首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mosses and lichens are the dominant macrophytes of the Antarctic terrestrial ecosystem. Using occurrence data from existing databases and additional published records, we analyzed patterns of moss and lichen species diversity on the Antarctic Peninsula at both a regional scale (1°latitudinal bands) and a local scale (52 and 56 individual snow‐ and ice‐free coastal areas for mosses and lichens, respectively) to test hypothesized relationships between species diversity and environmental factors, and to identify locations whose diversity may be particularly poorly represented by existing collections and online databases. We found significant heterogeneity in sampling frequency, number of records collected, and number of species found among analysis units at the two spatial scales, and estimated species richness using projected species accumulation curves to account for potential biases stemming from sample heterogeneity. Our estimates of moss and lichen richness for the entire Antarctic Peninsula region were within 20% of the total number of known species. Area, latitude, spatial isolation, mean summer temperature, and penguin colony size were considered as potential covariates of estimated species richness. Moss richness was correlated with isolation and latitude at the local scale, while lichen richness was correlated with summer mean temperature and, for 17 sites where penguins where present with <20 000 breeding pairs, penguin colony size. At the regional scale, moss richness was correlated with temperature and latitude. Lichen richness, by contrast, was not significantly correlated with any of the variables considered at the regional scale. With the exception of temperature, which explained 91% of the variation in regional moss diversity, explained variance was very low. Our results show that patterns of moss and lichen biodiversity are highly scale‐dependent and largely unexplained by the biogeographic variables found important in other systems.  相似文献   

2.
Abstract We report the composition of terrestrial, intertidal and shallow sublittoral faunal communities at sites around Rothera Research Station, Adelaide Island, Antarctic Peninsula. We examined primary hypotheses that the marine environment will have considerably higher species richness, biomass and abundance than the terrestrial, and that both will be greater than that found in the intertidal. We also compared ages and sizes of individuals of selected marine taxa between intertidal and subtidal zones to test the hypothesis that animals in a more stressed environment (intertidal) would be smaller and shorter lived. Species richness of intertidal and subtidal communities was found to be similar, with considerable overlap in composition. However, terrestrial communities showed no overlap with the intertidal, differing from previous reports, particularly from further north on the Antarctic Peninsula and Scotia Arc. Faunal biomass was variable but highest in the sublittoral. While terrestrial communities were depauperate with low biomass they displayed the highest overall abundance, with a mean of over 3 × 105 individuals per square metre. No significant differences in ages of intertidal and subtidal individuals of the same species were found, with bryozoan colonies of up to 4 years of age being present in the intertidal. In contrast with expectation and the limited existing literature we conclude that, while the Antarctic intertidal zone is clearly a suboptimal and highly stressful habitat, its faunal community can be well established and relatively diverse, and is not limited to short‐term opportunists or waifs and strays.  相似文献   

3.
4.
The edible cockle Cerastoderma edule is a marine bivalve commercially fished in several European countries that have lately suffered a significant decrease in production. Despite its commercial importance, genetic studies in this species are scarce. In this work, genetic diversity and population differentiation of C. edule has been assessed using 11 microsatellite markers in eight locations from the European Atlantic coast. All localities showed similar observed and expected heterozygosity values, but displayed differences in allelic richness, with lowest values obtained for localities situated farther north. Global Fst value revealed the existence of significant genetic structure; all but one locality from the Iberian Peninsula were genetically homogeneous, while more remote localities from France, The Netherlands, and Scotland were significantly different from all other localities. A combined effect of isolation by distance and the existence of barriers that limit gene flow may explain the differentiation observed.  相似文献   

5.
Overgrowth competition, sub-lethal mortality (some zooids killed but colony survives) and subsequent growth from fragments, and diversity of communities encrusting rocks (pebble through to boulder size) were examined from five Antarctic localities, along a latitudinal gradient. There were distinct gradients in the ecology of both assemblages and individual species with latitude within the Southern Ocean. Compared with warm-water equivalents, the polar assemblages had many fewer species, considerably less variability in species richness, highly transitive interactions and lower incidences of interspecific encounters. There is no gradual transition but a dramatic alteration of assemblage and species level ecology around the margins of the Southern Ocean, which may primarily be due to ice scour. Sub-lethal mortality was common and peaked on different boulder sizes along the Antarctic Peninsula. This is indicative of the disturbance cline along the region.  相似文献   

