首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The large but shallow (3,558 km2, up to 15.3 m deep) lake is eutrophic, with Chironomus plumosus and Potamothrix hammoniensis as dominating macroinvertebrates in the profundal. The extensive well-aerated sublittoral with sandy bottom sediments has a mesotrophic appearance and supports a diverse fauna with several oxyphilous species, including a very abundant population of Dreissena polymorpha. The phytophilous fauna is limited to small sheltered areas only. The average abundance of the small animals of macrozoobenthos (without big molluscs) was 2,617 ind. m–2, their biomass 12.34 g m–2 (corresponding to 52.2 kJ m–2) in 1964–1994. The same figures for big molluscs (mostly Dreissena) were 304 ind. m–2 and 238 g m–2 in 1964–1994, and even 864 ind. m–2 and 687 g m–2 in 1985–1988, at the time of their special mapping. The sublittoral zone revealed the lowest biomass of small animals but the highest biomass of big molluscs. The southern, shallower lake regions, more enriched with nutrients and better protected from wind, revealed a significantly higher biomass of small macrozoobenthos in the near-shore zone than the cleaner and open northern part, while no positive effect of enrichment was observed neither in the biomass of profundal zoobenthos nor in that of big molluscs. The production of the small macrozoobenthos was calculated as 111 and 53 kJ m–2 during two annual cycles in Lake Peipsi s. s., the most productive period being the autumn overturn. Lake Peipsi-Pihkva has the highest abundance and biomass of macrozoobenthos among the large lakes of North Europe.  相似文献   

2.
Macrozoobenthos of Lake Verevi   总被引:1,自引:1,他引:0  
An overview on studies of macrozoobenthos in the small, hard-water, stratified and hypertrophic Lake Verevi (South-Eastern Estonia) is given. The list of macroinvertebrates comprises at least 105 taxa. In the open water habitats, the biomass and abundance of macrozoobenthos (except the phantom midge Chaoborus flavicans) was rather constant beginning from the epilimnion up to the upper hypolimnion (depth 2–4 m), but very low in the lower hypolimnion (depth 6 m), which was inhabited mainly by Chaoborus. Comparison with long-term reference data from other Estonian lakes, belonging to similar limnological types, indicated that the total biomass and abundance (without Chaoborus) in the profundal of Verevi were very low.  相似文献   

3.
Neural networks and multiple linear regression models of the abundance of brown trout (Salmo trutta L.) on the mesohabitat scale were developed from combinations of physical habitat variables in 220 channel morphodynamic units (pools, riffles, runs, etc.) of 11 different streams in the central Pyrenean mountains. For all the 220 morphodynamic units, the determination coefficients obtained between the estimated and observed values of density or biomass were significantly higher for the neural network (r 2 adjusted= 0.93 and r 2 adjusted=0.92 (p<0.01) for biomass and density respectively with the neural network, against r 2 adjusted=0.69 (p<0.01) and r 2 adjusted = 0.54 (p<0.01) with multiple linear regression). Validation of the multivariate models and learning of the neural network developed from 165 randomly chosen channel morphodynamic units, was tested on the 55 other channel morphodynamic units. This showed that the biomass and density estimated by both methods were significantly related to the observed biomass and density. Determination coefficients were significantly higher for the neural network (r 2 adjusted =0.72 (p<0.01) and 0.81 (p<0.01) for biomass and density respectively) than for the multiple regression model (r 2 adjusted=0.59 and r 2 adjusted=0.37 for biomass and density respectively). The present study shows the advantages of the backpropagation procedure with neural networks over multiple linear regression analysis, at least in the field of stochastic salmonid ecology.  相似文献   

