首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Still IH  Vince P  Cowell JK 《Genomics》1999,62(3):533-536
Poly(ADP-ribosyl)ation of nuclear proteins plays a significant role in the maintenance of genomic DNA stability. To date, four poly(ADP-ribosyl)ating proteins have been identified in humans. We now report the full-length sequence, expression profile, and chromosomal localization of a novel gene, ADPRTL1, encoding an ADP-ribosyltransferase-like protein. The predicted open reading frame encodes a protein of 1724 amino acids with a molecular mass of 192.8 kDa. The protein contains a region showing homology to the catalytic domains of the nuclear-localized ADP-ribosyltransferase proteins (Adprt), two recently identified Adprt-like proteins (Adprtl2 and Adprtl3), and the telomere-associated protein tankyrase. Key amino acids known to be important for the activity of these enzymes are conserved within this region of the Adprtl1 protein, indicating that Adprtl1 is a functional poly(ADP-ribosyl)transferase. As has been noted for tankyrase, sequence analysis of the Adprtl1 protein suggests that it is not capable of binding DNA directly. Thus, the transferase activity of Adprtl1 may be activated by other factors such as protein-protein interaction mediated by the extensive carboxyl terminus. We have subsequently refined the location of the ADPRTL1 genomic locus to 13q11, close to the recently cloned ZNF198 gene.  相似文献   

2.
The activity of purified bovine thymus terminal deoxynucleotidyl transferase was markedly inhibited when the enzyme was incubated in a poly(ADP-ribose)-synthesizing system containing purified bovine thymus poly(ADP-ribose) polymerase, NAD+, Mg2+ and DNA. All of these four components were indispensable for the inhibition. The inhibitors of poly(ADP-ribose) polymerase counteracted the observed inhibition of the transferase. Under a Mg2+-depleted and acceptor-dependent ADP-ribosylating reaction condition [Tanaka, Y., Hashida, T., Yoshihara, H. and Yoshihara, K. (1979) J. Biol. Chem. 254, 12433-12438], the addition of terminal transferase to the reaction mixture stimulated the enzyme reaction in a dose-dependent manner, suggesting that the transferase is functioning as an acceptor for ADP-ribose. Electrophoretic analyses of the reaction products clearly indicated that the transferase molecule itself was oligo (ADP-ribosyl)ated. When the product was further incubated in the Mg2+-fortified reaction mixture, the activity of terminal transferase markedly decreased with increase in the apparent molecular size of the enzyme, indicating that an extensive elongation of poly(ADP-ribose) bound to the transferase is essential for the observed inhibition. Free poly(ADP-ribose) and the polymer bound to poly(ADP-ribose) polymerase were ineffective on the activity of the transferase. All of these results indicate that the observed inhibition of terminal transferase is caused by the poly(ADP-ribosyl)ation of the transferase itself.  相似文献   

3.
Poly(ADP-ribosyl)ation of nuclear proteins plays a significant role in the maintenance of genomic DNA stability. To date, four poly(ADP-ribosyl)ating proteins have been identified in humans. We now report the full-length sequence, expression profile, and chromosomal localization of a novel gene, ADPRTL1, encoding an ADP-ribosyltransferase-like protein. The predicted open reading frame encodes a protein of 1724 amino acids with a molecular mass of 192.8 kDa. The protein contains a region showing homology to the catalytic domains of the nuclear-localized ADP-ribosyltransferase proteins (Adprt), two recently identified Adprt-like proteins (Adprtl2 and Adprtl3), and the telomere-associated protein tankyrase. Key amino acids known to be important for the activity of these enzymes are conserved within this region of the Adprtl1 protein, indicating that Adprtl1 is a functional poly(ADP-ribosyl)transferase. As has been noted for tankyrase, sequence analysis of the Adprtl1 protein suggests that it is not capable of binding DNA directly. Thus, the transferase activity of Adprtl1 may be activated by other factors such as protein–protein interaction mediated by the extensive carboxyl terminus. We have subsequently refined the location of the ADPRTL1 genomic locus to 13q11, close to the recently cloned ZNF198 gene.  相似文献   

