首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Crystal structures of thrombin complexed with two spin labels called para-V, 4-(2,2,5,5-tetramethyl-pyrrolidine-1-oxyl)-p-(fluorosulfonyl) benzamidine, and meta-V, 3-(2,2,5,5-tetramethyl-pyrrolidine-1-oxyl)-m-(fluorosulfonyl) benzamidine, have been completed at 2.0 and 3.0 Å resolution, respectively. Previous electron spin resonance studies with these labels gave rise to a low-resolution topography map of thrombin's extended active site. These labels monitor two distinct areas of the thrombin active site: (1) an apolar binding site which manifests itself in an biphasic activation/inhibition effect on thrombin activity and (2) a region sensitive to -thrombin autoproteolytic cleavage(s) to -thrombin (Arg75-Tyr76 and/or Arg77A-Asn78, and Lys149E-Gly150, chymotrypsin numbering). Para-V was found to bind along the substrate binding cleft, while meta-V was found to bind both at the substrate primary specificity pocket and at a site which interacts with the -cleavage loop. These studies reaffirm that accurate information may be gained from solution studies and indicates the complementarity of solid-state studies.  相似文献   

2.
We have previously shown that a trypsin inhibitor from desert locust Schistocerca gregaria (SGTI) is a taxon-specific inhibitor that inhibits arthropod trypsins, such as crayfish trypsin, five orders of magnitude more effectively than mammalian trypsins. Thermal denaturation experiments, presented here, confirm the inhibition kinetics studies; upon addition of SGTI the melting temperatures of crayfish and bovine trypsins increased 27 degrees C and 4.5 degrees C, respectively. To explore the structural features responsible for this taxon specificity we crystallized natural crayfish trypsin in complex with chemically synthesized SGTI. This is the first X-ray structure of an arthropod trypsin and also the highest resolution (1.2A) structure of a trypsin-protein inhibitor complex reported so far. Structural data show that in addition to the primary binding loop, residues P3-P3' of SGTI, the interactions between SGTI and the crayfish enzyme are also extended over the P12-P4 and P4'-P5' regions. This is partly due to a structural change of region P10-P4 in the SGTI structure induced by binding of the inhibitor to crayfish trypsin. The comparison of SGTI-crayfish trypsin and SGTI-bovine trypsin complexes by structure-based calculations revealed a significant interaction energy surplus for the SGTI-crayfish trypsin complex distributed over the entire binding region. The new regions that account for stronger and more specific binding of SGTI to crayfish than to bovine trypsin offer new inhibitor sites to engineer in order to develop efficient and specific protease inhibitors for practical use.  相似文献   

3.
Selective factor VIIa-tissue factor complex (FVIIa/TF) inhibition is seen as a promising target for developing new anticoagulant drugs. Structure-based designs of the P3 moiety in the peptide mimetic factor VIIa inhibitor successfully lead to novel inhibitors with selectivity for FVIIa/TF and extrinsic coagulation the same as or even higher than those of previously reported peptide mimetic factor VIIa inhibitors. X-ray crystal structure analysis reveals that one of the novel inhibitors shows improved selectivity by forming interactions between the inhibitor and FVIIa as expected. Another of the novel inhibitors achieves improved selectivity through an unexpected hydrogen bond with Gln217, with a unique bent conformation in FVIIa/TF accompanied by conformational changes of the inhibitor and the protein.  相似文献   

4.
Unlike bovine cationic trypsin, rat anionic trypsin retains activity at high pH. This alkaline stability has been attributed to stabilization of the salt bridge between the N-terminal Ile16 and Asp194 by the surface negative charge (Soman K, Yang A-S, Honig B, Fletterick R., 1989, Biochemistry 28:9918-9926). The formation of this salt bridge controls the conformation of the activation domain in trypsin. In this work we probe the structure of rat trypsinogen to determine the effects of the surface negative charge on the activation domain in the absence of the Ile16-Asp194 salt bridge. We determined the crystal structures of the rat trypsin-BPTI complex and the rat trypsinogen-BPTI complex at 1.8 and 2.2 A, respectively. The BPTI complex of rat trypsinogen resembles that of rat trypsin. Surprisingly, the side chain of Ile16 is found in a similar position in both the rat trypsin and trypsinogen complexes, although it is not the N-terminal residue and cannot form the salt bridge in trypsinogen. The resulting position of the activation peptide alters the conformation of the adjacent autolysis loop (residues 142-153). While bovine trypsinogen and trypsin have similar CD spectra, the CD spectrum of rat trypsinogen has only 60% of the intensity of rat trypsin. This lower intensity most likely results from increased flexibility around two conserved tryptophans, which are adjacent to the activation domain. The NMR spectrum of rat trypsinogen contains high field methyl signals as observed in bovine trypsinogen. It is concluded that the activation domain of rat trypsinogen is more flexible than that of bovine trypsinogen, but does not extend further into the protein core.  相似文献   

