首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMO is a small ubiquitin-like protein that becomes covalently conjugated to a variety of target proteins, the large majority of which are found in the nucleus. Ulp1 is a member of a family of proteases that control SUMO function positively, by catalyzing the proteolytic processing of SUMO to its mature form, and negatively, by catalyzing SUMO deconjugation. In Drosophila S2 cells, depletion of Ulp1 by RNA interference results in a dramatic change in the overall spectrum of SUMO conjugates, indicating that SUMO deconjugation is substrate-specific and plays a critical role in determining the steady state targets of SUMO conjugation. Ulp1 normally serves to prevent the accumulation of SUMO-conjugated forms of a number of proteins, including the aminoacyl-tRNA synthetase EPRS. In the presence of Ulp1, most SUMO conjugates reside in the nucleus. However, in its absence, SUMO-conjugated EPRS accumulates in the cytoplasm, contributing to an overall shift of SUMO from the nucleus to the cytoplasm. The ability of Ulp1 to restrict SUMO conjugates to the nucleus is independent of its role as a SUMO-processing enzyme because Ulp1-dependent nuclear localization of SUMO is even observed when SUMO is expressed in a preprocessed form. Studies of a Ulp1-GFP fusion protein suggest that Ulp1 localizes to the nucleoplasmic face of the nuclear pore complex. We hypothesize that, as a component of the nuclear pore complex, Ulp1 may prevent proteins from leaving the nucleus with SUMO still attached.  相似文献   

2.
Asexual stage Plasmodium falciparum replicates and undergoes a tightly regulated developmental process in human erythrocytes. One mechanism involved in the regulation of this process is posttranslational modification (PTM) of parasite proteins. Palmitoylation is a PTM in which cysteine residues undergo a reversible lipid modification, which can regulate target proteins in diverse ways. Using complementary palmitoyl protein purification approaches and quantitative mass spectrometry, we examined protein palmitoylation in asexual-stage P.?falciparum parasites and identified over 400 palmitoylated proteins, including those involved in cytoadherence, drug resistance, signaling, development, and invasion. Consistent with the prevalence of palmitoylated proteins, palmitoylation is essential for P.?falciparum asexual development and influences erythrocyte invasion by directly regulating the stability of components of the actin-myosin invasion motor. Furthermore, P.?falciparum uses palmitoylation in diverse ways, stably modifying some proteins while dynamically palmitoylating others. Palmitoylation therefore plays a central role in regulating P.?falciparum blood stage development.  相似文献   

3.
4.
We demonstrate for the first time the presence of a circumsporozoite (CS)-like protein in invasive blood stages of malaria parasites. Immunogold electron microscopy using antisporozoite monoclonal antibodies localized these antigens in the micronemes of merozoites. Western immunoblot and two-dimensional gel electrophoresis of mature blood stage extracts of Plasmodium falciparum, P. berghei, P. cynomolgi, and P. brasilianum identified polypeptides having the same apparent molecular mass and isoelectric points as the corresponding sporozoite (CS) proteins. The CS-like protein of merozoites is present in relatively minor amounts, compared to the CS protein of sporozoites. Mice with long-term P. berghei blood-induced infections develop antibodies which react with sporozoites.  相似文献   

5.
The mechanism of DNA replication initiation and progression is poorly understood in the parasites, including human malaria parasite Plasmodium falciparum . Using bioinformatics tools and yeast complementation assay, we identified a putative homologue of Saccharomyces cerevisiae o rigin r ecognition c omplex subunit 5 in P. falciparum (PfORC5). PfORC5 forms distinct nuclear foci colocalized with the replication foci marker proliferating cell nuclear antigen (PfPCNA) and co-immunoprecipitates with PCNA during early-to-mid trophozoite stage replicating parasites. Interestingly, these proteins separate from each other at the non-replicating late schizont stage, citing the evidence of the presence of both PCNA and ORC components in replication foci during eukaryotic DNA replication. PfORC1, another ORC subunit, colocalizes with PfPCNA and PfORC5 at the beginning of DNA replication, but gets degraded at the late schizont stage, ensuring the regulation of DNA replication in the parasites. Further, we have identified putative PCNA-interacting protein box in PfORC1 that may explain in part the colocalization of PfORC and PfPCNA. Additionally, use of specific DNA replication inhibitor hydroxyurea affects ORC5/PCNA foci formation and parasitic growth. These results strongly favour replication factory model in the parasites and confer great potential to understand the co-ordination between ORC and PCNA during eukaryotic DNA replication in general.  相似文献   

