首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrin-associated focal adhesion complexes provide the main adhesive links between the cellular actin cytoskeleton and the surrounding extracellular matrix. In vitro, cells utilize a complex temporal and spatially regulated mechanism of focal adhesion assembly and disassembly required for cell migration. Recent studies indicate that members of both calpain and caspase protease families can promote limited proteolytic cleavage of several components of focal adhesions leading to disassembly of these complexes. Such mechanisms that influence cell adhesion may be deregulated under pathological conditions characterized by increased cell motility, such as tumor invasion. v-Src-induced oncogenic transformation is associated with loss of focal adhesion structures and transition to a less adherent, more motile phenotype, while inactivating temperature-sensitive v-Src in serum-deprived transformed cells leads to detachment and apoptosis. In this report, we demonstrate that v-Src-induced disassembly of focal adhesions is accompanied by calpain-dependent proteolysis of focal adhesion kinase. Furthermore, inhibitors of calpain repress v-Src-induced focal adhesion disruption, loss of substrate adhesion, and cell migration. In contrast, focal adhesion loss during detachment and apoptosis induced after switching off temperature-sensitive v-Src in serum-deprived transformed cells is accompanied by caspase-mediated proteolysis of focal adhesion kinase. Thus, calpain and caspase differentially regulate focal adhesion turnover during Src-regulated cell transformation, motility, and apoptosis.  相似文献   

2.
The immune cells named T lymphocytes circulate around the body fulfilling their role in immunosurveillance by monitoring the tissues for injury or infection. To migrate from the blood into the tissues, they make use of the integrin LFA-1 which is exclusively expressed by immune cells. These highly motile cells attach and migrate on substrates expressing the LFA-1 ligand ICAM-1. The molecular events signaling LFA-1 activation and adhesion are now reasonably well identified, but the process of detaching LFA-1 adhesions is less understood. The cysteine protease calpain is involved in turnover of integrin-mediated adhesions in less motile cell types. In this study we have explored the involvement of calpain in turnover of LFA-1-mediated adhesions of T lymphocytes. Using live cell imaging and immunohistochemistry, we demonstrate that turnover of adhesions depends on the Ca2+-dependent enzyme, calpain 2. Inhibition of calpain activity by means of siRNA silencing or pharmacological inhibition results in inefficient disassembly of LFA-1 adhesions causing T lymphocyte elongation and shedding of LFA-1 clusters behind the migrating T lymphocytes. We show that calpain 2 is distributed throughout the T lymphocyte, but is most active at the trailing edge as detected by expression of its fluorescent substrate CMAC,t-BOC-Leu-Met. Extracellular Ca2+ entry is essential for the activity of calpain 2 that is constantly maintained as the T lymphocytes migrate. Use of T cells from a patient with mutation in ORAI1 revealed that the major calcium-release-activated-calcium channel is not the ion channel delivering the Ca2+. We propose a model whereby Ca2+ influx, potentially through stretch activated channels, is sufficient to activate calpain 2 at the trailing edge of a migrating T cell and this activity is essential for the turnover of LFA-1 adhesions.  相似文献   

3.
The early endosome protein Rab5 was recently shown to promote cell migration by enhancing focal adhesion disassembly through mechanisms that remain elusive. Focal adhesion disassembly is associated to proteolysis of talin, in a process that requires calpain2. Since calpain2 has been found at vesicles and endosomal compartments, we hypothesized that Rab5 stimulates calpain2 activity, leading to enhanced focal adhesion disassembly in migrating cells. We observed that calpain2 co-localizes with EEA1-positive early endosomes and co-immunoprecipitates with EEA1 and Rab5 in A549 lung carcinoma cells undergoing spreading, whereas Rab5 knock-down decreased the accumulation of calpain2 at early endosomal-enriched fractions. In addition, Rab5 silencing decreased calpain2 activity, as shown by cleavage of the fluorogenic substrate tBOC-LM-CMAC and the endogenous substrate talin. Accordingly, Rab5 promoted focal adhesion disassembly in a calpain2-dependent manner, as expression of GFP-Rab5 accelerated focal adhesion disassembly in nocodazole-synchronized cells, whereas pharmacological inhibition of calpain2 with N-acetyl-Leu-Leu-Met prevented both focal adhesion disassembly and cell migration induced by Rab5. In summary, these data uncover Rab5 as a novel regulator of calpain2 activity and focal adhesion proteolysis leading to cell migration.  相似文献   

