首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic analysis using pulsed electron paramagnetic resonance (EPR) of photosynthetic electron transfer in the photosystem I reaction centres of Synechocystis 6803, in wild-type Chlamydomonas reinhardtii, and in site directed mutants of the phylloquinone binding sites in C. reinhardtii, indicates that electron transfer from the reaction centre primary electron donor, P700, to the iron-sulphur centres, Fe-S(X/A/B), can occur through either the PsaA or PsaB side phylloquinone. At low temperature reaction centres are frozen in states which allow electron transfer on one side of the reaction centre only. A fraction always donates electrons to the PsaA side quinone, the remainder to the PsaB side.  相似文献   

2.
The effect of Mg2+-ions on the physical state of thylakoid membrane and kinetics of electron transport between two photosystems were studied. The rate of electron transport from photosystem 2 to P700+ and the activity of photosystem 2 were obtained from the kinetics of P700 redox transients induced by flashes of white light (t1/2 = 7 musec or 0.75 msec) fired simultaneously with the background continuous far-red light (707 nm). The spin-labeled stearic acids (I1.14 and I12.3) were used as indicators of Mg2+-induced structural changes. Addition of MgCl2 stimulates incorporation of spin-labels into the lipid region of the thylakoid membrane. It was found that Mg2+-ions modify the ESR spectrum of I12.3. The results evidence that the screening of charged groups on the thylakoid membrane surface induces structural changes in the lipid region of the membrane. We have concluded that these structural changes result in reorientation of lipid molecules in the thylakoid membrane. There is a correlation between Mg2+-induced structural changes and electron transport in chloroplasts. Addition of Mg2+-ions stimulates the photochemical activity of photosystem 2 by increasing the amount of active reaction centres and modifies the rate constant of electron transport from photosystem 2 to P700+. It has been demonstrated that ion regulation of electron transport in more effective in the oxidising side than in the reducing side of plastoquinone shuttle.  相似文献   

3.
Electron microscopy of monomeric and trimeric forms of the reaction centre of photosystem I from the thermophilic cyanobacterium Phormidium laminosum has allowed the construction of a three-dimensional model describing the shape of the complex. The trimeric form of the Photosystem I reaction centre complex was found to have a very regular shape corresponding to a rounded equilateral triangle with edges ˜18 nm long and a thickness of ˜6 nm. A distinctive chiral arrangement of the three reaction centres in the trimer could be observed on one face of the complex, whereas the opposing face appeared to be smooth with no distinctive internal features. The monomeric reaction centre is roughly pearshaped, with a length of ˜15 nm and a width of ˜9 nm. A thickness of 6 nm is assumed from comparison with the trimer. It is predicted to lie with its shortest axis spanning the membrane. A double-lobed structure, with one lobe larger than the other, was occasionally observed for the monomeric reaction centre. No experimental evidence could be obtained for the existence of the trimeric form in the membrane. The formation of the trimeric form after detergent extraction is suggested. The trimeric form was found to be more stable than the monomeric form in solutions containing anionic and non-ionic detergents.  相似文献   

4.
A covalent complex between photosystem I and flavodoxin from the cyanobacterium Synechococcus sp. PCC 7002 was generated by chemical cross-linking. Laser flash-absorption spectroscopy indicates that the bound flavodoxin of this complex is stabilized in the semiquinone state and is photoreduced to the quinol form upon light excitation. The kinetics of this photoreduction process, which takes place in approximately 50% of the reaction centres, displays three exponential components with half-lives of 9 microsec, 70 microsec and 1 ms. The fully reduced flavodoxin subsequently recombines with P700+ with a t1/2 of 330 ms. A corresponding flavodoxin semiquinone radical signal is readily observed in the dark by room temperature electron paramagnetic resonance, which reversibly disappears upon illumination. In contrast, the light-induced reduction of oxidized flavodoxin can be observed only by first-flash experiments following excessive dark adaptation. In addition, the docking site of flavodoxin on photosystem I was determined by electron microscopy in combination with image analysis. Flavodoxin binds to the cytoplasmic side of photosystem I at a distance of 7 nm from the centre of the trimer and in close contact to a ridge formed by the subunits PsaC, PsaD and PsaE.  相似文献   

