首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of wheat straw with 1N trifluoroacetic acid (TFA) for 7 h at reflux temperature yielded 23% xylose based upon initial straw weight. This corresponds to about an 80% xylose yield based on the xylan content of the hemicellulose. The cellulose component of wheat straw was largely unaffected, as evidenced by low glucose yields. Decomposition of xylose by prolonged refluxing (23 h) was minimal in 1N TFA compared to 1N HCl. Treatment of wheat straw with refluxing 1N TFA converts about 10% of the lignin initially present in straw into water-soluble lignin fragments. Fermentation of the xylose-rich wheat straw hydrolyzate to ethanol with Pachysolen tannophilus was comparable to the fermentation of reagent grade xylose, indicating that furfural and toxic lignin by-products were not produced by 1N TFA in sufficient amounts to impair cell growth and ethanol production. Cellulase treatment of the wheat straw residue after TFA hydrolysis resulted in a 70-75% conversion of the cellulose into glucose.  相似文献   

2.
3.
The yeast Pachysolen tannophilus was found to be capable of converting D-xylose to ethanol. Batch cultures initially containing 50 g/L D-xylose yielded 0.34 g of ethanol per gram of pentose consumed. Aerobic conditions were required for cell growth but not for ethanol production. Both alcohol formation and growth were optimum when incubation temperature was 32 degrees C, when pH was near 2.5, and when D-xylose and ethanol concentrations did not exceed 50 and 20 g/L, respectively.  相似文献   

4.
The oxygen requirements for ethanol production from d-xylose (10 or 20 g l?1) by Pachysolen tannophilus have been determined by controlling the availability of oxygen to shake flasks. Under anaerobic conditions no ethanol was produced whereas under aerobic conditions mainly biomass was formed. Semi-anaerobic conditions resulted in maximum ethanol production. By varying the stirring speed of a fermenter and supplying air to the liquid surface at various rates, the oxygen transfer rate (OTR) was controlled under semi-anaerobic conditions. By increasing the OTR from 0.05 to 16.04 mmol l?1 h?1, the ethanol yield coefficient decreased from 0.28 to 0.18 while the cell yield coefficient increased from 0.14 to 0.22. The accumulation of polyols decreased from 0.88 to 0.56 g l?1 with increasing OTR. At OTRs between 0.09 and 1.18 mmol l?1 h?1, specific ethanol productivity attained a maximum value of 0.07 h?1 and decreased with either increasing or decreasing OTR. The results indicate that the OTR must be carefully controlled for efficient ethanol production from d-xylose by P. tannophilus.  相似文献   

5.
Summary Pachysolen tannophilus, a homothallic yeast, converts xylose to ethanol at a yield of 0.3 (g/g xylose). Concomitant with ethanol production, xylitol accumulates in the culture medium at similar yields (0.3 g/g xylose). The addition of the hydrogen-accepting compound, acetone, increases the amount of ethanol produced by this organism by 50–70%. The increase in ethanol is directly correlated with a decrease in xylitol secreted. The results indicate that conversion of acetone to 2-propanol by the cells provides the NAD+ used as a cofactor by xylitol dehydrogenase, the enzyme responsible for converting xylitol to xylulose.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U. S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

6.
Summary Intermittent-feeding of cellulose hydrolyzate to hemicellulose hydrolyzate of hardwood resulted in greater yields of ethanol usingPachysolen tannophilus than batch fermentations of either hydrolyzate alone or as a mix. Conversion efficiencies as great as 0.40 g ethanol/g sugar fed were achieved.  相似文献   

7.
Summary The yeast Pachysolen tannophilus has been identified as being able to convert an aldopentose, D-xylose, into ethanol. A feature of the conversion is that it can take place under aerobic conditions.Issued as N.R.C.C. Publication No. 19095.  相似文献   