4.
Evaluation of recent limnological changes at Lake Apopka   总被引:4,自引:0,他引:4  
Recent changes in submersed macrophytes and water quality variables have been offered as the strongest evidence that the current restoration program at Lake Apopka will be effective (Lowe et al., 2000); however, the new beds of submersed plants in Lake Apopka are found only on hard substrates on the fringes of the lake within 40 m of shore and are protected from waves by cattails (Typha spp.). They occupy only 0.02% of the lake area, and there is no indication that they can colonize the flocculent sediments that make up 90% of the lake area. There is no correlation between annual inputs of phosphorus and total phosphorus concentrations in the lake, and patterns of change in chlorophyll and other water quality variables do not follow changes in phosphorus loads. Rather than reflecting decreases in phosphorus loading, the recent changes could be related to the harvest of benthivorous fish or are just the normal fluctuations found in lakes that have not been perturbed. Regardless of the reason the macrophytes were lost in the 1940s, the new analyses confirm our previous findings that the high turbidities in Lake Apopka are due to the resuspension of sediments, and that the fluid mud cannot support the colonization of submersed aquatic macrophytes. Even without the fluid mud, the target phosphorus concentration of 55 mg m–3 is too high to bring about the restoration of the former macrophyte beds in the lake.  相似文献   

5.
With 33 years of phytoplankton quantitative studies carried out, a series of qualitative data with a length of over 80 years is at our disposal. About 500 algal species have been found in plankton by different researchers. In different seasons and years 35 main species (dominants and subdominants) form 68–96 % of biomass in L. Pihkva (southern, more eutrophic part) and 60–97 % in L. Peipsi (northern, less eutrophic part). L. Lämmijärv, connecting the two parts is similar to L. Pihkva in respect to phytoplankton and the trophic state. Diatoms and blue-green algae prevail in biomass, diatoms and green algae, in the species number. The oligo-mesotrophic Aulacoseira islandica (O. Müller) Sim. is characteristic of the cool period; A. granulata (Ehr.) Sim. and Stephanodiscus binderanus (Kütz.) Krieger prevail in summer and autumn, the latter being most abundant in the southern part. Gloeotrichia echinulata (J.S. Smith) P Richter and Aphanizomenon flos-aquae (L.) Ralfs dominate in summer causing water-bloom. Phytoplankton has mostly three maxima in seasonal dynamics in L. Peipsi and two in L. Pihkva. Its average biomass in spring in different years has fluctuated in the range 5.6–16 and 6–12.7 g m–3, in summer 3.1–14.8 and 5.6–125 (10–20 in most cases); and in autumn 7–16.3 and 5.2–26 in the northern and southern parts, respectively.The dominant complex has not changed considerably since 1909; however, the distribution of dominant species in lake parts has become more even in the last decades. Periods of high biomass occurred in the first half of the 1960s and 1970s and in 1988–1994, of low biomass in 1981–1987. The first coincided, in general, with periods of low water level and high water temperature.  相似文献   

6.
The species composition and phytoplankton biomass of Lake Awassa, Ethiopia were studied from September 1985 to July 1986 in relation to some limnological features of the lake. During the study period, three phases of thermal stratification were recognized: a period of unstable stratification and near-complete mixing was followed by a stable stratification period and another period of complete mixing. Complete mixing was associated with cooling of air temperature with an influx of cool rain and high rainfall. The underwater light penetration showed a similar pattern over the whole period with the highest in the red, and the lowest in the blue spectral region. Euphotic depth varied between 1.6 and 3.0 meters with the highest measurements corresponding to the stable stratification period. PO4-P concentrations ranged between 23 and 45 µg l–1 and NO3-N concentrations varied between 7 and 14 µg l–1 during the study period. Both nutrients showed increasing values associated with mixing periods and/or the rainy season.A total of 100 phytoplankton species were identified with 48% of the taxa represented by green algae, 30% by blue-green algae, 11% by diatoms, and the rest by chrysophytes, dinoflagellates, cryptomonads and euglenoids. The dominant phytoplankton species were Lyngbya nyassae, Botryococcus braunii and Microcystis species. Seasonal biomass variation was pronounced in the first two species but not in Mycrocystis. Phytoplankton biomass increased following the mixing period in December, and thermal destratification during May to July which was also a period with high rainfall and relatively high nutrient concentration. While the seasonal variation of the total phytoplankton community in Lake Awassa was relatively low (coefficient of variation < 20%), it was higher in some of the individual component species.  相似文献   

7.
8.
9.
The macrophytes of Lake Bled were studied from 1987 to 1990. Three main factors influenced the decline of the aquatic vegetation in the lake during that period: (1) reduced light in the littoral zone due to an increase in phytoplankton (2) grazing by herbivorous fish and waterfowl, and (3) direct human impact.  相似文献   