6.
In the present study, we surveyed the distribution and diversity of fungal assemblages associated with 10 species of marine animals from Antarctica. The collections yielded 83 taxa from 27 distinct genera, which were identified using molecular biology methods. The most abundant taxa were Cladosporium sp. 1, Debaryomyces hansenii, Glaciozyma martinii, Metschnikowia australis, Pseudogymnoascus destructans, Thelebolus cf. globosus, Pseudogymnoascus pannorum, Tolypocladium tundrense, Metschnikowia australis, and different Penicillium species. The diversity, richness, and dominance of fungal assemblages ranged among the host; however, in general, the fungal community, which was composed of endemic and cold-adapted cosmopolitan taxa distributed across the different sites of Antarctic Peninsula, displayed high diversity, richness, and dominance indices. Our results contribute to knowledge about fungal diversity in the marine environment across the Antarctic Peninsula and their phylogenetic relationships with species that occur in other cold, temperate, and tropical regions of the World. Additionally, despite their extreme habitats, marine Antarctic animals shelter cryptic and complex fungal assemblages represented by endemic and cosmopolitan cold-adapted taxa, which may represent interesting models to study different symbiotic associations between fungi and their animal hosts in the extreme conditions of Antarctica.  相似文献   

7.
We describe the application of molecular biological techniques to estimate eukaryotic diversity (primarily fungi, algae, and protists) in Antarctic soils across a latitudinal and environmental gradient between approximately 60 and 87 degrees S. The data were used to (i) test the hypothesis that diversity would decrease with increasing southerly latitude and environmental severity, as is generally claimed for "higher" faunal and plant groups, and (ii) investigate the level of endemicity displayed in different taxonomic groups. Only limited support was obtained for a systematic decrease in diversity with latitude, and then only at the level of a gross comparison between maritime (Antarctic Peninsula/Scotia Arc) and continental Antarctic sites. While the most southerly continental Antarctic site was three to four times less diverse than all maritime sites, there was no evidence for a trend of decreasing diversity across the entire range of the maritime Antarctic (60 to 72 degrees S). Rather, we found the reverse pattern, with highest diversity at sites on Alexander Island (ca. 72 degrees S), at the southern limit of the maritime Antarctic. The very limited overlap found between the eukaryotic biota of the different study sites, combined with their generally low relatedness to existing sequence databases, indicates a high level of Antarctic site isolation and possibly endemicity, a pattern not consistent with similar studies on other continents.  相似文献   

8.
We describe the application of molecular biological techniques to estimate eukaryotic diversity (primarily fungi, algae, and protists) in Antarctic soils across a latitudinal and environmental gradient between approximately 60 and 87°S. The data were used to (i) test the hypothesis that diversity would decrease with increasing southerly latitude and environmental severity, as is generally claimed for “higher” faunal and plant groups, and (ii) investigate the level of endemicity displayed in different taxonomic groups. Only limited support was obtained for a systematic decrease in diversity with latitude, and then only at the level of a gross comparison between maritime (Antarctic Peninsula/Scotia Arc) and continental Antarctic sites. While the most southerly continental Antarctic site was three to four times less diverse than all maritime sites, there was no evidence for a trend of decreasing diversity across the entire range of the maritime Antarctic (60 to 72°S). Rather, we found the reverse pattern, with highest diversity at sites on Alexander Island (ca. 72°S), at the southern limit of the maritime Antarctic. The very limited overlap found between the eukaryotic biota of the different study sites, combined with their generally low relatedness to existing sequence databases, indicates a high level of Antarctic site isolation and possibly endemicity, a pattern not consistent with similar studies on other continents.  相似文献   

9.
10.
S. de Juan  J. Hewitt 《Ecography》2014,37(2):183-190
Understanding changes in estuarine benthic communities has important implications for conservation and yet it is a challenge due to the high natural variability of these systems. We addressed this challenge through the study of temporal and spatial patterns of species richness in an intertidal benthic community in New Zealand North Island. Five different locations within the estuary were monitored seasonally over 12 yr. This data set allowed the study of species–time–area relationships (STAR) and the delineation of patterns in species richness, heterogeneity and turnover in space and time. The site with the highest species richness also had the highest within‐site heterogeneity in species richness, a high number of species occurring infrequently in time, the lowest mud content and the most variable wave climate. Similarities and differences between sites were generally maintained over time, although seasonal and multi‐year patterns in species richness occurred at all sites. The STAR showed a significant negative interaction between space and time, with species accumulation rates in space and time being equivalent at 4 spatial replicates (250 m2) and 2 temporal replicates (6 months). The lowest source of variability in species turnover was within site, and the highest source was over years. This was reflected in the lack of an asymptotic relationship in the species accumulation curve despite the 12 yr of monitoring. These results contribute to the knowledge of the variability in diversity patterns in estuaries and have important implications for long‐term monitoring of natural communities and the estimation of diversity for conservation.  相似文献   