4.
5.
6.
Constitutive and gamma-induced ADP-ribosylation of nuclei and mitochondrial proteins in 2- and 29-month-old rats was studied. ADP-ribosylation was determined by binding of [3H]-adenin with the proteins after incubation of cellular organells in reaction mixture supplemented with [adenin-2,8-3H]-NAD. It was detected that the level of total protein ADP-ribosylation in the nuclei is 4.5-6.2 times higher than in the mitochondria. By inhibition of poly(ADP-ribose) polymerase (PARP) with 3-aminobenzamidine and treatment of ADP-ribosylated proteins with phosphodiesterase I, it was demonstrated that about 90% of [3H]-adenin bound by proteins in the nuclei and 70% in the mitochondria was the result of PARP activity. The level of total ADP-ribosylation of nuclear and mitochondrial proteins in the tissues of old rats was reliably lower than in young animals. This reduction of ADP-ribosylation in old animals is the result of the lower activity of PARP, not of mono(ADP-ribosyl) transferase (MART). The level of ADP-ribosylation of proteins in the nuclei of brain and spleen cells of 2-month-old rats irradiated with of 5 and 10 Gy was by 49-109% higher than in the control. At the same doses of radiation, the level of ADP-ribosylation of nuclear proteins in brain and spleen of old rats increased only by 29-65% compared to the control. Unlike cell nuclei, the radiation-induced activation of ADP-ribosylation in mitochondria was less expressed: the level of ADP-ribosylation increased by 34-37% in young rats and by 11-27% in old animals. This increased binding of ADP-ribose residues by the proteins of nuclei and mitochondria from tissues of gamma-irradiated rats is exceptionally conditioned by activation of poly(ADP-ribosyl)ation because the level of mono(ADP-ribosyl)ation remains constant. The results of this study enable the suggestion that poly(ADP-ribosyl)ation also occurs in the mitochondria of brain and spleen cells of the gamma-irradiated rats, though less pronounced than in cell the cell nuclei of these tissues. Thus, one of the probable causes of the less efficient repair of radiation-induced DNA damage in old organisms is a decline of both constitutive and induced poly(ADP-ribosyl)ation of proteins in cell nucleus and mitochondria.  相似文献   

7.
The effect of poly(ADP-ribosyl)ation on native and H1-depleted chromatin was analyzed by gel electrophoresis, electron microscopy, and velocity sedimentation. In parallel, the interaction of automodified poly(ADP-ribose) polymerase with native and H1-depleted chromatin was analyzed. In H1-depleted chromatin histone H2B becomes the major poly(ADP-ribose) histone acceptor protein, whereas in native chromatin histone H1 was the major histone acceptor. Poly(ADP-ribosyl)ation of H1-depleted chromatin prevented the recondensation of polynucleosomes reconstituted with exogenous histone H1. This is probably due to the presence of modified poly(ADP-ribose) polymerase and hyper(ADP-ribosyl)ated histone H2B. Indeed, about 40% of the modified enzyme remained associated with H1-depleted chromatin, while less than 1% of the modified enzyme was bound to native chromatin. The influence of poly(ADP-ribosyl)ation on the chromatin conformation was also studied at the level of nucleosome in using monoclonal and polyclonal antibodies specific for individual histones and synthetic peptides of histones. In native chromatin incubated in the presence of Mg2+ there was a drop in the accessibility of histone epitopes to monoclonal and polyclonal antibodies whereas upon poly(ADP-ribosyl)ation their accessibility was found to remain even in the presence of Mg2+. In poly(ADP-ribosyl)ated H1-depleted chromatin an increased accessibility of some histone tails to antibodies was observed.  相似文献   

8.
Incubation of DNA polymerase alpha, DNA polymerase beta, terminal deoxynucleotidyl transferase, or DNA ligase II in a reconstituted poly(ADP-ribosyl)ating enzyme system markedly suppressed the activity of these enzymes. Components required for poly(ADP-ribose) synthesis including poly(ADP-ribose) polymerase, NAD+, DNA, and Mg2+ were all essential for the observed suppression. Purified poly(ADP-ribose) itself, however, was slightly inhibitory to all of these enzymes. Furthermore, the suppressed activities of DNA polymerase alpha, DNA polymerase beta, and terminal deoxynucleotidyl transferase were largely restored (3 to 4-fold stimulation was observed) by a mild alkaline treatment, a procedure known to hydrolyze alkaline-labile ester linkage between poly(ADP-ribose) and an acceptor protein. All of these results strongly suggest that the four nuclear enzymes were inhibited as a result of poly(ADP-ribosyl)ation of either the enzyme molecule itself or some regulatory proteins of these enzymes.  相似文献   