4.
Focal adhesion disassembly is regulated by microtubules (MTs) through an unknown mechanism that involves dynamin. To test whether endocytosis may be involved, we interfered with the function of clathrin or its adaptors autosomal recessive hypercholesteremia (ARH) and Dab2 (Disabled-2) and found that both treatments prevented MT-induced focal adhesion disassembly. Surface labeling experiments showed that integrin was endocytosed in an extracellular matrix–, clathrin-, and ARH- and Dab2-dependent manner before entering Rab5 endosomes. Clathrin colocalized with a subset of focal adhesions in an ARH- and Dab2-dependent fashion. Direct imaging showed that clathrin rapidly accumulated on focal adhesions during MT-stimulated disassembly and departed from focal adhesions with integrin upon their disassembly. In migrating cells, depletion of clathrin or Dab2 and ARH inhibited focal adhesion disassembly and decreased the rate of migration. These results show that focal adhesion disassembly occurs through a targeted mechanism involving MTs, clathrin, and specific clathrin adaptors and that direct endocytosis of integrins from focal adhesions mediates their disassembly in migrating cells.  相似文献   

5.
The dynamic turnover of integrin-mediated adhesions is important for cell migration. Paxillin is an adaptor protein that localizes to focal adhesions and has been implicated in cell motility. We previously reported that calpain-mediated proteolysis of talin1 and focal adhesion kinase mediates adhesion disassembly in motile cells. To determine whether calpain-mediated paxillin proteolysis regulates focal adhesion dynamics and cell motility, we mapped the preferred calpain proteolytic site in paxillin. The cleavage site is between the paxillin LD1 and LD2 motifs and generates a C-terminal fragment that is similar in size to the alternative product paxillin delta. The calpain-generated proteolytic fragment, like paxillin delta, functions as a paxillin antagonist and impairs focal adhesion disassembly and migration. We generated mutant paxillin with a point mutation (S95G) that renders it partially resistant to calpain proteolysis. Paxillin-deficient cells that express paxillin S95G display increased turnover of zyxin-containing adhesions using time-lapse microscopy and also show increased migration. Moreover, cancer-associated somatic mutations in paxillin are common in the N-terminal region between the LD1 and LD2 motifs and confer partial calpain resistance. Taken together, these findings suggest a novel role for calpain-mediated proteolysis of paxillin as a negative regulator of focal adhesion dynamics and migration that may function to limit cancer cell invasion.  相似文献   

6.
Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite the importance of these processes in migration, the mechanisms that regulate adhesion formation and disassembly remain largely unknown. Here we develop quantitative assays to measure the rate of incorporation of molecules into adhesions and the departure of these proteins from adhesions. Using these assays, we show that kinases and adaptor molecules, including focal adhesion kinase (FAK), Src, p130CAS, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase (MLCK) are critical for adhesion turnover at the cell front, a process central to migration.  相似文献   

7.
Integrin-associated focal adhesions not only provide adhesive links between cellular actin and extracellular matrix but also are sites of signal transmission into the cell interior. Many cell responses signal through focal adhesion kinase (FAK), often by integrin-induced autophosphorylation of FAK or phosphorylation by Src family kinases. Here, we used an interfering FAK mutant (4-9F-FAK) to show that Src-dependent FAK phosphorylation is required for focal adhesion turnover and cell migration, by controlling assembly of a calpain 2/FAK/Src/p42ERK complex, calpain activation, and proteolysis of FAK. Expression of 4-9F-FAK in FAK-deficient fibroblasts also disrupts F-actin assembly associated with normal adhesion and spreading. In addition, we found that FAK's ability to regulate both assembly and disassembly of the actin and adhesion networks may be linked to regulation of the protease calpain. Surprisingly, we also found that the same interfering 4-9F-FAK mutant protein causes apoptosis of serum-deprived, transformed cells and suppresses anchorage-independent growth. These data show that Src-mediated phosphorylation of FAK acts as a pivotal regulator of both actin and adhesion dynamics and survival signaling, which, in turn, control apparently distinct processes such as cell migration and anchorage-independent growth. This also highlights that dynamic regulation of actin and adhesions (which include the integrin matrix receptors) is critical to signaling output and biological responses.  相似文献   