11.
One of the greatest challenges for biodiversity conservation is the poor understanding of species diversity. Molecular methods have dramatically improved our ability to uncover cryptic species, but the magnitude of cryptic diversity remains unknown, particularly in diverse tropical regions such as the Amazon Basin. Uncovering cryptic diversity in amphibians is particularly pressing because amphibians are going extinct globally at an alarming rate. Here, we use an integrative analysis of two independent Amazonian frog clades, Engystomops toadlets and Hypsiboas treefrogs, to test whether species richness is underestimated and, if so, by how much. We sampled intensively in six countries with a focus in Ecuador (Engystomops: 252 individuals from 36 localities; Hypsiboas: 208 individuals from 65 localities) and combined mitochondrial DNA, nuclear DNA, morphological, and bioacoustic data to detect cryptic species. We found that in both clades, species richness was severely underestimated, with more undescribed species than described species. In Engystomops, the two currently recognized species are actually five to seven species (a 150-250% increase in species richness); in Hypsiboas, two recognized species represent six to nine species (a 200-350% increase). Our results suggest that Amazonian frog biodiversity is much more severely underestimated than previously thought.  相似文献   

12.
We examined deep-sea epibenthic sledge isopod data from the Atlantic sector of the Southern Ocean (SO) (depth range=742–5,191 m). Samples were taken during the expeditions EASIZ II (ANT XV-3) in 1998 and ANDEEP I and II (ANT XIX3/4) in 2002. A total of 471 isopod species were recorded from 28 sites. The species richness of the epibenthic sledge samples was highly variable (6–82 species). Species richness was highest at site 131-3 in 3,053 m depth in the north-eastern Weddell Sea. The highest numbers of species were sampled in the middle depth range and lower species richness was found in the shallower and deeper parts of the study area. Depth is suggested to explain isopod species richness better than both latitude and longitude. Between 58°S and 65°S, the number of species ranged from 9 to 82 (mean=35.9). Further south in the Weddell Sea, between 73°S and 74°S, species richness was lower and the number of species ranged from 6 to 35 (mean=19.2). With regard to longitude, the highest species richness (up to 82 species) was found between 50°W and 60°W in the area of the South Shetland Islands and around the Antarctic Peninsula, while numbers did not exceed 50 species in the eastern Weddell Sea. The haul length, ranging from 807 to 6,464 m, was positively correlated with depth; however, there was no linear relationship between haul length and species richness. We therefore suggest that depth was the most important factor explaining isopod species richness. However, only 28 sites were visited and the statistical power is thus limited. Sampling in the deep sea is expensive and time consuming and as yet this is the best isopod data set available from the Atlantic sector of the SO. Future expeditions are therefore important to better explain the current patterns of benthic diversity in Antarctica.  相似文献   

13.
Tidal pools in the Mexican Tropical Pacific coast have received relatively little attention in spite of their considerable richness in species and wide distribution in the region.This paper presents the first characterization of the algal flora of this region. It analyzes the number and composition of species of the tidal pools of six localities with regard to geographical distribution and its seasonal variations as well as tidal level. 97 species are reported, 25 Chlorophyta, 23 Phaeophyta, 34 Rhodophyta and 15 Cyanophyta.Of that total of species, 63% were found in one locality, 23.7% in two, 11.3% in three and 1 % in 4 or 5 localities. Not one species was common to all of the pools.The highest number of species was found on pools of the middle and low intertidal where the Chlorophyta, Rhodophyta and Phaeophyta were the most abundant algae. Cyanophyta was more common in the supralittoral and high intertidal pools.  相似文献   