5.
A new class of matrix metalloproteinase (MMP) inhibitors has been identified by screening a collection of compounds against stromelysin. The inhibitors, 2,4,6-pyrimidine triones, have proven to be potent inhibitors of gelatinases A and B. An X-ray crystal structure of one representative compound bound to the catalytic domain of stromelysin shows that the compounds bind at the active site and ligand the active-site zinc. The pyrimidine triones mimic substrates in forming hydrogen bonds to key residues in the active site, and provide opportunities for placing appropriately chosen groups into the S1' specificity pocket of MMPS: A number of compounds have been synthesized and assayed against stromelysin, and the variations in potency are explained in terms of the binding mode revealed in the X-ray crystal structure.  相似文献   

6.
7.
The structure ofE. coli-derived rat intestinal fatty acid-binding protein has recently been refined to 1.2 Å without bound fatty acid and to 2.0 Å and 1.75 Å with bound hexadecanoate (palmitate) and 9Z-octadecenoate (oleate), respectively. The structure ofE. coli-derived human muscle fatty acid-binding protein has also been solved to 2.1 Å with a C16 bacterial fatty acid. Both proteins contain 10 anti-parallel -strands in a+1, +1, +1... motif. The strands are arranged in two -pleated sheets that are orthogonally oriented. In each case, the fatty acid is enclosed by the -sheets and is bound to the proteins by feeble forces. These feeble forces consist of (i) a hydrogen bonding network between the fatty acid's carboxylate group, ordered solvent, and side chains of polar/ionizable amino acid residues; (ii) van der Waals contacts between the methylene chain of the fatty acid and the side chain atoms of hydrophobic and aromatic residues; (iii) van der Waals interactions between the methyl and the component methenyls of the phenyl side chain of a Phe which serves as an adjustable terminal sensor situated over a surface opening or portal connecting interior and exterior solvent; and (iv) van der Waals contacts between methylenes of the alkyl chain and oxygens of ordered waters that have been located inside the binding cavity. These waters are positioned over one face of the ligand and are held in place by hydrogen bonding with one another and with the side chains of protein's polar and ionizable residues. Binding of the fatty acid ligand is associated with minimal adjustments of the positions of main chain or side chain atoms. However, acquisition of ligand is associated with removal of ordered interior solvent suggesting that the free energy of dehydration of the binding site may be as important for the energy of the binding reaction as the free energy of stabilization of the fatty acid: protein complex.  相似文献   

8.
We have examined the properties of several human protein C (HPC) derivatives with substitutions for acidic residues near the thrombin cleavage site, including changing the P3' Asp to Asn (D172N), Gly (D172G), Ala (D172A), or Lys (D172K). The rate of thrombin-catalyzed activation of D172N, D172G, and D172A was increased 4-9-fold compared to wild-type HPC, primarily due to a reduction in the inhibitory effect of calcium and a resulting increase in affinity for free alpha-thrombin. There was no significant increase in activation rate or affinity with these 3 derivatives in the absence of calcium, confirming that P3' Asp affects calcium dependency in the native protein C molecule. With charge reversal at P3' (D172K), there was a 30-fold increase in activation rate in the presence of calcium, but unlike the other derivatives, there was a substantial effect (5-fold) on the activation rate and affinity for free alpha-thrombin in the absence of calcium. Thus, protein C affinity for thrombin appears to be influenced by a combination of calcium-dependent and -independent effects of the acidic P3' residue.  相似文献   