6.
Yeast SUMO (Smt3) and its mammalian ortholog SUMO-1 are ubiquitin-like proteins that can reversibly be conjugated to other proteins. Among the substrates for SUMO modification in vertebrates are RanGAP1 and RanBP2/Nup358, two proteins previously implicated in nucleocytoplasmic transport. Sumoylated RanGAP1 binds to the nuclear pore complex via RanBP2/Nup358, a giant nucleoporin, which was recently reported to act as a SUMO E3 ligase on some nuclear substrates. However, no direct evidence for a role of the SUMO system in nuclear transport has been obtained so far. By the use of conditional yeast mutants, we examined nuclear protein import in vivo. We show here that cNLS-dependent protein import is impaired in mutants with defective Ulp1 and Uba2, two enzymes involved in the SUMO conjugation reaction. In contrast, other transport pathways such as rgNLS-mediated protein import and mRNA export are not affected. Furthermore, we find that the yeast importin-alpha subunit Srp1 accumulates in the nucleus of ulp1 and uba2 strains but not the importin-beta subunit Kap95, indicating that a lack of Srp1 export might impair cNLS import. In summary, our results provide evidence that SUMO modification in yeast, as has been suspected for vertebrates, plays an important role in nucleocytoplasmic trafficking.  相似文献   

7.
8.
The malaria parasite Plasmodium falciparum infects humans and first targets the liver where liver-stage parasites undergo pre-erythrocytic replication. Liver-stage antigen-1 (LSA-1) is currently the only identified P. falciparum protein for which expression is restricted to liver stages. Yet, the importance of LSA-1 for liver-stage parasite development remains unknown. Here we deleted LSA-1 in the NF54 strain of P. falciparum and analysed the lsa-1(-) parasites throughout their life cycle. lsa-1(-) sporozoites had normal gliding motility and invasion into hepatocytes. Six days after infection of a hepatocytic cell line, lsa-1(-) parasites exhibited a moderate phenotype with an ~50% reduction of late liver-stage forms when compared with wild type. Strikingly, lsa-1(-) parasites growing in SCID/Alb-uPA mice with humanized livers showed a severe defect in late liver-stage differentiation and exo-erythrocytic merozoite formation 7 days after infection, a time point when wild-type parasites develop into mature merozoites. The lsa-1(-) parasites also showed aberrant liver-stage expression of key parasite proteins apical membrane antigen-1 and circumsporozoite protein. Our data show that LSA-1 plays a critical role during late liver-stage schizogony and is thus important in the parasite transition from the liver to blood. LSA-1 is the first P. falciparum protein identified to be required for this transitional stage of the parasite life cycle.  相似文献   

9.
O'Brien SP  DeLisa MP 《PloS one》2012,7(6):e38671
SUMO (small ubiquitin-related modifier) is a reversible post-translational protein modifier that alters the localization, activity, or stability of proteins to which it is attached. Many enzymes participate in regulated SUMO-conjugation and SUMO-deconjugation pathways. Hundreds of SUMO targets are currently known, with the majority being nuclear proteins. However, the dynamic and reversible nature of this modification and the large number of natively sumoylated proteins in eukaryotic proteomes makes molecular dissection of sumoylation in eukaryotic cells challenging. Here, we have reconstituted a complete mammalian SUMO-conjugation cascade in Escherichia coli cells that involves a functional SUMO E3 ligase, which effectively biases the sumoylation of both native and engineered substrate proteins. Our sumo-engineered E. coli cells have several advantages including efficient protein conjugation and physiologically relevant sumoylation patterns. Overall, this system provides a rapid and controllable platform for studying the enzymology of the entire sumoylation cascade directly in living cells.  相似文献   