8.
In this study, we demonstrate that the sorghum field waste, sorghum stover could be used to produce fuel grade ethanol. The alkaline treatment of 2% NaOH for 8h removed 64% of lignin from sorghum stover. Maximum of 68 and 56 g/L of ethanol yield were obtained by Saccharomyces cerevisiae (MTCC 173) and Pachysolen tannophilus (MTCC 1077) from sorghum stover under optimized condition, respectively. pH and temperature were optimized for the better growth of S. cerevisiae and P. tannophilus. A total of 51% and 48% more ethanol yield was obtained at initial sugar concentration of 200 g/L than 150 g/L by P. tannophilus and S. cerevisiae, respectively. Respiratory deficiency and ethanol tolerance of the organisms were studied. This investigation showed that sorghum field waste could be effectively used for the production of fuel ethanol to avoid conflicts between human food use and industrial use of crops.  相似文献   

9.
10.
The fermentation of d-xylose, the major sugar-cane bagasse hemicellulose component, to ethanol by Pachysolen tannophilus is inhibited by various factors produced or released during the acid hydrolysis of the bagasse or during the fermentation process. These include ethanol, iron, chromium, copper, nickel, acetic acid and furfural. Ethanol production by P. tannophilus is inhibited by ethanol fconcentrations >24 g l?1. Furfural and acetic acid concentrations as low as 0.3 and 7 g l?1, respectively, and iron, chromium, nickel and copper at concentrations of 0.07, 0.01, 0.01 and 0.004 g l?1, respectively. Similar concentrations may be found in acid-hydrolysed bagasse. The removal of these factors by treatment with ion-exchange resin resulted in the fermentation of the sugars to ethanol. The d-glucose was used rapidly and completely whereas d-xylose utilization was slow and incomplete. An ethanol concentration of 4.1 g l?1 was produced and an ethanol yield of 0.32 was obtained. Xylitol in significant amounts was produced.  相似文献   

11.
This research was designed to maximize ethanol production from a glucose-xylose sugar mixture (simulating a sugar cane bagasse hydrolysate) by co-fermentation with Zymomonas mobilis and Pachysolen tannophilus. The volumetric ethanol productivity of Z. mobilis with 50 g glucose/l was 2.87 g/l/h, giving an ethanol yield of 0.50 g/g glucose, which is 98% of the theoretical. P. tannophilus when cultured on 50 g xylose/l gave a volumetric ethanol productivity of 0.10 g/l/h with an ethanol yield of 0.15 g/g xylose, which is 29% of the theoretical. On optimization of the co-fermentation with the sugar mixture (60 g glucose/l and 40 g xylose/l) a total ethanol yield of 0.33 g/g sugar mixture, which is 65% of the theoretical yield, was obtained. The co-fermentation increased the ethanol yield from xylose to 0.17 g/g. Glucose and xylose were completely utilized and no residual sugar was detected in the medium at the end of the fermentation. The pH of the medium was found to be a good indicator of the fermentation status. The optimum conditions were a temperature of 30°C, initial inoculation with Z. mobilis and incubation with no aeration, inactivation of bacterium after the utilization of glucose, followed by inoculation with P. tannophilus and incubation with limited aeration.  相似文献   

12.
The conversion of d-xylose to ethanol by the yeast Pachysolen tannophilus Y-2461 has been conducted in the presence of the respiratory inhibitor sodium azide. Conversion efficiencies improved for azide concentrations up to 0.2 mM. Concentrations above this value inhibited both ethanol production and cell growth. The work suggests that attempts to manipulate pentose conversion using extracellular factors, in this case azide, is of limited value in obtaining higher yield coefficients and better substrate conversion efficiencies.  相似文献   

13.
The genes for utilization of xylose were transferred from Pachysolen tannophilus to Saccharomyces cerevisiae. The hybrids resembled the S. cerevisiae parent morphologically and in sugar assimilation. Pulsed field gel electrophoresis showed that the chromosome banding pattern was intermediate between the two parental species. Correspondence to: H. Heluane  相似文献   