5.
We report a structural characterization by electron microscopy of green plant photosystem I solubilized by the mild detergent n-dodecyl-alpha-D-maltoside. It is shown by immunoblotting that the isolated complexes contain all photosystem I core proteins and all peripheral light-harvesting proteins. The electron microscopic analysis is based on a large data set of 14 000 negatively stained single-particle projections and reveals that most of the complexes are oval-shaped monomers. The monomers have a tendency to associate into artificial dimers, trimers, and tetramers in which the monomers are oppositely oriented. Classification of the dimeric complexes suggests that some of the monomers lack a part of the peripheral antenna. On the basis of a comparison with projections from trimeric photosystem I complexes from cyanobacteria, we conclude that light-harvesting complex I only binds to the core complex at the side of the photosystem I F/J subunits and does not cause structural hindrances for the type of trimerization observed in cyanobacterial photosystem I.  相似文献   

6.
We review recent advances in the study of the photosystem I reaction centre, following the determination of a spectacular 2.5 A resolution crystal structure for this complex of Synechococcus elongatus. Photosystem I is proving different to type II reaction centres in structure and organization, and the mechanism of transmembrane electron transfer, and is providing insights into the control of function in reaction centres that operate at very low redox potentials. The photosystem I complex of oxygenic organisms has a counterpart in non-oxygenic bacteria, the strictly anaerobic phototrophic green sulphur bacteria and heliobacteria. The most distinctive feature of these type I reaction centres is that they contain two copies of a large core polypeptide (i.e. a homodimer), rather than a heterodimeric arrangement of two related, but different, polypeptides as in the photosystem I complex. To compare the structural organization of the two forms of type I reaction centre, we have modelled the structure of the central region of the reaction centre from green sulphur bacteria, using sequence alignments and the structural coordinates of the S. elongatus Photosystem I complex. The outcome of these modelling studies is described, concentrating on regions of the type I reaction centre where important structure-function relationships have been demonstrated or inferred.  相似文献   

7.
Recent studies of chloroplast architecture have emphasized the segregation of photosystem I and photosystem II in different regions of the lamellar membrane. The apparent localization of photosystem II reaction centers in regions of membrane appression and of photosystem I reaction centers in regions exposed to the chloroplast stroma has focused attention on the intervening electron carriers, carriers which must be present to catalyze electron transfer between such spatially separated reaction sites. Information regarding the stoichiometries of these intermediate carriers is essential to an understanding of the processes that work together to establish the mechanism and to determine the rate of the overall process. We have reinvestigated the numbers of photosystem I and photosystem II reaction centers, the numbers of intervening cytochrome b6/f complexes, and the numbers of molecules of the relatively mobile electron carriers plastoquinone and plastocyanin that are actively involved in electron transfer. Our investigations were based on a new experimental technique made possible by the use of a modified indophenol dye, methyl purple, the reduction of which provides a particularly sensitive and accurate measure of electron transfer. Using this dye, which accepts electrons exclusively from photosystem I, it was possible to drain electrons from each of the carriers. Thus, by manipulation of the redox condition of the various carriers and through the use of specific inhibitors we could measure the electron storage capacity of each carrier in turn. We conclude that the ratio of photosystem I reaction centers to cytochrome b6/f complexes to photosystem II reaction centers is very nearly 1:1:1. The pool of rapid donors of electrons to P700 includes not only the 2 reducing equivalents stored in the cytochrome b6/f complex but also those stored in slightly more than 2 molecules of plastocyanin per P700. More slowly available are the electrons from about 6 plastoquinol molecules per P700.  相似文献   

8.
The effect of ultraviolet-C (UV-C, mainly 254 nm radiation) and ultraviolet-B (UV-B, 290-320 nm) radiation on the photosynthetic electron transport reactions has been investigated. The rates of Hill activity mediated by ferricyanide and dichlorodimethoxy-p-benzoquinone (DCDMQ) were differently sensitive to UV-C but equally inhibited by UV-B. Replacement of water with diphenylcarbazide was ineffective in restoring the activity of dichlorophenol indophenol (DCPIP) Hill reaction in UV-B treated chloroplasts, but had significant effect in UV-C treated chloroplasts.
Photobleaching of carotenoids in the presence of carbonyl cyanide-m-chlorophenyl-hydrazone, an indicator of the photochemical reaction associated with the reaction centre of photosystem II, was suppressed and is paralleled by the changes in Hill activity only in UV-B-treated chloroplasts. Carotenoid photobleaching occurred even in UV-C treated chloroplasts showing no measurable Hill activity. UV-C and UV-B irradiation diminished variable fluorescence. With UV-B treated, but not with UV-C treated chloroplasts, an increase in the fluorescence yield was observed upon the addition of 3-(3,4-dichIorophenyl)-l,l-dimethylurea (DCMU) and/or Na dithionite.
Photosystem I activity was found to be unaffected by both UV-C and UV-B radiation at the fluences tested. Kinetics of P700 photooxidation and dark reversal in UV treated chloroplasts indicate that only the electron flow from photosystem II to photosystem I is impaired. It is concluded that while UV-B radiation inactivates specifically the photosystem II reaction centre, UV-C radiation acts at plastoquinone, the quencher Q, and the water oxidizing enzyme system.  相似文献   