8.
Calpain-mediated proteolysis of talin regulates adhesion dynamics   总被引:1,自引:0,他引:1  
Dynamic regulation of adhesion complexes is required for cell migration and has therefore emerged as a key issue in the study of cell motility. Recent progress has been made in defining some of the molecular mechanisms by which adhesion disassembly is regulated, including the contributions of adhesion adaptor proteins and tyrosine kinases. However, little is known about the potential contribution of proteolytic mechanisms to the regulation of adhesion complex dynamics. Here, we show that proteolysis of talin by the intracellular calcium-dependent protease calpain is critical for focal adhesion disassembly. We have generated a single point mutation in talin that renders it resistant to proteolysis by calpain. Quantification of adhesion assembly and disassembly rates demonstrates that calpain-mediated talin proteolysis is a rate-limiting step during adhesion turnover. Furthermore, we demonstrate that disassembly of other adhesion components, including paxillin, vinculin and zyxin, is also dependent on the ability of calpain to cleave talin, suggesting a general role for talin proteolysis in regulating adhesion turnover. Together, these findings identify calpain-mediated proteolysis of talin as a mechanism by which adhesion dynamics are regulated.  相似文献   

9.
Myogenesis is a complex sequence of events, including the irreversible transition from the proliferation-competent myoblast stage into fused, multinucleated myotubes. During embryonic development, myogenic differentiation is regulated by positive and negative signals from surrounding tissues. Stimulation due to stretch- or load-induced signaling is now beginning to be understood as a factor which affects gene sequences, protein synthesis and an increase in Ca2+ influx in myocytes. Evidence of the involvement of Ca2+ -dependent activity in myoblast fusion, cell membrane and cytoskeleton component reorganization due to the activity of the ubiquitous proteolytic enzymes, calpains, has been reported. Whether there is a link between stretch- or load-induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have demonstrated that mechanical stimulation via laminin receptors leads to an increase in m-calpain expression, but no increase in the expression of other calpain isoforms. Our study revealed that after a short period of stimulation, m-calpain relocates into focal adhesion complexes and is followed by a breakdown of specific focal adhesion proteins previously identified as substrates for this enzyme. We show that stimulation also leads to an increase in calpain activity in these cells. These data support the pivotal role for m-calpain in the control of muscle precursor cell differentiation and thus strengthen the idea of its implication during the initial events of muscle development.  相似文献   

10.
Interaction of integrins with the extracellular matrix leads to transmission of signals, cytoskeletal reorganizations, and changes in cell behavior. While many signaling molecules are known to be activated within Rac-induced focal complexes or Rho-induced focal adhesions, the way in which integrin-mediated adhesion leads to activation of Rac and Rho is not known. In the present study, we identified clusters of integrin that formed upstream of Rac activation. These clusters contained a Rac-binding protein(s) and appeared to be involved in Rac activation. The integrin clusters contained calpain and calpain-cleaved beta3 integrin, while the focal complexes and focal adhesions that formed once Rac and Rho were activated did not. Moreover, the integrin clusters were dependent on calpain for their formation. In contrast, while Rac- and Rho-GTPases were dependent on calpain for their activation, formation of focal complexes and focal adhesions by constitutively active Rac or Rho, respectively, occurred even when calpain inhibitors were present. Taken together, these data are consistent with a model in which integrin-induced Rac activation requires the formation of integrin clusters. The clusters form in a calpain-dependent manner, contain calpain, calpain-cleaved integrin, and a Rac binding protein(s). Once Rac is activated, other integrin signaling complexes are formed by a calpain-independent mechanism(s).  相似文献   

11.
The present study investigated the role of calpain 2 in rat uterine luminal epithelial cells during early pregnancy. Calpain 2 is an intracellular calcium-dependent proteolytic enzyme which cleaves numerous focal adhesion proteins. Calpain 2 was concentrated along the basal cell surface of uterine luminal epithelial cells at the predicted site of focal adhesions on day 1 of pregnancy and remained unchanged at the time of implantation as observed by immunofluorescence microscopy. However, Western blotting analysis showed a marked increase in the active form and a significant decrease in the latent form of calpain 2 at the time of implantation. The increase in calpain 2 activity coincides with the disassembly of focal adhesion proteins, talin, paxillin, integrin β1 and β3 from the site of focal adhesions. Intraperitoneal injection of calpain inhibitor, calpain inhibitor l (ALLN), significantly reduced the number of implantation sites, implying that calpain 2 plays an important role in implantation. The present study suggests a role for calpain 2 in the disassembly of focal adhesions, which has been previously shown to play a key role in uterine receptivity for implantation.  相似文献   

