首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Ostrow KM  Loeb DD 《Journal of virology》2004,78(16):8780-8787
Packaging of hepadnavirus pregenomic RNA (pgRNA) into capsids, or encapsidation, requires several viral components. The viral polymerase (P) and the capsid subunit (C) are necessary for pgRNA encapsidation. Previous studies of duck hepatitis B virus (DHBV) indicated that two cis-acting sequences on pgRNA are required for encapsidation: epsilon, which is near the 5' end of pgRNA, and region II, located near the middle of pgRNA. Later studies suggested that the intervening sequence between these two elements may also make a contribution. It has been demonstrated for DHBV that epsilon interacts with P to facilitate encapsidation, but it is not known how other cis-acting sequences contribute to encapsidation. We analyzed chimeras of DHBV and a related virus, heron hepatitis B virus (HHBV), to gain insight into the interactions between the various viral components during pgRNA encapsidation. We learned that having epsilon and P derived from the same virus was not sufficient for high levels of encapsidation, implying that other viral interactions contribute to encapsidation. Chimeric analysis showed that a large sequence containing region II may interact with P and/or C for efficient encapsidation. Further analysis demonstrated that possibly an RNA-RNA interaction between the intervening sequence and region II facilitates pgRNA encapsidation. Together, these results identify functional interactions among various viral components that contribute to pgRNA encapsidation.  相似文献   

5.
Wang Z  Ni J  Li J  Shi B  Xu Y  Yuan Z 《Journal of virology》2011,85(21):11457-11467
Cellular inhibitor of apoptosis protein 2 (cIAP2) is a potent suppressor of apoptotic cell death. We have shown previously that cIAP2 is involved in the tumor necrosis factor alpha (TNF-α)-induced anti-hepatitis B virus (HBV) response; however, the mechanism for this antiviral effect remains unclear. In the present study, we demonstrate that cIAP2 can significantly reduce the levels of HBV DNA replication intermediates but not the total viral RNA or core protein levels. Domain-mapping analysis revealed that the carboxy-terminal domains of cIAP2 were indispensable for this anti-HBV ability and that an E3 ligase-deficient mutant of cIAP2 (termed cIAP2*) completely lost its antiviral activity. We further identified HBV polymerase as the target of cIAP2. Overexpression of cIAP2 but not cIAP2* reduced polymerase protein levels, while cIAP2 knockdown increased polymerase expression. In addition, we observed that cIAP2 promoted the degradation of the viral polymerase through a proteasome-dependent pathway. Further experiments demonstrated that cIAP2 can bind to polymerase and promote its polyubiquitylation. Finally, we found that cIAP2 downregulated the encapsidation of HBV pregenomic RNA. Taken together, these data reveal a novel mechanism for the inhibition of HBV replication by cIAP2 via acceleration of the ubiquitin-proteasome-mediated decay of polymerase and reduction of the encapsidation of HBV pregenomic RNA, making this mechanism a novel strategy for HBV therapy.  相似文献   

6.
At least two hairpins in the 5' untranslated leader region, stem-loops 1 and 3 (SL1 and SL3), contribute to human immunodeficiency virus type 1 RNA encapsidation in vivo. We used a competitive assay, which measures the relative encapsidation efficiency of mutant viral RNA in the presence of competing wild-type RNA, to compare the contributions of SL1, SL3, and two adjacent secondary structures, SL2 and SL4, to encapsidation. SL2 is not required for RNA encapsidation, while SL1, SL3, and SL4 all contribute approximately equally to encapsidation. To determine whether these hairpins function in a position-dependent manner, we interchanged the positions of two of these stem-loop structures. This resulted in substantial diminution of encapsidation, indicating that the secondary structures that comprise E, the encapsidation signal, function only in their correct contexts. Mutation of nucleotides flanking SL1 and SL3 had little effect on encapsidation. We also showed that SL1, while present on both genomic and subgenomic viral RNAs, nonetheless contributes to selective encapsidation of genomic RNA. Taken together, these data are consistent with the formation of a higher-order RNA structure, partially composed of SL1, SL3, and SL4, that functions to effect concurrent encapsidation of full-length RNA and exclusion of subgenomic RNA. Finally, it has been reported that E is required for efficient translation of Gag mRNA in vivo. However, we have found that a variety of mutants, including a mutant lacking the entire region encompassing SL1, SL2, and SL3, still produce RNAs that are efficiently translated. These data indicate that E is unlikely to contribute to efficient Gag mRNA translation in vivo.  相似文献   