9.
Thrombin is a multifunctional serine proteinase that plays a key role in coagulation while exhibiting several other key cellular bioregulatory functions. The X-ray crystal structure of human alpha-thrombin was determined in its complex with the specific thrombin inhibitor D-Phe-Pro-Arg chloromethylketone (PPACK) using Patterson search methods and a search model derived from trypsinlike proteinases of known spatial structure (Bode, W., Mayr, I., Baumann, U., Huber, R., Stone, S.R., & Hofsteenge, J., 1989, EMBO J. 8, 3467-3475). The crystallographic refinement of the PPACK-thrombin model has now been completed at an R value of 0.156 (8 to 1.92 A); in particular, the amino- and the carboxy-termini of the thrombin A-chain are now defined and all side-chain atoms localized; only proline 37 was found to be in a cis-peptidyl conformation. The thrombin B-chain exhibits the characteristic polypeptide fold of trypsinlike serine proteinases; 195 residues occupy topologically equivalent positions with residues in bovine trypsin and 190 with those in bovine chymotrypsin with a root-mean-square (r.m.s.) deviation of 0.8 A for their alpha-carbon atoms. Most of the inserted residues constitute novel surface loops. A chymotrypsinogen numbering is suggested for thrombin based on the topological equivalences. The thrombin A-chain is arranged in a boomeranglike shape against the B-chain globule opposite to the active site; it resembles somewhat the propeptide of chymotrypsin(ogen) and is similarly not involved in substrate and inhibitor binding. Thrombin possesses an exceptionally large proportion of charged residues. The negatively and positively charged residues are not distributed uniformly over the whole molecule, but are clustered to form a sandwichlike electrostatic potential; in particular, two extended patches of mainly positively charged residues occur close to the carboxy-terminal B-chain helix (forming the presumed heparin-binding site) and on the surface of loop segment 70-80 (the fibrin[ogen] secondary binding exosite), respectively; the negatively charged residues are more clustered in the ringlike region between both poles, particularly around the active site. Several of the charged residues are involved in salt bridges; most are on the surface, but 10 charged protein groups form completely buried salt bridges and clusters. These electrostatic interactions play a particularly important role in the intrachain stabilization of the A-chain, in the coherence between the A- and the B-chain, and in the surface structure of the fibrin(ogen) secondary binding exosite (loop segment 67-80).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Selective factor VIIa-tissue factor complex (FVIIa/TF) inhibition is seen as a promising target for developing new anticoagulant drugs. A novel peptide mimetic factor VIIa inhibitor, ethylsulfonamide-d-biphenylalanine-Gln-p-aminobenzamidine, shows 100-fold selectivity against thrombin in spite of its large P3 moiety, unlike previously reported FVIIa/TF selective inhibitors. X-ray crystal structure analysis reveals that the large P3 moiety, d-biphenylalanine, and the small P4 moiety, ethylsulfonamide, make novel interactions with the 170-loop and Lys192 of FVIIa/TF, respectively, accompanying ligand-induced conformational changes of the 170-loop, Gln217, and Lys192. Structural comparisons of FVIIa with thrombin and amino acid sequence comparisons among coagulation serine proteases suggest that these interactions play an important role in achieving selective inhibition for FVIIa/TF.  相似文献   

11.
The interaction of domains of the Kazal-type inhibitor protein dipetalin with the serine proteinases thrombin and trypsin is studied. The functional studies of the recombinantly expressed domains (Dip-I+II, Dip-I and Dip-II) allow the dissection of the thrombin inhibitory properties and the identification of Dip-I as a key contributor to thrombin/dipetalin complex stability and its inhibitory potency. Furthermore, Dip-I, but not Dip-II, forms a complex with trypsin resulting in an inhibition of the trypsin activity directed towards protein substrates. The high resolution NMR structure of the Dip-I domain is determined using multi-dimensional heteronuclear NMR spectroscopy. Dip-I exhibits the canonical Kazal-type fold with a central alpha-helix and a short two-stranded antiparallel beta-sheet. Molecular regions essential for inhibitor complex formation with thrombin and trypsin are identified. A comparison with molecular complexes of other Kazal-type thrombin and trypsin inhibitors by molecular modeling shows that the N-terminal segment of Dip-I fulfills the structural prerequisites for inhibitory interactions with either proteinase and explains the capacity of this single Kazal-type domain to interact with different proteinases.  相似文献   