9.
T Walz  B L Smith  P Agre    A Engel 《The EMBO journal》1994,13(13):2985-2993
Water-permeable membranes of several plant and mammalian tissues contain specific water channel proteins, the 'aquaporins'. The best characterized aquaporin is CHIP, a 28 kDa red blood cell channel-forming integral protein. Isolated CHIP and Escherichia coli lipids may be assembled into 2-D crystals for structural analyses. Here we present (i) a structural characterization of the solubilized CHIP oligomers, (ii) projections of CHIP arrays after negative staining or metal-shadowing, and (iii) the 3-D structure at 1.6 nm resolution. Negatively stained CHIP oligomers exhibited a side length of 6.9 nm with four-fold symmetry, and a mass of 202 +/- 3 kDa determined by scanning transmission electron microscopy. Reconstituted into lipid bilayers, CHIP formed 2-D square lattices with unit cell dimensions a = b = 9.6 nm and a p422(1) symmetry. The 3-D map revealed that CHIP tetramers contain central stain-filled depressions about the fourfold axis. These cavities extend from both sides into the transbilayer domain of the molecule leaving only a thin barrier to be penetrated by the water pores. Although CHIP monomers behave as independent pores, we propose that their particular structure requires tetramerization for stable integration into the bilayer.  相似文献   

10.
Crystallization of the photosystem I reaction centre   总被引:4,自引:2,他引:2       下载免费PDF全文
The reaction centre of the photosynthetic membrane complex photosystem I (PSI) from the thermophilic cyanobacterium Phormidium laminosum was found to crystallize under a range of conditions. The crystallization method, which can occur in the presence of larger detergent molecules than those used previously for the crystallization of membrane proteins, is presented in this report. Several crystal forms have been observed, and some of these show birefringence and linear dichroism. Optical measurements on crystals thicker than ˜5 µm were severely restricted because of the very high chlorophyll density within the crystals, but linear dichroism measurements on thin single crystals were possible and the results are presented here. By comparing the data with earlier measurements on oriented PSI complexes, a working model for the orientation of the PSI complexes within the crystal could be proposed. The PSI reaction centre is one of the largest and most complex membrane protein units that have been crystallized to date.  相似文献   

11.
Electron paramagnetic resonance (EPR) spectroscopy reveals functional and structural similarities between the reaction centres of the chlorophyll d-binding photosystem I (PS I) and chlorophyll a-binding PS I. Continuous wave EPR spectrometry at 12K identifies iron-sulphur centres as terminal electron acceptors of chlorophyll d-binding PS I. A transient light-induced electron spin echo (ESE) signal indicates the presence of a quinone as the secondary electron acceptor (Q) between P(740)(+) and the iron-sulphur centres. The distance between P(740)(+) and Q(-) was estimated within point-dipole approximation as 25.23+/-0.05A, by the analysis of the electron spin echo envelope modulation.  相似文献   

12.
W Z He  R Malkin 《FEBS letters》1992,308(3):298-300
The newly reported 9-kDa polypeptide in photosystem I [(1991) FEBS Lett. 280, 332-334] is an extrinsic component located on the lumenal side of the thylakoid membrane. This subunit can be solubilized with high salt buffer and does not bind any cofactors. The photosystem I electron transfer chain remains intact and functional in the absence of this component as characterized by the photoreduction of NADP+.  相似文献   