12.
Chemotaxis (i.e., directed migration) of hepatic stellate cells to areas of inflammation is a requisite event in the liver's response to injury. Previous studies of signaling pathways that regulate stellate cell migration suggest a key role for focal adhesions, but the exact function of these protein complexes in motility remains unclear. Focal adhesions attach a cell to its substrate and therefore must be regulated in a highly coordinated manner during migration. To test the hypothesis that focal adhesion turnover is an essential early event for chemotaxis in stellate cells, we employed a live-cell imaging technique in which chemotaxis was induced by locally stimulating the tips of rat stellate cell protrusions with platelet-derived growth factor-BB (PDGF). Focal adhesions were visualized with an antibody directed against vinculin, a structural component of the focal adhesion complex. PDGF triggered rapid disassembly of adhesions within 6.25 min, subsequent reassembly by 12.5 min, and continued adhesion assembly in concert with the spreading protrusion until the completion of chemotaxis. Blockade of adhesion disassembly by growing cells on fibronectin or treatment with nocodazole prevented a chemotactic response to PDGF. Augmentation of adhesion disassembly with ML-7 enhanced the chemotactic response to PDGF. These data suggest that focal adhesion disassembly is an essential early event in stellate cell chemotaxis in response to PDGF.  相似文献   

13.
The role of intracellular Ca2+ homeostasis in mechanisms of neuronal cell death and cysteine protease activation was investigated in SH-SY5Y human neuroblastoma cells. Cells were incubated in 2 mM EGTA to lower intracellular Ca2+ or 5 mM CaCl2 to raise it. Cell death and activation of calpain and caspase-3 were measured. Both EGTA and excess CaCl2 elicited cell death. EGTA induced DNA laddering and an increase in caspase-3-like, but not calpain, activity. Pan-caspase inhibitors protected against EGTA-, but not CaCl2-, induced cell death. Conversely, excess Ca2+ elicited necrosis and activated calpain but not caspase-3. Calpain inhibitors did not preserve cell viability. Ca2+ was the death-mediating factor, because restoration of extracellular Ca2+ protected against cell death induced by EGTA and blockade of Ca2+ channels by Ni2+ protected against that induced by high Ca2+. We conclude that the EGTA treatment lowered intracellular Ca2+ and elicited caspase-3-like protease activity, which led to apoptosis. Conversely, excess extracellular Ca2+ entered Ca2+ channels and increased intracellular Ca2+ leading to calpain activation and necrosis. The mode of cell death and protease activation in response to changing Ca2+ were selective and mutually exclusive, demonstrating that these are useful models to individually investigate apoptosis and necrosis.  相似文献   

14.
Golgi antiapoptotic proteins (GAAPs) are highly conserved Golgi membrane proteins that inhibit apoptosis and promote Ca2+ release from intracellular stores. Given the role of Ca2+ in controlling cell adhesion and motility, we hypothesized that human GAAP (hGAAP) might influence these events. In this paper, we present evidence that hGAAP increased cell adhesion, spreading, and migration in a manner that depended on the C-terminal domain of hGAAP. We show that hGAAP increased store-operated Ca2+ entry and thereby the activity of calpain at newly forming protrusions. These hGAAP-dependent effects regulated focal adhesion dynamics and cell migration. Indeed, inhibition or knockdown of calpain 2 abrogated the effects of hGAAP on cell spreading and migration. Our data reveal that hGAAP is a novel regulator of focal adhesion dynamics, cell adhesion, and migration by controlling localized Ca2+-dependent activation of calpain.  相似文献   

15.
Transient elevations in Ca2+ have previously been shown to promote focal adhesion disassembly and cell motility through an unknown mechanism. In this study, evidence is provided to show that CaMK-II, a Ca2+/calmodulin dependent protein kinase, influences fibroblast adhesion and motility. TIRF microscopy reveals a dynamic population of CaMK-II at the cell surface in migrating cells. Inhibition of CaMK-II with two mechanistically distinct, membrane permeant inhibitors (KN-93 and myr-AIP) freezes lamellipodial dynamics, accelerates spreading on fibronectin, enlarges paxillin-containing focal adhesions and blocks cell motility. In contrast, constitutively active CaMK-II is not found at the cell surface, reduces cell attachment, eliminates paxillin from focal adhesions and decreases the phospho-tyrosine levels of both FAK and paxillin; all of these events can be reversed with myr-AIP. Thus, both CaMK-II inhibition and constitutive activation block cell motility through over-stabilization or destabilization of focal adhesions, respectively. Coupled with the existence of transient Ca2+ elevations and a dynamic CaMK-II population, these findings provide the first direct evidence that CaMK-II enables cell motility by transiently and locally stimulating tyrosine dephosphorylation of focal adhesion proteins to promote focal adhesion turnover.  相似文献   

