seed bank, while the contribution of tree species was generally low. The overall vertical distribution of seeds was similar at all sites with the highest densities occurring in the upper three cm of soil and gradually decreasing densities with increasing depth. Relatively high densities also occurred in the litter layer. There were large differences in depth distribution between species, suggesting differences in seed longevity. A large number of species in dry Afromontane forests evidently store quantities of seeds in the soil and this is in contrast to the situation in most tropical rain forests, dry lowland forests and savannas, where both the number of seeds and the number of species are relatively small. It is possible that the strongly seasonal and unpredictable climate of this region may have selected for high levels of dormancy, and that herb regeneration is associated with small scale disturbance. The fact that most of the dominant tree species do not accumulate seeds in the soil suggests that their regeneration from seed would be unlikely if mature individuals disappeared. Most tree species have relatively large seeds and poor long-distance dispersal; this implies that restoration of Afromontane forests after destruction would be difficult. Since there is a diverse seed bank of the ground flora, this component of the vegetation would have a better chance of reestablishing. However, because most cleared forest land is used for agricultural crop production, it is probable that the seed bank will be depleted in only a few years. Therefore, the future of the Afromontane forest flora seems to depend on the successful conservation of the few fragments of remaining natural forest.  相似文献   

11.
BackgroundWhereas the incidence or rate of polyploid speciation in flowering plants is modest, the production of polyploid individuals within local populations is widespread. Explanations for this disparity primarily have focused on properties or interactions of polyploids that limit their persistence.HypothesisThe emergence of local polyploid populations within diploid populations is similar to the arrival of invasive species at new, suitable sites, with the exception that polyploids suffer interference from their progenitor(s). The most consistent predictor of successful colonization by invasive plants is propagule pressure, i.e. the number of seeds introduced. Therefore, insufficient propagule pressure, i.e. the formation of polyploid seeds within diploid populations, ostensibly is a prime factor limiting the establishment of newly emergent polyploids within local populations. Increasing propagule number reduces the effects of genetic, environmental and demographic stochasticity, which thwart population survival. As with invasive species, insufficient seed production within polyploid populations limits seed export, and thus reduces the chance of polyploid expansion.ConclusionThe extent to which propagule pressure limits the establishment of local polyploid populations remains to be determined, because we know so little. The numbers of auto- or allopolyploid seed in diploid populations rarely have been ascertained, as have the numbers of newly emergent polyploid plants within diploid populations. Moreover, seed production by these polyploids has yet to be assessed.  相似文献   

12.
Recruitment by seeds is essential both in vegetation dynamics and in supporting biodiversity in grasslands. The recruitment by seeds is feasible in suitable vegetation gaps from the seed rain and/or by establishment from persistent soil seed banks. Cessation of grassland management results in litter accumulation, which leads to the decline of species diversity by the decreased availability of open patches. Low amounts of litter is often beneficial, while high amounts of litter is detrimental for seed germination and seedling establishment of short-lived species. In a designed indoor experiment, we explored the effect of litter on seedling establishment by germinating six short-lived Brassicaceae species with both increasing seed mass and litter cover. We found that both seed mass and litter had significant effect on germination and establishment of the sown species. Small-seeded species were significantly negatively affected by the 300 and/or 600 g/m2 litter layers. No negative litter effect was detected for species with high seed masses (Lepidium spp.). No overall significant positive litter effect was found, although for most of the species cumulative seedling numbers were not the highest at the bare soil pots. Our results suggest that the negative effects of litter are less feasible on the large-seeded short-lived species than on that of small-seeded ones.  相似文献   

13.
The drawdown zone of the Three Gorges Reservoir Region was assumed to be completely formed in 2009 and the water level would range from ~145 m in flood season (summer) to ~175 m during non-flood season (winter). The soil seed bank is an important propagule source for vegetation restoration. In order to evaluate the potential of the soil seed bank to revegetate the drawdown zone of this region, we examined the quantitative relationships between the germinable soil seed bank and the established vertical and horizontal vegetation patterns. A total of 45 soil samples at four sites was collected to examine seed bank density, species richness, and composition using the seedling-emergence method. Forty-five species (from 20 families) germinated from the soil seed bank, and the average seed density was 4578 m−2. The seed bank was dominated by annual plants, suggesting reestablishment of some above-ground species was plausible. However, most established woody plants and perennials were absent from the seed bank indicating a low probability of reestablishment for non-annuals through the seed bank. Thus, due to low species compositional similarity to extant vegetation and the dominance of annual plants, the soil seed bank had a low potential to restore pre-dam vegetation in the drawdown zone of the Three Gorges Reservoir Region, but its potential as a propagule source should be considered regarding the management of the drawdown zone for vegetation cover.  相似文献   