10.
Human cerebral malaria is caused by the protozoan parasite Plasmodium falciparum, which establishes itself within erythrocytes. The normal body temperature in the human host could constitute a possible source of heat stress to the parasite. Molecular chaperones belonging to the heat shock protein (Hsp) class are thought to be important for parasite subsistence in the host cell, as the expression of some members of this family has been reported to increase upon heat shock. In this paper we investigated the possible functions of the P. falciparum heat shock protein DnaJ homologue Pfj4, a type II Hsp40 protein. We analysed the ability of Pfj4 to functionally replace Escherichia coli Hsp40 proteins in a dnaJ cbpA mutant strain. Western analysis on cellular fractions of P. falciparum-infected erythrocytes revealed that Pfj4 expression increased upon heat shock. Localisation studies using immunofluorescence and immuno-electron microscopy suggested that Pfj4 and P. falciparum Hsp70, PfHsp70-1, were both localised to the parasites nucleus and cytoplasm. In some cases, Pfj4 was also detected in the erythrocyte cytoplasm of infected erythrocytes. Immunoprecipitation studies and size exclusion chromatography indicated that Pfj4 and PfHsp70-1 may directly or indirectly interact. Our results suggest a possible involvement of Pfj4 together with PfHsp70-1 in cytoprotection, and therefore, parasite survival inside the erythrocyte.  相似文献   

11.
12.
13.
The exoerythrocytic stage of Plasmodium falciparum has remained a difficult phase of the parasite life-cycle to study. The host and tissue specificity of the parasite requires the experimental infection of humans or non-human primates and subsequent surgical recovery of parasite-infected liver tissue to analyze this stage of the parasites development. This type of study is impossible in humans due to obvious ethical considerations and the cost and complexity in working with primate models has precluded their use for extensive studies of the exoerythrocytic stage. In this study we assessed, for the first time, the use of transgenic, chimeric mice containing functioning human hepatocytes as an alternative for modeling the in vivo interaction of P. falciparum parasites and human hepatocytes. Infection of these mice with P. falciparum sporozoites produced morphologically and antigenically mature liver stage schizonts containing merozoites capable of invading human red blood cells. Additionally, using microdissection, highly enriched P. falciparum liver stage parasites essentially free of hepatocyte contamination, were recovered for molecular studies. Our results establish a stable murine model for P. falciparum that will have a wide utility for assessing the biology of the parasite, potential anti-malarial chemotherapeutic agents and vaccine design.  相似文献   

14.
SUMOylation, the reversible covalent attachment of small ubiquitin-like modifier (SUMO) peptides has emerged as an important regulator of target protein function. Here we show, by characterization of the Toxoplasma gondii SUMO pathway, that the SUMO conjugation system operates in apicomplexan parasites. A gene encoding the SUMO tag was discovered as were genes encoding the various enzymes required for SUMO processing, ligation and release. Various SUMO conjugates were immuno-detected and by means of a global proteomic-based approach, we identified several T. gondii SUMOylated proteins that reveal many diverse cellular processes in which the modification plays a role. More specifically, SUMO conjugates were seen at the tachyzoite surface in response to signaling generated by host cell contact at the time of invasion. Also, under tissue culture conditions that stimulate bradyzoite differentiation (alkaline pH), we observed the conjugates at the parasitophorous vacuole membrane. The labeling was also at the surface of the mature cysts isolated from parasite-infected mouse brain. Overall, the SUMO conjugation system appears to be a complex and functionally heterogeneous pathway for protein modification in T. gondii with initial data indicating that it is likely to play a putative role in host cell invasion and cyst genesis.  相似文献   