16.
Integrin-induced adhesion leads to cytoskeletal reorganizations, cell migration, spreading, proliferation, and differentiation. The details of the signaling events that induce these changes in cell behavior are not well understood but they appear to involve activation of Rho family members which activate signaling molecules such as tyrosine kinases, serine/threonine kinases, and lipid kinases. The result is the formation of focal complexes, focal adhesions, and bundles and networks of actin filaments that allow the cell to spread. The present study shows that mu-calpain is active in adherent cells, that it cleaves proteins known to be present in focal complexes and focal adhesions, and that overexpression of mu-calpain increased the cleavage of these proteins, induced an overspread morphology and induced an increased number of stress fibers and focal adhesions. Inhibition of calpain with membrane permeable inhibitors or by expression of a dominant negative form of mu-calpain resulted in an inability of cells to spread or to form focal adhesions, actin filament networks, or stress fibers. Cells expressing constitutively active Rac1 could still form focal complexes and actin filament networks (but not focal adhesions or stress fibers) in the presence of calpain inhibitors; cells expressing constitutively active RhoA could form focal adhesions and stress fibers. Taken together, these data indicate that calpain plays an important role in regulating the formation of focal adhesions and Rac- and Rho-induced cytoskeletal reorganizations and that it does so by acting at sites upstream of both Rac1 and RhoA.  相似文献   

17.
Vascular endothelial growth factor (VEGF) plays a significant role in blood-brain barrier breakdown and angiogenesis after brain injury. VEGF-induced endothelial cell migration is a key step in the angiogenic response and is mediated by an accelerated rate of focal adhesion complex assembly and disassembly. In this study, we identified the signaling mechanisms by which VEGF regulates human brain microvascular endothelial cell (HBMEC) integrity and assembly of focal adhesions, complexes comprised of scaffolding and signaling proteins organized by adhesion to the extracellular matrix. We found that VEGF treatment of HBMECs plated on laminin or fibronectin stimulated cytoskeletal organization and increased focal adhesion sites. Pretreating cells with VEGF antibodies or with the specific inhibitor SU-1498, which inhibits Flk-1/KDR receptor phosphorylation, blocked the ability of VEGF to stimulate focal adhesion assembly. VEGF induced the coupling of focal adhesion kinase (FAK) to integrin alphavbeta5 and tyrosine phosphorylation of the cytoskeletal components paxillin and p130cas. Additionally, FAK and related adhesion focal tyrosine kinase (RAFTK)/Pyk2 kinases were tyrosine-phosphorylated by VEGF and found to be important for focal adhesion sites. Overexpression of wild type RAFTK/Pyk2 increased cell spreading and the migration of HBMECs, whereas overexpression of catalytically inactive mutant RAFTK/Pyk2 markedly suppressed HBMEC spreading ( approximately 70%), adhesion ( approximately 82%), and migration ( approximately 65%). Furthermore, blocking of FAK by the dominant-interfering mutant FRNK (FAK-related non-kinase) significantly inhibited HBMEC spreading and migration and also disrupted focal adhesions. Thus, these studies define a mechanism for the regulatory role of VEGF in focal adhesion complex assembly in HBMECs via activation of FAK and RAFTK/Pyk2.  相似文献   