14.
Despite an increasing number of Antarctic soil diversity assessments, understanding of the bacterial community composition in the arid soil environments of the maritime/continental Antarctic transitional zone remains lacking. Most documented microbiological studies had focused on either the wetter environments of the Antarctic Peninsula/Scotia arc or the exceptionally arid deserts of the Dry Valleys of continental Antarctica. In this study, soil bacterial diversity from three relatively arid sites on Alexander Island and the physicochemical parameters that might influence it were assessed. In general, the study sites exhibited levels of pH, hydration and metal content different from previous reports of maritime or continental Antarctic soil habitats. Although the soil from Alexander Island exhibited similar phylum-level bacterial taxonomic composition to those of other cold and arid environments, each study site was found to harbour significantly different bacterial assemblages. The latter finding was supported by three complementary molecular methods selected to address different elements of diversity. Our analyses of the measured parameters suggest that the differences in bacterial communities were best explained by soil pH and copper content. Using these data, we suggest that soil pH might play an important role in structuring bacterial assemblage patterns across polar soils.  相似文献   

15.
Abstract Ice scouring is a key structuring force acting on high latitude shallow benthic communities. Despite its importance, detailed studies of scoured communities are still rare. Here we report the ecological effects of 12 iceberg impacts, across three contrasting study sites, at Adelaide Island, West Antarctic Peninsula. Grounded icebergs were marked with GPS and the newly formed scours (at 10–17 m depth) were sampled within 20 days of formation. Comparisons between scoured and adjacent unscoured assemblages were made using measures of abundance, biomass, taxon richness and the relative abundance of secondary consumers. Ice scouring was catastrophic at all sites, despite differences in substratum type, exposure and background community. Compared with undisturbed areas, scour assemblages were 95% lower in mean macrofaunal abundance and 75.9% lower in species richness. There was no general trend across all sites of ice scouring selecting for secondary consumers. The echinoid Sterechinus neumayeri and bivalve mollusc Mysella charcoti were highly abundant in undisturbed areas and were the biggest contributors to the observed differences between scours and undisturbed areas.  相似文献   

16.
Latitudinal gradients in species abundance and diversity have been postulated for nearshore taxa but few analyses have been done over sufficiently broad geographic scales incorporating various nearshore depth strata to empirically test these gradients. Typically, gradients are based on literature reviews and species lists and have focused on alpha diversity across the entire nearshore zone. No studies have used a standardized protocol in the field to examine species density among sites across a large spatial scale while also focusing on particular depth strata. The present research used field collected samples in the northern hemisphere to explore the relationships between macroalgal species density and biomass along intertidal heights and subtidal depths and latitude. Results indicated no overall correlations between either estimates of species density or biomass with latitude, although the highest numbers of both were found at mid-latitudes. However, when strata were examined separately, significant positive correlations were found for both species numbers and biomass at particular strata, namely the intertidal ones. While the data presented in this paper have some limitations, we show that latitudinal macroalgal trends in species density and biomass do exist for some strata in the northern hemisphere with more taxa and biomass at higher latitudes.  相似文献   

17.
Core samples were taken along a 4 km stretch of intertidal seagrass on North Stradbroke Island, eastern Australia, at nested scales of 1 m (stations), 150 m (sites), and 2 km (localities) to investigate the extent to which abundance, diversity, and assemblage composition of the dominant smaller members (<10 mm) of the intertidal seagrass macrobenthos vary spatially and over what scales. Gastropods and polychaetes dominated both the 91 species present and, together with decapods, also the numbers of individuals. Abundance was low (mean < 2000 individuals m−2) but species diversity was high (overall Simpson’s index of diversity 0.91), with 44% of species occurring only as one or two individuals, and with only two species contributing >10% to the total numbers (the microgastropod Calopia imitata and crab Enigmaplax littoralis, both little known, rarely recorded endemics). On average, a species only occurred at 6% of stations and only four occurred at >25%. Assemblages at the three localities did not vary significantly in gross ecological features (levels of species richness, faunal abundance and species diversity per component site) (ANOVA P ≫ 0.05), but did vary markedly in their composition at all spatial scales (PERMANOVA P < 0.05). Variance partitioning showed that components of total variance were least at the largest spatial scale (locality 15.9%) and greatest at the smallest scale (station 59.3%). The commoner individual species all showed random distributions at small spatial scales but clumped distributions at large spatial scales.  相似文献   