13.
Photosynthetic reaction centres were isolated from the cells of Rhodopseudomonas spheroides, strain 1760-1, using sodium dodecyl sulphate. The preparations purified by precipitation with ammonium sulphate showed absorbance ratios of A280 : A800=2.1. and A765 : A800 : A870=1 : 2 : 1; about 75% of the bacteriochlorophyll absorbing at 870 nm (P870) were photochemically active. Both absolute and difference "light minus dark" absorption spectra were obtained for the reaction centre suspensions and vacuum-dried films at room and low temperatures. Shift to the longer wavelength of the 870 nm absorption band resulting from temperature lowering suggests the existence of temperature-determined conformations of the bacteriochlorophyll-protein complex of the reaction centres. Characteristic time of an electron transfer from the photoexcited P870 to the primary intermediate of photochemical process as evaluated from the data of pulsed laser fluorometry of the reaction centres was found to be (21--15)+/-8 picoseconds. The oxidized P870 dark reduction kinetics dependence on the actinic light intensity gives evidence for the functioning of heterogeneous pool of the secondary electron acceptors in the reaction centre preparations. Filling in of this pool with electrons is decreased under temperature lowering or vacuum drying and its electron capacity is limited under isooctane treatment resulting in ubiquinon extraction. The ability of the reaction centre preparations to catalyze the photochemical oxidation of iminoxyl aromatic radical was demonstrated.  相似文献   

14.
A large decrease was observed in the chlorophyll content ofthe primary leaves of Phaseolus vulgaris during senescence.Chloroplasts isolated from mature and senescent leaves gavevery similar light saturation curves for electron transportreactions involving either PS I or PS II, indicating that theaverage number of chlorophyll molecules associated with eachreaction centre did not change during senescence. It is concludedthat the reaction centres ceased to function at the same timeas, or perhaps before, their antenna chlorophylls were lostfrom the thylakoid membrane, and that the percentage decreasein the number of functional reaction centres per leaf was atleast as great as the percentage decrease in the leaf chlorophyllcontent. The chlorophyll-protein composition of thylakoid membrane preparationswas examined by electrophoresis of samples treated with sodiumdodecyl sulphate. In older leaves a smaller proportion of thechlorophyll applied to polyacrylamide gels was associated withthe P700- chlorophyll a-protein complex. There was also a declinein emission at 734 nm in the 77 °K fluorescence spectrumof intact leaf tissue during senescence. These results indicatethat older leaves contained a smaller proportion of chlorophyllsassociated with PS I, and this is consistent with the decreaseobserved in the leaf chlorophyll a/b ratio during senescence.The effect of these changes in chlorophyll content on the capacityof the chloroplast to carry out photosynthetic electron transportis discussed.  相似文献   

15.
Isolated chloroplasts of Acetabularia incorporate radioactive amino acids into more than 30 polypeptides in the light, including the apoprotein of the P700-chlorophyll a protein complex, the reaction centre core of photosystem I [Biochim. Biophys. Acta, 609. 107-120 (1980)]. In this paper it is shown that the apoproteins of the two minor chlorophyll a complexes, thought to be part of photosystem II reaction centre core, are also synthesized by isolated chloroplasts. Furthermore, they are integrated correctly into the thylakoid membrane in the absence of any cytoplasmic contribution, such that they can be isolated as chlorophyll-protein complexes indistinguishable from those already in the membrane. In contrast, the minor chlorophyll a + b complex 'CP 29' [Camm, E. L. and Green, B. R. (1980) Plant Physiol. 66, 428-432] and its dimers are not synthesized by isolated chloroplasts. In this they resemble the other chlorophyll a + b complex, the light-harvesting complex (LHC). It may be significant that the LHC, which is not essential for photosynthetic activity, is under nuclear control, while the reaction centre polypeptides, cytochrome b559, and cytochrome f, are synthesized on chloroplast ribosomes.  相似文献   