10.
Macrozoobenthos of three Pennsylvania lakes: responses to acidification   总被引:3,自引:3,他引:0  
The littoral macrozoobenthos (MZB) of three northeastern Pennsylvania lakes was sampled seasonally from summer 1981 until summer 1983, to determine if any changes were occurring in response to acid deposition. In the acidified lake (total alkalinity 0.0 eq L–1) the mean pH decreased from 5.5 in 1981 to 4.2 in 1983. Chironomidae comprised 71.30% of the MZB numbers and 19.6% of the wet weight. Over the study period the wet weight of Chironomidae increased (p < 0.04) as did the total numbers of Chironomidae in general (p < 0.01) and Tanytarsini (p < 0.01) in particular. Total numbers of MZB also increased (p < 0.02) in the acidified lake, but there was no significant change in the number of taxa, diversity or total wet weight. In the moderately sensitive lake (total alkalinity 47.4 eq L–1, mean pH 6.1) Chironomidae were numerically (43%) dominant but Odonata (18.6%) and Mollusca (12.7%) dominated wet weight. There were no significant changes in the MZB of the moderately sensitive lake over the study period. In the least sensitive lake (total alkalinity 190 eq L–1, mean pH 6.6) the Amphipoda (31.3%) and Chironomidae (27.3%) together provided 58.6% of the MZB numbers, and the Mollusca formed 55.1% of wet weight. Wet weight at the least sensitive lake was higher (p < 0.01) and there were more Ephemeroptera, Pelecypoda and Gastropoda than at the other two lakes. There were no differences in total numbers, diversity or number of taxa among the three lakes.  相似文献   

11.
Primary production of Lake Peipsi-Pihkva   总被引:1,自引:0,他引:1  
Primary production (PP) in Lake Peipsi-Pihkva, the tripartite border waterbody between Estonia and Russia, was first measured in 1965–1966. Since 1970 there exists a continuous timeseries of monthly PP measurements from May to October. Detailed investigations of the seasonal and daily dynamics as well as the vertical distribution of PP were carried out in 1985–1987. The long-term average values of integral PP (PPint) in Lakes Peipsi and Pihkva were equal (0.8 g C m–2 d–1), although the values per cubic metre (PPmax) differed more than twofold and characterized L. Pihkva as a eutrophic lake and L. Peipsi as a transition type between meso- and eutrophic lakes. The years from 1973 to 1980, 1987 and 1991 were of low productivity, while in 1971, 1983, 1988 and 1990 PP peaks occurred in both lakes. In the seasonal pattern PPint had peaks in May and July. In June, after the spring bloom, PP as well as the chlorophyll a (Chl) and ATP content were low. The high Chl peak in autumn was probably built up by the degradation products of chlorophyll, as neither PP nor ATP increased. Seasonal changes in integral PP in L. Peipsi could be well described (R 2 = 0.91) by an empirical model relating PPint to PPmax, Secchi depth (S) and total solar radiation (Q). In mixed conditions prevailing in both lakes, PP was inhibited in the surface layer and its maximum was located at a depth of 0.25...0.5 S. The threshold total solar radiation level for the onset of inhibition was between 1200 and 2000 kJ m–2 h–1 in May and July, and decreased to < 500 kJ m–2 h–1 in October. As a rule, inhibition started in the morning at a higher irradiance than necessary for keeping it up during evening hours. When compared with PPmax, photosynthesis in the surface layer at noon was suppressed by 56% in May, by 45% in July and by 40% in October.  相似文献   