9.
10.
G Zardo  S Marenzi  M Perilli  P Caiafa 《FASEB journal》1999,13(12):1518-1522
The aim of this paper is to verify whether the control played by poly(ADP-ribosyl)ation on genomic DNA methylation, and in particular on CpG islands, can also be seen on foreign DNA transfected in cells where inhibition of the poly(ADP-ribosyl)ation process was obtained by treating them with 2 mM 3-aminobenzamide for 24 h. The CpG island-like pVHCk plasmid containing the bacterial chloramphenicol acyltransferase (CAT) gene under the control of SV40 early promoter was transfected in L929 mouse fibroblast cells. The bisulfite reaction, which is capable of immortalizing the methylation state of cytosine on DNA, was performed before amplification of the plasmid DNA fragment, then used for sequence analysis. Our results have shown that 1) when transfected in control cells, the plasmid maintains its characteristic unmethylated pattern, whereas this pattern is lost when the plasmid is transfected in cells treated with 3-aminobenzamide; and 2) the presence of new methyl groups on plasmid DNA is paralleled by a decrease of CAT reporter gene expression. These data confirm that poly(ADP-ribosyl)ation is a process tightly involved in protecting genomic DNA from full methylation and suggest the use of 3-aminobenzamide as a possible experimental strategy to mime other conditions of DNA hypermethylation in cells.  相似文献   

11.
12.
Because mammary epithelium from virgin mice must undergo DNA synthesis prior to differentiation and because poly(ADP-ribosyl)ation has been linked to the cell cycle, it was hypothesized that this requirement for DNA synthesis might be related to the poly(ADP-ribosyl)ation of nuclear proteins. However, 3-methoxybenzamide, an inhibitor of poly(ADP-ribosyl)ation, stimulates alpha-lactalbumin accumulation even when added after DNA replication is completed. Furthermore, in parous mice this compound is still effective when DNA synthesis is blocked by cytosine arabinoside-beta-D-arabinofuranoside. Therefore, poly(ADP-ribosyl)ation appears to be associated, not with DNA synthesis, but with some other event in mammary gland differentiation.  相似文献   

13.
14.
15.
While the ecdysone dependency of puff formation in giant polytene chromosomes from fly salivary glands has been well documented, the molecular mechanisms underlying this process remain unknown. However, it does appear to involve chromatin remodeling and modification mediated by ecdysone receptor (EcR). As Drosophila poly(ADP-ribose) polymerase (dPARP) has recently been reported to be involved in ecdysone-induced puff formation, we decided to test the possible role of dPARP in ligand-induced dEcR transactivation in an insect system. dPARP co-activated the ligand-induced transactivation function of EcR in the insect cell line S2, and appeared to physically interact with EcR in a ligand-dependent manner. ChIP analysis of an EcR target gene promoter revealed ligand-dependent recruitment of dPARP with poly(ADP-ribosyl)ation of histones in the EcR binding site and, surprisingly, also in a distal region of the promoter. Our results indicated that EcR-mediated gene regulation may be coupled with chromatin modification through poly(ADP-ribosyl)ation.  相似文献   