18.
Metazoan parasite infracommunities of the Florida pompano (Trachinotus carolinus) were studied in terms of species composition, species richness, diversity, numerical dominance, and similarity. Seventy-five fishes were collected from 4 localities along the Yucatan Peninsula coast and 24 parasite species recovered. Most were digeneans (8 species) and nematodes (7). Other species were monogeneans (3). aspidogastreans (2), cestodes (1), acanthocephalans (1), and crustaceans (2). Only 4 species were common in at least I locality. Mean values for species richness, abundance, diversity, numerical dominance, and similarity in total (all species in the individual fish), gastrointestinal, and ectoparasite infracommunities were within ranges observed for most helminth infracommunities of marine fishes from temperate and tropical latitudes. These infracommunities had low species richness, abundance, diversity, and predictability (except ectoparasite infracommunities) and high dominance. Within the predictable element (common species), the specialist monogenean Pseudobicotylophora atlantica was the main reason for the increase in predictability because it was the only common species at all 4 localities. Host feeding habits, the distribution of intermediate hosts and infective stages, the local species pool, and a phylogenetic component seem to be determining the characteristics of these metazoan parasite infracommunities.  相似文献   

19.
Abstract Currently there is no single accepted hypothesis to explain gall‐forming insect species richness at a particular locality. Hygrothermal stress, soil nutrient availability, plant species richness, plant structural complexity, plant family or genus size, and host plant geographical range size have all been implicated in the determination of gall‐forming insect species richness. Previous studies of such richness at xeric sites have included predominantly scleromorphic vegetation, usually on nutrient‐poor soils. This study is the first to investigate gall‐forming insect species richness of xeric, non‐scleromorphic vegetation. Two habitat types were sampled at each of five localities across a rainfall gradient in the savanna biome of South Africa. The habitat types differed with respect to plant species composition and topography. Gall‐forming insect species richness did not increase with increasing hygrothermal stress or decreasing soil fertility. Rather, gall‐forming insect species richness was largely dependent on the presence of Terminalia sericea as well as other members of the Combretaceae and Mimosaceae. Plots where all these taxa were present had the highest gall‐forming insect species richness, up to 15 species, whereas plots with none of these taxa had a maximum of four galling‐insect species. Despite herb, shrub and tree strata not differing in gall‐forming insect species richness, insect galls were more common on woody than non‐woody plants. Also, stem galls were more frequent than apical or leaf galls. An alternative hypothesis to explain local gall‐forming insect species richness is suggested: galling insects may preferentially select those plant species with characteristics such as chemical toxicity, mechanical strength, degree of lignification or longevity that can be manipulated to benefit the galler. Thus plant community composition should be considered when attempting to explain gall‐forming insect species richness patterns.  相似文献   

20.
Aims To study the community structure and habitat preferences of the Epsilonematidae and Draconematidae in coral degradation zones. To assess the contribution of different localities and microhabitats to meiobenthic diversity in such ecosystems. To discuss dispersive capacities and the occurrence of cryptic species in meiobenthic organisms. Location Porcupine Seabight (north‐east Atlantic Ocean; continental slope) and a transect along the Kenyan coast (Indian Ocean; shallow lagoon). Methods In the north‐east Atlantic, dead coral fragments, sponge skeletons and sediment were collected with a boxcorer. Along the Kenyan coast, dead coral fragments and coral gravel were collected during snorkelling and skin diving. Only nematodes belonging to the families Epsilonematidae and Draconematidae were considered. Community structure was analysed using multivariate techniques. Biodiversity was represented via rarefaction curves. Additive partitioning of species diversity was conducted. Turnover between microhabitats within locations and between locations within microhabitats were compared in a ternary plot. Results Twelve epsilonematid and five draconematid species were found in the Porcupine Seabight. In Kenya, 39 epsilonematid and 20 draconematid species were distinguished. Three species were found at both sampling locations. A table with the known distribution of all currently described species encountered in our study area is provided. At both sampling locations, the communities on coral fragments were significantly different from those in the other microhabitats, and were most diverse. In Kenya, species richness was mainly determined by local diversity and by turnover between localities. The contribution of β‐diversity decreased when abundance data were analysed. Turnover between microhabitats and between coral samples from different localities was higher than turnover between locations for gravel samples. Main conclusions Coral fragments were recognized as favourable substrata for typically epifaunal nematodes. Species‐specific habitat preferences were explained by finely tuned morphological adaptations. Our results suggest that cosmopolitan species could well be cryptic species, and this explanation for the existence of morphologically identical nematodes in geographically distant areas is weighed up against other plausible explanations. Coral degradation zones are an important source for new species of Epsilonematidae and Draconematidae. The addition of sampling locations contributed to the total number of species, although the added species were generally rare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号