12.
The hydrochemical state of Lake Peipsi-Pihkva   总被引:1,自引:1,他引:0  
The distribution and time dependence of total phosphorus (TP), dissolved inorganic phosphate (PO4P), total nitrogen (TN), chlorophyll a (Chl), dichromate oxidizability (CODCr), permanganate oxidizability (CODMn), water colour (Col) and transparency (SD), pH, dissolved oxygen (O2) and oxygen saturation (O2%) in the surface water of Lake Peipsi-Pihkva are studied by using 65-parameter regression models with the help of the SAS system. The yearly means, polarity and seasonal dependence of each investigated parameter during 1985–1994 are estimated from fitted models. The bulk of data consists of 456 to 1149 measurements per parameter. L. Peipsi-Pihkva appears to be polar with respect to the majority of the studied parameters. The content of TP, PO4P, TN, Chl, CODCr, CODMn, and Col decrease from south to north, while SD has an opposite trend. pH, O2, and O2% are quite uniform all over the lake. L. Peipsi is eutrophic, L. Pihkva is hypertrophic. The lake is influenced by significant yearly and seasonal changes. It is concluded that the Velikaja River is the main source of pollution for L. Peipsi-Pihkva.  相似文献   

13.
Lake Pamvotis is a moderately sized (22 km2) shallow (z avg=4 m) lake with a polymictic stratification regime located in northwest Greece. The lake has undergone cultural eutrophication over the past 40 years and is currently eutrophic (annual averages of FRP=0.07 mg P l-1, TP=0.11 mg P l-1, NH4 +=0.25 mg N l-1, NO3 =0.56 mg N l-1). FRP and NH4 + levels are correlated to external loading from streams during the winter and spring, and to internal loading during multi-day periods of summer stratification. Algal blooms occurred in summer (July–August green algae, August–September blue-green algae), autumn (October blue-green algae and diatoms), and winter (February diatoms), but not in the spring (March–June). The phytoplankton underwent brief periods of N- and P-limitation, though persistent low transparency (secchi depth of 60–80 cm) also suggests periods of light limitation. Rotifers counts were highest from mid-summer to early autumn whereas copepods were high in the spring and cladocerans were low in the summer. Removal of industrial and sewage point sources a decade ago resulted in a decrease in FRP. A phosphorus mass balance identified further reductions in external loading from the predominately agricultural catchment will decrease FRP levels further. The commercial fishery and lake hatchery also provides opportunities to control algal biomass through biomanipulation measures.  相似文献   

14.
The relationship of the macrozoobenthos biomass in the littoral area to the yearly fluctuation in water level and the characteristics of the area or lake are studied using data collected from sheltered bays in regulated and natural waters. Most of the lakes were clear and oligotrophic. The benthos biomass at all depths in the littoral decreased with increased water level fluctuation, provided that the transparency of the water was uniform.The macrozoobenthos biomass in the 0–3 m depth zone could be predicted fromlog macrozoobenthos biomass (mg ODW) m-2=4.25-1.33 (log Biomass Index) in which the Biomass Index is calculated as% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOqaiaabM% gacaqGVbGaaeyBaiaabggacaqGZbGaae4CaiaabccacaqGjbGaaeOB% aiaabsgacaqGLbGaaeiEaiaab2dacaqGGaGaaeiiaiaabccacaqGGa% GaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca% caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai% aabccadaWcaaabaeqabaGaae4DaiaabggacaqG0bGaaeyzaiaabkha% caqGGaGaaeiBaiaabwgacaqG2bGaaeyzaiaabYgacaqGGaGaaeOzai% aabYgacaqG1bGaae4yaiaabshacaqG1bGaaeyyaiaabshacaqGPbGa% ae4Baiaab6gacaqGGaGaaeyAaiaab6gacaqGGaGaaeiDaiaabIgaca% qGLbGaaeiiaiaabchacaqGYbGaaeyzaiaabAhacaqGPbGaae4Baiaa% bwhacaqGZbGaaeiiaiaabMhacaqGLbGaaeyyaiaabkhaaeaacaqGOa% GaaeyBaiaabUdacaqGGaGaae4yaiaabggacaqGSbGaae4yaiaabwha% caqGSbGaaeyyaiaabshacaqGLbGaaeizaiaabccacaqGMbGaaeOCai% aab+gacaqGTbGaaeiiaiaab2gacaqGVbGaaeOBaiaabshacaqGObGa% aeiBaiaabMhacaqGGaGaaeyBaiaabwgacaqGHbGaaeOBaiaabccaca% qG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabohacaqGPaaaaeaacaqG% tbGaaeyzaiaabogacaqGJbGaaeiAaiaabMgacaqGGaGaaeizaiaabM% gacaqGZbGaae4AaiaabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyz% aiaabccacaqGPbGaaeOBaiaabccacaqG0bGaaeiAaiaabwgacaqGGa% Gaae4CaiaabggacaqGTbGaaeyzaiaabccacaqGVbGaaeiCaiaabwga% caqGUbGaaeiiaiaabEhacaqGHbGaaeiDaiaabwgacaqGYbGaaeiiai% aabohacaqGLbGaaeyyaiaabohacaqGVbGaaeOBaiaabccacaqGOaGa% aeyBaiaabMcaaaaccaGae8hiaaIaaKiEaiab-bcaGiaaigdacaaIWa% GaaGimaiaac6caaaa!CBD8!\[{\text{Biomass Index = }}\frac{\begin{gathered} {\text{water level fluctuation in the previous year}} \hfill \\ {\text{(m; calculated from monthly mean values)}} \hfill \\ \end{gathered} }{{{\text{Secchi disk value in the same open water season (m)}}}} \user1{x} 100.\]The whole illuminated littoral shifts due to water level fluctuation, which disturbs the zonation of the benthos. Such an increase or decrease in benthic biomass has been observed after one year of disturbance due to water level fluctuation. It need, however, a study based on the carefully planned and collected data, in which it can be taken account by a multivariate statistical analysis also the interactions between the important factors affected the littoral benthos.  相似文献   