7.
Encapsidation of the pregenomic RNA into nucleocapsids is a selective process which depends on specific RNA-protein interactions. The signal involved in the packaging of the hepatitis B virus (HBV) RNA pregenome was recently defined as a short sequence located near the 5' end of that molecule (Junker-Niepmann et al., EMBO J., in press), but it remained an open question which viral proteins are required. Using a genetic approach, we analyzed whether proteins derived from the HBV P gene play an important role in pregenome encapsidation. The results obtained with point mutations, deletions, and insertions scattered throughout the P gene clearly demonstrate that (i) a P gene product containing all functional domains is required both for the encapsidation of HBV pregenomic RNA and for packaging of nonviral RNAs fused to the HBV encapsidation signal, (ii) known enzymatic activities are not involved in the packaging reaction, suggesting that P protein is required as a structural component, and (iii) P protein acts primarily in cis, i.e., pregenomic RNAs from which P protein is synthesized are preferentially encapsidated.  相似文献   

8.
9.
10.
Anderson EC  Lever AM 《Journal of virology》2006,80(21):10478-10486
The full-length viral RNA of human immunodeficiency virus type 1 (HIV-1) functions both as the mRNA for the viral structural proteins Gag and Gag/Pol and as the genomic RNA packaged within viral particles. The packaging signal which Gag recognizes to initiate genome encapsidation is in the 5' untranslated region (UTR) of the HIV-1 RNA, which is also the location of translation initiation complex formation. Hence, it is likely that there is competition between the translation and packaging processes. We studied the ability of Gag to regulate translation of its own mRNA. Gag had a bimodal effect on translation from the HIV-1 5' UTR, stimulating translation at low concentrations and inhibiting translation at high concentrations in vitro and in vivo. The inhibition was dependent upon the ability of Gag to bind the packaging signal through its nucleocapsid domain. The stimulatory activity was shown to depend on the matrix domain of Gag. These results suggest that Gag controls the equilibrium between translation and packaging, ensuring production of enough molecules of Gag to make viral particles before encapsidating its genome.  相似文献   

11.
Ostrow KM  Loeb DD 《Journal of virology》2002,76(18):9087-9095
Previous analysis of duck hepatitis B virus (DHBV) indicated the presence of at least two cis-acting sequences required for efficient encapsidation of its pregenomic RNA (pgRNA), epsilon and region II. epsilon, an RNA stem-loop near the 5' end of the pgRNA, has been characterized in detail, while region II, located in the middle of the pgRNA, is not as well defined. Our initial aim was to identify the sequence important for the function of region II in DHBV. We scanned region II and the surrounding sequence by using a quantitative encapsidation assay. We found that the sequence between nucleotides (nt) 438 and 720 contributed to efficient pgRNA encapsidation, while the sequence between nt 538 and 610 made the largest contribution to encapsidation. Additionally, deletions between the two encapsidation sequences, epsilon and region II, had variable effects on encapsidation, while substitutions of heterologous sequence between epsilon and region II disrupted the ability of the pgRNA to be encapsidated efficiently. Overall, these data indicate that the intervening sequences between epsilon and region II play a role in encapsidation. We also analyzed heron hepatitis B virus (HHBV) for the presence of region II and found features similar to DHBV: a broad region necessary for efficient encapsidation that contained a critical region II sequence. Furthermore, we analyzed variants of DHBV that were substituted with HHBV sequence over region II and found that the chimeras were not fully functional for RNA encapsidation. These results indicate that sequences within region II may need to be compatible with other viral components in order to function in pgRNA encapsidation.  相似文献   