14.
We compared species composition and diversity of the soil seed and seedling banks in three secondary vegetation types (shrubland, Populus bonatii forest, Lithocarpus regrowth forest) and a primary old-growth forest in the subtropical Ailao Mountains of southwestern China to clarify the importance of seed and seedling banks for forest dynamics. The average species richness was the highest in soil samples from the shrubland (26.80 ± 1.98), and the lowest from the primary forest (9.93 ± 0.50). The density of germinable tree seeds increased from the secondary vegetation to the primary forest, and the density of shrub, forb, and graminoid seeds decreased significantly. The most abundant seedlings recorded in soil samples were light-demanding species in the shrubland and Populus bonatii forest. For ground flora, the number of shrub seedlings strongly decreased with the increase in stand age, and shade-tolerant tree seedlings tended to increase. The species similarity between the seed bank and the aboveground vegetation in all sites was low (Sørensen’s index = 0.11–0.33), however, the shrubland had higher similarity compared with the other three plant communities. In the primary forest, light-demanding woody species dominated in soil seed banks, while shade-tolerant species dominated in the overstory and the forest floor. In the primary forest, seedlings of dominant tree species were rare in the understory, and no seeds of the dominant species were found in the soil. Results indicated that the early stages of vegetation recovery should take into account the possibility of recovering soil seed bank processes. However, colonization and establishment of tree seedlings will be difficult once a primary forest is destroyed.  相似文献   

15.
Germination responses of species from the native plant communities of southwestern Western Australia can be related to syndromes of life history, fire response, and seed storage, and also to factors related to environmental stress. The Mediterranean-type climate of the region with periodic drought and recurrent fires affects the production of viable seeds in plants of limited stature and rooting depth. Fire response ephemerals and species cued to flower by fire tend to produce viable, readily germinable seeds, but there are instances where seed production is aborted in these predominantly herbaceous life forms. Clonal, rhizomatous species often produce mainly inviable seeds. Production of viable seeds in woody species of these highly diverse communities may also be restricted by limitations to cross pollination. Obligate post-fire seeding species tend to produce a greater proportion of viable seeds than species which are capable of resprouting following fire. Serotinous species, whether post-fire re-seeders or post-fire resprouting species, produce mainly viable seeds, which germinate readily once freed from protective fruits. Species of the legume families and a few others of the soil seed bank produce innately dormant seeds which can be germinated following heat shock treatments which simulate the effects of fire. Heat shock in these species appears mainly as a mechanism to crack the hard seed coats, but the effect of heat to denature seed coat inhibitors has not been eliminated. Western Australian species do not seem to break dormancy when exposed to leachates from burned wood as has been observed in comparable habitats in California and South Africa, but further research is advised. Germination in many native southwestern Australian species is cued by temperatures that correspond to the winter rainfall period. There are also indications that an after-ripening period of warm, dry storage increases percentage of germinable seeds. Stimulation of germination by hormones is almost unresearched in Western Australia, but germination percentages have been increased in a small number of species of horticultural potential. Stimulation of germination by soil nutrient concentrations is almost unresearched in Western Australia, except for the inhibitory effect of excess sodium chloride levels inEucalyptus andMelaleuca. These species only germinate when osmotic effects are reduced to lower levels as would occur when winter rains dilute soil salts. Application of research on seed germination has already enhanced the establishment of seedlings in the restoration of mine sites and is becoming important in aspects of the breeding and selection of native plants for the cut flower, bedding plant and essential oil industries.  相似文献   

16.
A model was developed to assess how the seed rain and fire regime affect seed bank dynamics and seedling establishment of three native shrub species (Acanthostyles buniifolius, Baccharis pingraea and Baccharis dracunculifolia) with different regeneration strategies, in temperate South American savanna. Seed bank and seed rain were quantified for each species under different fire regimes, and their relative roles in regeneration were evaluated. All species had short-term persistent seed banks and high annual variability in seed production. A high proportion of seeds deposited in the seed rain produced seedlings after fire; few entered the soil seed bank. Fire killed a high proportion of the seeds in the soil seed bank. Seedlings derived from the seed rain had a higher probability of surviving for 2 years than seedlings emerging from the soil seed bank. In the absence of fire, establishment depended on germination both from the seed rain and the soil seed bank, whereas with annual fire, establishment was primarily dependent on germination of seeds arriving in the annual seed rain, regardless of species’ regeneration strategies. These results help to explain changes in the vegetation of South American temperate savannas as a result of changes in fire regime and grazing management during the last 50 years. By revealing the crucial roles of the soil seed bank and seed rain in regeneration, this study provides vital information for the development of appropriate management practices to control populations of shrub species with different regeneration strategies in South American temperate savannas.  相似文献   