15.
SUMO: ligases, isopeptidases and nuclear pores   总被引:1,自引:0,他引:1  
Small ubiquitin-related modifier (SUMO) proteins are reversibly coupled to numerous intracellular targets and modulate their interactions, localization, activity or stability. Recent advances in the SUMO field have uncovered the first SUMO E3 ligases and point to a complex family of isopeptidases. SUMO has been linked to many different pathways, including nucleocytoplasmic transport. Modifying enzymes and an isopeptidase have been detected at nuclear pore complexes. In addition, studies in yeast suggest a requirement of SUMO conjugation for nuclear protein import, and specific SUMO targets depend on modification for nuclear import or export.  相似文献   

16.
17.
The modification of proteins by the small ubiquitin‐like modifier (SUMO) is known to regulate an increasing array of cellular processes. SUMOylation of the mitochondrial fission GTPase dynamin‐related protein 1 (DRP1) stimulates mitochondrial fission, suggesting that SUMOylation has an important function in mitochondrial dynamics. The conjugation of SUMO to its substrates requires a regulatory SUMO E3 ligase; however, so far, none has been functionally associated with the mitochondria. By using biochemical assays, overexpression and RNA interference experiments, we characterized the mitochondrial‐anchored protein ligase (MAPL) as the first mitochondrial‐anchored SUMO E3 ligase. Furthermore, we show that DRP1 is a substrate for MAPL, providing a direct link between MAPL and the fission machinery. Importantly, the large number of unidentified mitochondrial SUMO targets suggests a global role for SUMOylation in mitochondrial function, placing MAPL as a crucial component in the regulation of multiple conjugation events.  相似文献   

18.
Cyclic GMP-dependent protein kinases (PKGs) are the major mediators of the cGMP signal transduction pathway and regulate a variety of physiological effects. We report here the characterization of an unusual PKG from the human malaria parasite Plasmodium falciparum (designated PfPKG). The 97.5 kDa protein contains some of the structural features of mammalian PKGs but, uniquely, contains a third predicted cGMP binding site and a degenerate fourth. Using both protein kinase activity assays and Western blotting with native P. falciparum proteins, we demonstrate here that PfPKG is expressed predominantly in the ring stage of the life cycle, suggesting a role in the development of asexual blood stage parasites. An Escherichia coli-derived recombinant protein (PfPKG2, Met115-Phe853) was purified and shown to have phosphotransferase activity in terms of both substrate phosphorylation and auto-phosphorylation. This activity was stimulated at least fivefold by 1.0 microM cyclic GMP, but was not stimulated by cAMP or by 8-pCPT-cGMP, which is a potent activator of mammalian PKGs. Several protein kinase inhibitors exhibited a range of inhibitory effects on PfPKG activity. Biochemical analysis therefore shows that PfPKG is distinct from mammalian PKGs with respect to both cyclic nucleotide analogue activation and inhibition profiles.  相似文献   

19.
A proper equilibrium of post‐translational protein modifications is essential for normal cell physiology, and alteration in these processes is key in neurodegenerative disorders such as Alzheimer's disease. Recently, for instance, alteration in protein SUMOylation has been linked to amyloid pathology. In this work, we aimed to elucidate the role of protein SUMOylation during aging and increased amyloid burden in vivo using a His6‐HA‐SUMO1 knock‐in mouse in the 5XFAD model of Alzheimer's disease. Interestingly, we did not observe any alteration in the levels of SUMO1‐conjugation related to Alzheimer's disease. SUMO1 conjugates remained localized to neuronal nuclei upon increased amyloid burden and during aging and were not detected in amyloid plaques. Surprisingly however, we observed age‐related alterations in global levels of SUMO1 conjugation and at the level of individual substrates using quantitative proteomic analysis. The identified SUMO1 candidate substrates are dominantly nuclear proteins, mainly involved in RNA processing. Our findings open novel directions of research for studying a functional link between SUMOylation and its role in guarding nuclear functions during aging.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号