12.
To clarify the binding properties of hepatitis C virus (HCV) core protein and its viral RNA for the encapsidation, morphogenesis, and replication of HCV, the specific interaction of HCV core protein with its genomic RNA synthesized in vitro was examined in an in vivo system. The positive-sense RNA from the 5' end to nucleotide (nt) 2327, which covers the 5' untranslated region (5'UTR) and a part of the coding region of HCV structural proteins, interacted with HCV core protein, while no interaction was observed in the same region of negative-sense RNA and in other regions of viral and antiviral sense RNAs. The internal ribosome entry site (IRES) exists around the 5'UTR of HCV; therefore, the interaction of the core protein with this region of HCV RNA suggests that there is some effect on its cap-independent translation. Cells expressing HCV core protein were transfected with reporter RNAs consisting of nt 1 to 709 of HCV RNA (the 5'UTR of HCV and about two-thirds of the core protein coding regions) followed by a firefly luciferase gene (HCV07Luc RNA). The translation of HCV07Luc RNA was suppressed in cells expressing the core protein, whereas no significant suppression was observed in the case of a reporter RNA possessing the IRES of encephalomyocarditis virus followed by a firefly luciferase. This suppression by the core protein occurred in a dose-dependent manner. The expression of the E1 envelope protein of HCV or beta-galactosidase did not suppress the translation of both HCV and EMCV reporter RNAs. We then examined the regions that are important for suppression of translation by the core protein and found that the region from nt 1 to 344 was enough to exert this suppression. These results suggest that the HCV core protein interacts with viral genomic RNA at a specific region to form nucleocapsids and regulates the expression of HCV by interacting with the 5'UTR.  相似文献   

13.
Viruses employ an alternative translation mechanism to exploit cellular resources at the expense of host mRNAs and to allow preferential translation. Plant RNA viruses often lack both a 5' cap and a 3' poly(A) tail in their genomic RNAs. Instead, cap-independent translation enhancer elements (CITEs) located in the 3' untranslated region (UTR) mediate their translation. Although eukaryotic translation initiation factors (eIFs) or ribosomes have been shown to bind to the 3'CITEs, our knowledge is still limited for the mechanism, especially for cellular factors. Here, we searched for cellular factors that stimulate the 3'CITE-mediated translation of Red clover necrotic mosaic virus (RCNMV) RNA1 using RNA aptamer-based one-step affinity chromatography, followed by mass spectrometry analysis. We identified the poly(A)-binding protein (PABP) as one of the key players in the 3'CITE-mediated translation of RCNMV RNA1. We found that PABP binds to an A-rich sequence (ARS) in the viral 3' UTR. The ARS is conserved among dianthoviruses. Mutagenesis and a tethering assay revealed that the PABP-ARS interaction stimulates 3'CITE-mediated translation of RCNMV RNA1. We also found that both the ARS and 3'CITE are important for the recruitment of the plant eIF4F and eIFiso4F factors to the 3' UTR and of the 40S ribosomal subunit to the viral mRNA. Our results suggest that dianthoviruses have evolved the ARS and 3'CITE as substitutes for the 3' poly(A) tail and the 5' cap of eukaryotic mRNAs for the efficient recruitment of eIFs, PABP, and ribosomes to the uncapped/nonpolyadenylated viral mRNA.  相似文献   

14.
15.
16.
Influenza virus mRNAs bear a short capped oligonucleotide sequence at their 5' ends derived from the host cell pre-mRNAs by a "cap-snatching" mechanism, followed immediately by a common viral sequence. At their 3' ends, they contain a poly(A) tail. Although cellular and viral mRNAs are structurally similar, influenza virus promotes the selective translation of its mRNAs despite the inhibition of host cell protein synthesis. The viral polymerase performs the cap snatching and binds selectively to the 5' common viral sequence. As viral mRNAs are recognized by their own cap-binding complex, we tested whether viral mRNA translation occurs without the contribution of the eIF4E protein, the cellular factor required for cap-dependent translation. Here, we show that influenza virus infection proceeds normally in different situations of functional impairment of the eIF4E factor. In addition, influenza virus polymerase binds to translation preinitiation complexes, and furthermore, under conditions of decreased eIF4GI association to cap structures, an increase in eIF4GI binding to these structures was found upon influenza virus infection. This is the first report providing evidence that influenza virus mRNA translation proceeds independently of a fully active translation initiation factor (eIF4E). The data reported are in agreement with a role of viral polymerase as a substitute for the eIF4E factor for viral mRNA translation.  相似文献   