12.
Human kallikreins are serine proteases that comprise a recently identified large and closely related 15-member family. The kallikreins include both regulatory- and degradative-type proteases, impacting a variety of physiological processes including regulation of blood pressure, neuronal health, and the inflammatory response. While the function of the majority of the kallikreins remains to be elucidated, two members are useful biomarkers for prostate cancer and several others are potentially useful biomarkers for breast cancer, Alzheimer's, and Parkinson's disease. Human tissue kallikrein (human K1) is the best functionally characterized member of this family, and is known to play an important role in blood pressure regulation. As part of this function, human K1 exhibits unique dual-substrate specificity in hydrolyzing low molecular weight kininogen between both Arg-Ser and Met-Lys sequences. We report the X-ray crystal structure of mature, active recombinant human apo K1 at 1.70 A resolution. The active site exhibits structural features intermediate between that of apo and pro forms of known kallikrein structures. The S2 to S2' pockets demonstrate a variety of conformational changes in comparison to the porcine homolog of K1 in complex with peptide inhibitors, including the displacement of an extensive solvent network. These results indicate that the binding of a peptide substrate contributes to a structural rearrangement of the active-site Ser 195 resulting in a catalytically competent juxtaposition with the active-site His 57. The solvent networks within the S1 and S1' pockets suggest how the Arg-Ser and Met-Lys dual substrate specificity of human K1 is accommodated.  相似文献   

13.
Gale AJ  Griffin JH 《Proteins》2004,54(3):433-441
Activation of the anticoagulant human plasma serine protease zymogen, protein C, by a complex of thrombin and the membrane protein, thrombomodulin, generates activated protein C, a physiologic anti-thrombotic, anti-inflammatory and anti-apoptotic agent. Alanine-scanning site-directed mutagenesis of residues in five surface loops of an extensive basic surface on protein C was used to identify residues that play essential roles in its activation by the thrombin-thrombomodulin complex. Twenty-three residues in the protein C protease domain were mutated to alanine, singly, in pairs or in triple mutation combinations, and mutants were characterized for their effectiveness as substrates of the thrombin-thrombomodulin complex. Three protein C residues, K192, R229, and R230, in two loops, were identified that provided major contributions to interactions with thrombin-thrombomodulin, while six residues, S190, K191, K217, K218, W231, and R312, in four loops, appeared to provide minor contributions. These protein C residues delineated a positively charged area on the molecule's surface that largely overlapped the previously characterized factor Va binding site on activated protein C. Thus, the extensive basic surface of protein C and activated protein C provides distinctly different, though significantly overlapping, binding sites for recognition by thrombin-thrombomodulin and factor Va.  相似文献   

14.
Oligopeptidase B is a serine endopeptidase found in prokaryotes, unicellular eukaryotes and higher plants. The enzyme has been shown recently to play a central role in the pathogenesis of several parasitic diseases such as African trypanosomiasis, and to be a potential therapeutic target. This study reports that protamine, a basic peptide rich in arginine, is a potent inhibitor at the nanomolar level of oligopeptidase B from E. coli and wheat. Protamines 1B, 2C, 3A and TP17 displayed similar inhibitory activities and were capable of binding strongly to oligopeptidase B without proteolytic cleavage. The concentration of protamine needed for 50% inhibition (IC50) of oligopeptidase B was 10(4)-fold lower than the IC50 of trypsin. Oligopeptidase B was highly sensitive to inhibition by protamines even in the presence of serum (IC50, 1 microM). These data indicate that protamines might provide information useful for the design of more specific synthetic oligopeptidase B inhibitors.  相似文献   

15.
Staphylococcal aureus epidermolytic toxins (ETs) A and B are responsible for the induction of staphylococcal scalded skin syndrome, a disease of neonates and young children. The clinical features of this syndrome vary from localized blisters to severe exfoliation affecting most of the body surface. Comparison of the crystal structures of two subtypes of ETs-rETA (at 2.0 A resolution), rETB (at 2.8 A resolution), and an active site variant of rETA, Ser195Ala at 2.0 A resolution has demonstrated that their overall topology resembles that of a "trypsin-like" serine protease, but with significant differences at the N- and C-termini and loop regions. The details of the catalytic site in both ET structures are very similar to those in glutamate-specific serine proteases, suggesting a common catalytic mechanism. However, the "oxyanion hole," which is part of the catalytic sites of glutamate specific serine proteases, is in the closed or inactive conformation for rETA, yet in the open or active conformation for rETB. The ETs contain a unique amphipathic helix at the N-terminus, and it appears to be involved in optimizing the conformation of the catalytic site residues. Determination of the structure of the rETA catalytic site variant, Ser195Ala, showed no significant perturbation at the active site, establishing that the loss of biological and esterolytic activity can be attributed solely to disruption of the catalytic serine residue. Finally, the crystal structure of ETs, together with biochemical data and mutagenesis studies, strongly confirms the classification of these molecules as "serine proteases" rather than "superantigens."  相似文献   