18.
Gonadotropin-releasing hormone (GnRH) receptors are expressed in hypothalamic tissues from adult rats, cultured fetal hypothalamic cells, and immortalized GnRH-secreting neurons (GT1 cells). Their activation by GnRH agonists leads to an overall increase in the extracellular Ca2+-dependent pulsatile release of GnRH. Electrophysiological studies showed that GT1 cells exhibit spontaneous, extracellular Ca2+-dependent action potentials, and that their inward currents include Na+, T-type and L-type Ca2+ components. Several types of potassium channels, including apamin-sensitive Ca2+-controlled potassium (SK) channels, are also expressed in GT1 cells. Activation of GnRH receptors leads to biphasic changes in intracellular Ca2+ concentration ([Ca2+]i), with an early and extracellular Ca2+-independent peak and a sustained and extracellular Ca2+-dependent plateau phase. During the peak [Ca2+]i response, electrical activity is abolished due to transient hyperpolarization that is mediated by SK channels. This is followed by sustained depolarization and resumption of firing with increased spike frequency and duration. The agonist-induced depolarization and increased firing are independent of [Ca2+]i and are not mediated by inhibition of K+ currents, but by facilitation of a voltage-insensitive and store depletion-activated Ca2+-conducting inward current. The dual control of pacemaker activity by SK and store depletion-activated Ca2+ channels facilitates voltage-gated Ca2+ influx at elevated [Ca2+]i levels, but also protects cells from Ca2+ overload. This process accounts for the autoregulatory action of GnRH on its release from hypothalamic neurons.  相似文献   

19.
Numerous studies show that intracellular calcium controls the migration rate of different mobile cell types. We studied migrating astrocytoma cells from two human cell lines, U-87MG and A172, in order to clarify the mechanisms by which calcium potentially influences cell migration. Using the wound-healing model to assay migration, we showed that four distinct components of migration could be distinguished: (i) a Ca(2+)/serum-dependent process; (ii) a Ca(2+)-dependent/serum-independent process; (iii) a Ca(2+)/serum-independent process; (iv) a Ca(2+)-independent/serum-dependent process. In U-87MG cells which lack a Ca(2+)-dependent/serum-independent component, we found that intracellular Ca(2+) oscillations are involved in Ca(2+)-dependent migration. Removing extracellular Ca(2+) greatly decreased the frequency of migration-associated Ca(2+) oscillations. Furthermore, non-selective inhibition of Ca(2+) channels by heavy metals such as Cd(2+) or La(3+) almost completely abolished changes in intracellular Ca(2+) observed during migration, indicating an essential role for Ca(2+) channels in the generation of these Ca(2+) oscillations. However, specific blockers of voltage-gated Ca(2+) channels, including nitrendipine, omega-conotoxin GVIA, omega-conotoxin MVIIC or low concentrations of Ni(2+) were without effect on Ca(2+) oscillations. We examined the role of internal Ca(2+) stores, showing that thapsigargin-sensitive Ca(2+) stores and InsP(3) receptors are involved in Ca(2+) oscillations, unlike ryanodine-sensitive Ca(2+) stores. Detailed analysis of the spatio-temporal aspect of the Ca(2+) oscillations revealed the existence of Ca(2+) waves initiated at the leading cell edge which propagate throughout the cell. Previously, we have shown that the frequency of Ca(2+) oscillations was reduced in the presence of inhibitory antibodies directed against beta3 integrin subunits. A simple model of a Ca(2+) oscillator is proposed, which may explain how the generation of Ca(2+) oscillations is linked to cell migration.  相似文献   

20.
Adherent cells interact with extracellular matrix via cell–substrate contacts at focal adhesions. The dynamic assembly and disassembly of focal adhesions enables cell attachment, migration and growth. While the influence of mechanical forces on the formation and growth of focal adhesions has been widely observed, the force loading on specific proteins at focal adhesion complex is not clear. By co-expressing force sensitive α-actinin FRET probes and fluorescence labeled paxillin in MDCK cells, we have simultaneously observed the time-dependent changes in tension in α-actinin and the dynamics of focal adhesion during cell migration. We show that increase in tension in α-actinin at the focal adhesion coincides with elongation of the adhesion in its growth phase. The enlargement of focal adhesion is through a force sensitive recruitment of α-actinin and paxillin to the adhesion sites. Changes in α-actinin tension and correlated relocation of α-actinin in an active adhesion also guide the growth direction of the adhesion. The results support the model that cytoskeletal tension is coupled to focal adhesion via the linking protein, α-actinin at the adhesion complex. Lysophosphatidic acid caused an immediate increase in α-actinin tension followed by drastic focal adhesion formation and elongation. Application of Rho-ROCK inhibitor, Y27632, resulted in reversible reduction in tension in α-actinin and disassociation of focal adhesion, suggesting the involvement of myosin-II mediated contractile force in the focal adhesion dynamics. These findings suggest that α-actinin not only serves as a physical linker between cytoskeleton and integrin, but also participates in force transmission at adhesion sites to facilitate adhesion?s growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号