16.
The emerging role of poly(ADP-ribose) polymerase-1 in longevity   总被引:3,自引:0,他引:3  
In the present paper, the involvement of the family of poly(ADP-ribose) polymerases (PARPs), and especially of PARP-1, in mammalian longevity is reviewed. PARPs catalyse poly(ADP-ribosyl)ation, a covalent post-translational protein modification in eukaryotic cells. PARP-1 and PARP-2 are activated by DNA strand breaks, play a role in DNA base-excision repair (BER) and are survival factors for cells exposed to low doses of ionising radiation or alkylating agents. PARP-1 is the main catalyst of poly(ADP-ribosyl)ation in living cells under conditions of DNA breakage, accounting for about 90% of cellular poly(ADP-ribose). DNA-damage-induced poly(ADP-ribosyl)ation also functions as a negative regulator of DNA damage-induced genomic instability. Cellular poly(ADP-ribosyl)ation capacity in permeabilised mononuclear blood cells (MNC) is positively correlated with life span of mammalian species. Furthermore PARP-1 physically interacts with WRN, the protein deficient in Werner syndrome, a human progeroid disorder, and PARP-1 and WRN functionally cooperate in preventing carcinogenesis in vivo. Some of the other members of the PARP family have also been revealed as important regulators of cellular functions relating to ageing/longevity. In particular, tankyrase-1, tankyrase-2, PARP-2 as well as PARP-1 have been found in association with telomeric DNA and are able to poly(ADP-ribosyl)ate the telomere-binding proteins TRF-1 and TRF-2, thus blocking their DNA-binding activity and controlling telomere extension by telomerase.  相似文献   

17.
The nuclear enzyme poly(ADP-ribosyl) transferase (pADPRT) catalyzes the formation of poly(ADP-ribose) from NAD+. Several nuclear proteins and pADPRT itself are targets for the modification by poly(ADP-ribosyl)ation. It is demonstrated here that poly(ADP-ribose) or pADPRT automodified with poly(ADP-ribose) interacts noncovalently with the 20S proteasome in vitro. The interaction of pADPRT with the 20S proteasome requires the long ADP-ribose polymers formed by automodification of the pADPRT with poly(ADP-ribose). As a result pADPRT automodified with short ADP-ribose oligomers is unable to associate with the 20S proteasome. The interaction with poly(ADP-ribose) causes a specific stimulation of the peptidase activity of the 20S proteasome. Modified pADPRT does not serve as a substrate for the degradation by the 20S proteasome. No covalent modification of the 20S proteasome by ADP-ribosylation was observed. The results may point to a functional relationship between pADPRT and the 20S proteasome in a pathway protecting the cell from oxidative damage.  相似文献   

18.
19.
A new method to determine oligo- and poly(ADP-ribosyl)ated enzymes and proteins in vitro has been developed. This method is based on the facts that in Mg2+-depleted condition automodification of poly(ADP-ribose)polymerase is minimized and exogenously added acceptor protein is oligo(ADP-ribosyl)ated predominantly, and in Mg2+-fortified conditions the exogenous acceptor can be poly(ADP-ribosyl)ated. When 13 proteins, including several enzymes, were subjected to this system, dimeric bovine seminal RNase and micrococcal nuclease were found to be oligo(ADP-ribosyl)ated under Mg2+-depleted conditions but their activity was unchanged. Under Mg2+-fortified conditions however, the RNase was deactivated concomitantly with its extensive poly(ADP-ribosyl)ation. When dimeric bovine seminal RNase was monomerized in advance by treatment with dithiothreitol and urea, the enzyme lost ADP-ribose-accepting ability in spite of a significant residual enzyme activity. As used here successfully, the Mg2+-depleted and Mg2+-fortified ADP-ribosylation and subsequent chromatographic analysis of various proteins and enzymes might be an useful method for proving their oligo- and poly(ADP-ribosyl)ation.  相似文献   

20.
A homogeneous preparation of an arginine-specific mono(ADP-ribosyl)transferase from turkey erythrocytes effectively utilized 2'-deoxy-NAD+ for the 2'-deoxy(ADP-ribose) modification of arginine methyl ester with an apparent Km of 27.2 microM and a Vmax of 36.4 mumol min-1 (mg of protein)-1. The adduct formed was also used as a substrate by an avian erythrocyte arginine(ADP-ribose)-specific hydrolase that generated free 2'-deoxy(ADP-ribose). In contrast, 2'-deoxy-NAD+ was not a substrate in the initiation or elongation reaction catalyzed by highly purified poly(ADP-ribose) polymerase from calf thymus. However, 2'-deoxy-NAD+ was a potent noncompetitive inhibitor of NAD+ in the elongation reaction catalyzed by the polymerase, with an apparent Ki of 32 microM. These results indicate that 2'-deoxy-NAD+ may be utilized to specifically identify protein acceptors for endogenous mono(ADP-ribosyl)transferases in complex biological systems that may contain a high activity of poly(ADP-ribose) polymerase, i.e., cell nuclei preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号