16.
A variant of human interferon-gamma (IFN-gamma) has been created in which the two chains of the homodimeric cytokine were linked N- to C-terminus by an eight residue polypeptide linker. The sequence of this linker was derived from a loop in bira bifunctional protein, and was determined from a structural database search. This "single-chain" variant was used to create an IFN-gamma molecule that binds only a single copy of the alpha-chain receptor, rather than the 2 alpha-chain receptor: 1 IFN-gamma binding stoichiometry observed for the native hormone. Crystals have been grown of a 1:1 complex between this single-chain molecule and the extracellular domain of its alpha-chain receptor. These crystals diffract beyond 2.0 A, significantly better than the 2.9 A observed for the native 2:1 complex. Density calculations suggest these crystals contain two complexes in the asymmetric unit; a self-rotation function confirms this conclusion.  相似文献   

17.
Single crystals of three different isoenzymes of (R)?(+) mandelonitrile lyase (hydroxynitrile lyase) from almonds (Prunus amygdalus) have been obtained by hanging drop vapor diffusion using polyethylene glycol 4000 and isopropanol as co-precipitants. The crystals belong to the monoclinic space group P2l with unit cell parameters a = 69.9, b = 95.1, c = 95.6 Å, and β = 118.5°. A complete set of diffraction data has been collected to 2.6 Å resolution on native crystals of isoenzyme III. © 1994 Wiley-Liss, Inc.  相似文献   

18.
Tryptases alpha and beta are trypsin-like serine proteinases expressed in large amounts by mast cells. Beta-tryptase is a tetramer that has enzymatic activity, but requires heparin binding to maintain functional and structural stability, whereas alpha-tryptase has little, if any, enzymatic activity but is a stable tetramer in the absence of heparin. As shown previously, these differences can be mainly attributed to the different conformations of the 214-220 segment. Interestingly, the replacement of Asp216 by Gly, which is present in beta-tryptase, results in enzymatically active but less stable alpha-tryptase mutants. We have solved the crystal structures of both the single (D216G) and the double (K192Q/D216G) mutant forms of recombinant human alphaI-tryptase in complex with the peptide inhibitor leupeptin, as well as the structure of the non-inhibited single mutant. The inhibited mutants exhibited an open functional substrate binding site, while in the absence of an inhibitor, the open (beta-tryptase-like) and the closed (alpha-tryptase-like) conformations were present simultaneously. This shows that both forms are in a two-state equilibrium, which is influenced by the residues in the vicinity of the active site and by inhibitor/substrate binding. Novel insights regarding the observed stability differences as well as a potential proteolytic activity of wild-type alpha-tryptase, which may possess a cryptic active site, are discussed.  相似文献   

19.
A flavohemoglobin protein (FHP) was isolated from Alcaligenes eutrophus and has been crystallized by vapor diffusion methods using PEG 3350 as precipitant. The crystals of the FAD- and heme-containing protein belong to the monoclinic space group P21 with unit cell parameters of 52.2 Å, 85.8 Å, 103.9 Å, and 81.8° corresponding to two molecules per asymmetric unit. The crystals diffract at least to a resolution of 2.0 Å and are suitable for an X-ray structure analysis. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Peroxidase (donor: H2O2 oxi-doreductase [EC 1.11.1.7]) was purified from the culture broth of the hyphomycete Arthromyces ramosus in the early log phase to show a single band on SDS-PAGE. The crystals of A. ramosus peroxidase (ARP) were formed by salting out with ammonium sulfate at room temperature and pH 7.5. The repeated seeding technique was employed to grow the crystals to the size large enough for X-ray diffraction study. The crystals were characterized as tetragonal, space group P42212, with unit cell dimensions of a = b = 74.5 Å, c = 117.6 Å. The asymmetric unit contains one molecule of peroxidase. They diffract X-rays to at least 2.0 Å resolution and are stable to X-rays. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号