14.
Native wheat straw (WS) was pretreated with various concentrations of H2SO4 and NaOH followed by secondary treatments with ethylene diamine (EDA) and NH4OH prior to enzymatic saccharification. Conversion of the cellulosic component to sugar varied with the chemical modification steps. Treatment solely with alkali yield 51–75% conversion, depending on temperature. Acid treatment at elevated tempeatures showed a substantial decrease in the hemicellulose component, whereas EDA-treated WS (acid pretreated) showed a 69–75% decrease in the lignin component. Acid-pretreated EDA-treated straw yielded a 98% conversion rate, followed by 83% for alkali–NH4OH treated straws. In other experiments, WS was pretreated with varying concentration of H2SO4 or NaOh followed by NH4OH treatment prior to enzymatic hydrolysis. Pretreatment of straw with 2% NaOH for 4 h coupled to enzymatic hydrolysis yield a 76% conversion of the cellulosic component. Acid–base combination pretreatment yielded only 43% conversions. A reactor column was subsequently used to measure modification–saccharification–fermentation for wheat straw conversion on a larger scale. Thirty percent conversions of wheat straw cellulosics to sugar were observed with subsequent fermentation to alcohol. The crude cellulase preparation yielded considerable quantities of xylose in addition to the glucose. Saccharified materials were fermented directly with actively proliferating proliferating yeast cells without concentration of the sugars.  相似文献   

15.
d-Xylose comprises nearly one-third of the reducing sugars obtained from lignocellulose hydrolysis. Despite its relative abundance in crop and forest residues, xylose has been found unfermentable by most yeasts. A process for efficient xylose fermentation is expected to have significant impact on the future economics of converting lignocellulose to ethanol and may also provide additional profit for existing wood processing industries releasing xylose-rich waste streams, i.e. paper mills producing sulphite liquor. Pachysolen tannophilus was the first yeast discovered capable of significant ethanol production from xylose and has served as a model for studies of other yeasts mediating this conversion. Current knowledge about biochemical pathways involved in xylose utilization by this yeast is reviewed. Factors involved in regulating carbon flow to products are discussed in conjunction with process considerations for optimizing ethanol accumulation. Finally, the prospect of more efficient ethanol production through genetic strain improvement is considered.  相似文献   

16.
To determine the most favorable conditions for the production of ethanol by Pachysolen tannophilus, this yeast was grown in batch cultures with various initial concentrations of two of the constituents of the culture medium: d-xylose (so), ranging from 1 g·l−1 to 200 g·l−1, and yeast extract (lo), ranging from 0 g·l−1 to 8 g·l−1. The most favorable conditions proved to be initial concentrations of So=25 g·l−1 and lo=4 g·l−1, which gave a maximum specific growth rate of 0.26 h−1, biomass productivity of 0.023 g·l−1·h−1, overall biomass yield of 0.094 g·g−1, specific xylose-uptake rate (qs) of 0.3 g·g−1·h−1 (for t=50 h), specific ethanol-production rate (qE) of 0.065 g·g−1·h−1 and overall ethanol yield of 0.34 g·g−1; qs values decreased after the exponential growth phase while qE remained practically constant.  相似文献   

17.
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.  相似文献   

18.
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.  相似文献   

19.
Several fungi (Aspergillus niger, A. terreus, Cochliobolus specifer, Myrothecium verrucaria, Rhizoctonia solani, Spicaria fusispora, Penicillium sp., and Gliocladium sp.) were isolated from decomposing wheat straw and tested for their ability to utilize whole straw and its components, holocellulose (hemicellulose and cellulose) and cellulose, for the production of single-cell protein (SCP). It was found that C. specifer was the most efficient fungus for protein synthesis with the three substrates. Using potassium nitrate as N source in mixtures of 0.04 g N/g substrate (0.04% wt./vol.) at pH 4.5, it was found that incubation periods of 3, 4, and 5 days were optimal for protein production on cellulose and holocellulose fractions, and whole straw, respectively. Whole native straw was found to be the most recalcitrant to bioconversion into SCP; however, protein production was almost doubled when the lignin component was removed using a mixture of sodium chlorite and acetic acid.  相似文献   

20.
Pachysolen tannophilus has recently been shown to be able to convert d-xylose, a pentose, to ethanol. Previously, d-xylose had been considered to be nonfermentable by yeasts. The present study shows that the organism can be used to obtain ethanol from other carbohydrates previously considered as nonfermentable, either by P. tannophilus in particular, d-galactose, or by yeasts in general, glycerol. Such identification for d-galactose allows P. tannophilus to be considered for fermentation of four of the five major plant monosaccharides: d-glucose, d-mannose, d-galactose and d-xylose. The ability to ferment glycerol is of potential use, in part, for the conversion of glycerol derived from algae into ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号