17.
Seedling recruitment limitations create a demographic bottleneck that largely determines the viability and structure of plant populations and communities, and pose a core restriction on the colonization of novel habitat. We use a shade‐tolerant, invasive grass, Microstegium vimineum, to examine the interplay between seed and establishment limitations – phenomena that together determine recruitment success but usually are investigated individually. We add increasing amounts of seed to microhabitats containing variable levels of leaf litter thickness – with reduced leaf litter simulating disturbance – to investigate whether reduced seed limitation overcomes the establishment limitation posed by litter cover. We do this across gradients in understory light, moisture and temperature, and quantify germination, survival, and then per capita adult biomass and reproduction in order to understand the implications for invasion across the landscape. We find that the combined effects of seed and establishment limitation influence recruitment; however, propagule pressure overwhelms the inhibitory effects of leaf litter thickness. Leaf litter reduces germination by 22–57% and seedling survival by 13–15% from that observed on bare soil. However, density‐dependent reproduction compensates as 1–3 plants can produce far more seeds (approx. 525) than are required for persistence. As such, just a few plants may establish in understory forest habitat and subsequently overwhelm establishment barriers with copious propagule production. These results, for a widespread, invasive plant, are consistent with the emerging perspective for native plants that seed and establishment limitation jointly influence recruitment. The ability for an exotic plant species to compensate for low population densities with high per capita seed production, that then overrides establishment limitations, makes its invasive potential daunting. Further work is required to test if this is a common mechanism underlying plant invasions.  相似文献   

18.
种子重量的生态学研究进展   总被引:10,自引:4,他引:10       下载免费PDF全文
作为植物生活史中的一个关键性特征,种子重量与其它许多植物性状和生态因子有关,种子重量的分异与其它一些植物性状及环境的变化关系在进化生物学上已经成为一个非常有意义的研究内容,且具有一定的实践意义。种子重量被发现与下列的一些植物学和群落学性状有关:植物的生活型、种子的散布能力、种子的散布方式、植物的高度、植物的冠幅、植物的比叶面积、植物的寿命、动物的捕食、植被中植物的数量或多度、土壤中种子的数量或多度、种子的休眠、种子在土壤中的持久性和植物的净初级生产力等,另外生态因子如降雨、温度、坡向、海拔、经度、纬度、光强和干扰等都影响种子的重量。种子的重量被认为是在大量小种子和少量大种子之间的进化折衷,在一定的能量限度内,较大重量的种子一般具有较少的数量,而较小重量的种子一般数量较多,这是种子重量和数量方面具有的一种反向关系。与其它性状相比,很多研究都表明种子重量和植物的生活型的关系密切。没有散布结构或风散布的种子比以动物和水作为散布媒介的种子重量要小。种子重量与捕食的关系现发现有3种格局。种子重量和形状与种子在土壤中的持久性的关系有4种格局。在干旱和阴暗的环境条件下,种子有变大的趋势。大重量种子比小种子赋予幼苗较优势的竞争地位,其原理尚有争论,尚不清楚是否是幼苗阶段的竞争决定了世界上大部分植被类型的物种组成。未来的研究方向主要有以下几个方面:1) 种子重量与植物系统学相结合,探索种子重量的变化规律;2)调查群落三向(纬度、经度和海拔)性的种子重量谱变化规律;3) 群落演替与群落种子重量谱的变化;4) 种子重量与群落中植物个体和种子的数量的关系及机理研究;5) 微生境、微地形如坡向、坡位和林间隙等对种子重量的影响;6) 全球气候变化和种子重量变化的关系。  相似文献   

19.
The density and floristic composition of the soil seed bank was assessed in six cloud forest fragments with different levels of human disturbance in central Veracruz, Mexico. A total of 8416 seeds germinated in 60 soil samples, at 5‐cm depth, corresponding to 107 species, 85 genera, and 48 families. Significant differences were found among study sites in seed densities with values ranging from 873 to 3632/m2. Tree species contributed 20 percent of the total soil seed bank in four sites and herbs accounted for the majority of the species in each site. Among tree species, Trema micrantha displayed the highest seed density, accounting for 84 percent of the germinated seeds. In general, the tree species composition of the soil seed bank did not closely reflect the composition of the tree community. Results suggest that disturbance produced by human activities (trail use, selective cutting of trees, livestock) may influence the size and composition of the soil seed bank in forest fragments. Sites where human activity has been reduced showed the highest proportion of dormant seeds.  相似文献   

20.
The success of plant invasions may be limited by the availability of propagules and/or of suitable microsites, with microsite availability being affected by, for example, disturbance and interspecific competition. A mechanistic understanding of the contributions of propagule pressure and microsite limitation to plant invasions is therefore required to minimise future invasions. Here, we investigated the relative roles of propagule pressure, the availability of microsites, and their interaction on the establishment of an invasive herb, Lupinus polyphyllus, in two geographic regions representing different climate and growth conditions in Finland (a more productive southern region and a harsher central region). We carried out a field experiment in 14 L. polyphyllus populations, in which we manipulated both propagule pressure and disturbance. In a complementary greenhouse experiment, we manipulated propagule pressure and interspecific competition. Seedling establishment of L. polyphyllus was higher in the more productive southern region than in the harsher central region. The number of L. polyphyllus seedlings increased with increasing propagule pressure regardless of disturbance or interspecific competition. However, the number of L. polyphyllus seedlings per sown seed (relative establishment) tended to decrease with increasing propagule pressure, indicating that the positive effect of propagule pressure on early invasion is partially counteracted by density-dependent mortality at high seed densities. Our results highlight the dominant role of propagule pressure over disturbance and interspecific competition in the establishment of L. polyphyllus, suggesting that the early stage of invasion is limited by the availability of propagules rather than the availability of suitable microsites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号