17.
S Perri  D Ganem 《Journal of virology》1996,70(10):6803-6809
The terminal regions of hepatitis B virus (HBV) pregenomic RNA (pgRNA) harbors sites governing many essential functions in the viral life cycle, including polyadenylation, translation, RNA encapsidation, and DNA synthesis. We have examined the binding of host proteins to a 170-nucleotide region from the 5' end of HBV pgRNA; a large portion of this region is duplicated at the 3' end of this terminally redundant RNA. By UV cross-linking labeled RNA to HepG2 cell extracts, we have identified a 65-kDa factor (p65) of nuclear origin which can specifically bind to this region. Two discrete binding sites were identified within this region; in vitro cross-competition experiments suggest that the same factor binds to both elements. One binding site (termed UBS) overlaps a portion of the highly conserved stem-loop structure (epsilon), while the other site (termed DBS) maps 35 nucleotides downstream of the hexanucleotide polyadenylation sequence. Both binding sites are highly pyrimidine rich and map to regions previously found to be important in the regulation of viral polyadenylation. However, functional analysis of mutant binding sites in vivo indicates that p65 is not involved in the polyadenylation of HBV pgRNA. Potential roles for the factor in viral replication in vivo are discussed.  相似文献   

18.
Chen Y  Shen A  Rider PJ  Yu Y  Wu K  Mu Y  Hao Q  Liu Y  Gong H  Zhu Y  Liu F  Wu J 《FASEB journal》2011,25(12):4511-4521
Regulated gene expression and progeny production are essential for persistent and chronic infection by human pathogens, such as hepatitis B virus (HBV), which affects >400 million people worldwide and is a major cause of liver disease. In this study, we provide the first direct evidence that a liver-specific microRNA, miR-122, binds to a highly conserved HBV pregenomic RNA sequence via base-pairing interactions and inhibits HBV gene expression and replication. The miR-122 target sequence is located at the coding region of the mRNA for the viral polymerase and the 3' untranslated region of the mRNA for the core protein. In cultured cells, HBV gene expression and replication reduces with increased expression of miR-122, and the expression of miR-122 decreases in the presence of HBV infection and replication. Furthermore, analyses of clinical samples demonstrated an inverse linear correlation in vivo between the miR-122 level and the viral loads in the peripheral blood mononuclear cells of HBV-positive patients. Our results suggest that miR-122 may down-regulate HBV replication by binding to the viral target sequence, contributing to the persistent/chronic infection of HBV, and that HBV-induced modulation of miR-122 expression may represent a mechanism to facilitate viral pathogenesis.  相似文献   

19.
20.
Genomic RNA encapsidation in lentiviruses is a highly selective and regulated process. The unspliced RNA molecules are selected for encapsidation from a pool of many different viral and cellular RNA species. Moreover, two molecules are encapsidated per viral particle, where they are found associated as a dimer. In this study, we demonstrate that a 10-nucleotide palindromic sequence (pal) located at the 3' end of the psi encapsidation signal is critical for human immunodeficiency virus type 2 (HIV-2) replication and affects genomic RNA encapsidation. We used short-term and long-term culture of pal-mutated viruses in permissive C8166 cells and their phenotypic reversion to show the existence of a structurally extended SL1 during HIV-2 replication, formed by the interaction of the 3' end of the pal within psi with a motif located downstream of SL1. The stem extending HIV-2 SL1 is structurally similar to stem B described for HIV-1 SL1. Despite the high degree of phylogenetic conservation, these results show that mutant viruses are viable when the autocomplementary nature of the pal sequence is disrupted, but not without a stable stem B. Our observations show that formation of the extended SL1 is necessary during viral replication and positively affects HIV-2 genomic RNA encapsidation. Sequestration of part of the packaging signal into SL1 may be a means of regulating its presentation during the replication cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号