16.
Light, controls the “blueprint” for chloroplast development, but at high intensities is toxic to the chloroplast. Excessive light intensities inhibit primarily photosystem II electron transport. This results in generation of toxic singlet oxygen due to impairment of electron transport on the acceptor side between pheophytin and QB -the secondary electron acceptor. High light stress also impairs electron transport on the donor side of photosystem II generating highly oxidizing species Z+ and P680+. A conformationsl change in the photosystem II reaction centre protein Dl affecting its QB-binding site is involved in turning the damaged protein into a substrate for proteolysis. The evidence indicates that the degradation of D1 is an enzymatic process and the protease that degrades D1 protein has been shown to be a serine protease Although there is evidence to indicate that the chlorophyll a-protein complex CP43 acts as a serine-type protease degrading Dl, the observed degradation of Dl protein in photosystem II reaction centre particlesin vitro argues against the involvement of CP43 in Dl degradation. Besides the degradation during high light stress of Dl, and to a lesser extent D2-the other reaction centre protein, CP43 and CP29 have also been shown to undergo degradation. In an oxygenic environment, Dl is cleaved from its N-and C-termini and the disassembly of the photosystem II complex involves simultaneous release of manganese and three extrinsic proteins involved in oxygen evolution. It is known that protein with PEST sequences are subject to degradation; D1 protein contains a PEST sequence adjacent to the site of cleavage on the outer side of thylakoid membrane between helices IV and V. The molecular processes of “triggering” of Dl for proteolytic degradation are not clearly understood. The changes in structural organization of photosystem II due to generation of oxy-radicals and other highly oxidizing species have also not been resolved. Whether CP43 or a component of the photosystem II reaction centre itself (Dl. D2 or cy1 b559 subunits), which may be responsible for degradation of Dl, is also subject to light modification to become an active protease, is also not known. The identity of proteases degrading Dl, LHCII and CP43 and C29 remains to be established  相似文献   

17.
Photosynthetic reaction centres of green sulphur bacteria and of heliobacteria show a remarkable similarity to photosystem 1 of O2-evolving photosynthesis. Three features are common to this 'reaction centre 1-type'. (1) A redox potential negative enough to reduce ferredoxin is generated. (2) Iron-sulphur centres are constituents of the bound electron acceptor complex. (3) A dimer of large, very hydrophobic protein subunits not only binds the redox centres that are involved in the initial steps of charge separation, but also binds the pigments of the inner light antenna. This protein dimer is a heterodimer in photosystem I, but appears to be a homodimer in reaction centres of green sulphur bacteria and of heliobacteria. The dimer-forming proteins contain a highly conserved dodecapeptide to which one of the iron-sulphur centres is bound.  相似文献   

18.
Electron microscopy and X-ray crystallography are revealing the structure of photosystem II. Electron crystallography has yielded a 3D structure at sufficient resolution to identify subunit positioning and transmembrane organization of the reaction-centre core complex of spinach. Single-particle analyses are providing 3D structures of photosystem II-light-harvesting complex II supercomplexes that can be used to incorporate high-resolution structural data emerging from electron and X-ray crystallography. The positions of the chlorins and metal centres within photosystem II are now available. It can be concluded that photosystem II is a dimeric complex with the transmembrane helices of CP47/D2 proteins related to those of the CP43/D1 proteins by a twofold axis within each monomer. Further, both electron microscopy and X-ray analyses show that P(680) is not a 'special pair' and that cytochrome b559 is located on the D2 side of the reaction centres some distance from P(680). However, although comparison of the electron microscopy and X-ray models for spinach and Synechococcus elongatus show considerable similarities, there seem to be differences in the number and positioning of some small subunits.  相似文献   

19.
The input of solar energy into photosynthesis, and thence into the biosphere, occurs via chlorophyll-containing proteins known as reaction centres. There are two kinds of reaction centre in oxygenic photosynthesis: photosystem I (PSI) and photosystem II (PSII). The PSII reaction centre, alias the oxygen-evolving enzyme, the water-oxidizing complex or the water-plastoquinone photo-oxidoreductase, has now been crystallized and its structure solved to a resolution of 3.8 A.  相似文献   

20.
In this study, we present the location of the ferredoxin-binding site in photosystem I from spinach. Image analysis of negatively stained two-dimensional crystals indicates that the addition of ferredoxin and chemical cross-linkers do not significantly alter the unit cell parameters (for untreated photosystem I, a = 26.4 nm, b = 27.6 nm, and gamma = 90 degrees, space group p22(1)2(1) and for ferredoxin cross-linked photosystem I, a = 26.2 nm, b = 27.2 nm, and gamma = 90 degrees, space group p22(1)2(1)). Fourier difference analysis reveals that ferredoxin is bound on top of the stromal ridge principally interacting with the extrinsic subunits PsaC and PsaE. This location would be accessible to the stroma, thereby promoting efficient electron transfer away from photosystem I. This observation is significantly different from that of the ferredoxin binding site proposed for cyanobacteria. A model for the binding of ferredoxin in vascular plants is proposed and is discussed relative to observations in cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号