15.
We review the evidence showing that the high turbidity levels of Lake Apopka are due primarily to resuspended sediments rather than phytoplankton, and that this situation is likely to persist unless there is a fundamental change in the lake. We discuss the reasons why reductions in phosphorus inputs, the gizzard shad removal program, and macrophyte plantings would not bring about such a change. Potentially the marsh flow-way could remove the flocculent sediments because of a unique combination of a very large surface area (125 km2), a mean depth of only 1.7 m, a layer of easily resuspended fluid mud, and a marsh flow-way that is designed to filter the lake volume about 2 times a year. Using several different estimates of the rate of sediment formation in the lake, our model calculates that it would take from 275 to 502 years to remove the sediments, so the lake could not attain clear water in a reasonable length of time. The model is mathematically correct but will give nonsense results if one tries to calculate removal times when the lake is accumulating sediments rather than losing them.  相似文献   

16.
The profundal macroinvertebrates, particularly the oligochaetes, of Lake Ledro (Trento, Italy), that has recently undergone eutrophication, were studied.A statistical approach of random sampling was used to study the distribution and abundance of the oligochaete species. The optimum sample number was calculated from a preliminary sample series. The oligochaete community was made up of five tubificid species, one naidid and one lumbriculid species that on average represents more than 80% of the macrobenthic community. Population density was correlated with depth and decreasing oxygen concentration. The role of Tubifex tubifex as a eutrophic, tolerant species was confirmed; and in fact it was the only species found (although at low density) in the deepest and anoxic zone. No comparable data are available for the lake prior to eutrophication, but these data will be valuable for future comparison once a remediation program for the lake has been implemented.  相似文献   

17.
Rublee  Parke A.  Bettez  Neil D. 《Hydrobiologia》2001,(1):229-232
Lakes N-1 and N-2 at the Arctic Long Term Ecological Research site at Toolik Lake, Alaska, U.S.A. were fertilized with nitrogen and phosphorus for 5 and 6 years, respectively. The response and recovery of the microplankton community (protozoans, rotifers and crustacean nauplii) differed in the two lakes. Microplankton biomass in Lake N-1 increased five-fold while that in Lake-N-2 only doubled, despite larger nutrient additions to N-2. Microplankton community structure in Lake N-1 shifted toward dominance by few taxa, while the community in Lake N-2 maintained diversity. Finally, the recovery of Lake N-1 to near prefertilization microplankton biomass levels was rapid, while Lake N-2 showed at least a 1-year lag in recovery. These differences appear to be related to differences in the structure of lake sediments.  相似文献   

18.
安徽菜子湖大型底栖动物的群落结构特征   总被引:7,自引:0,他引:7  
近年来,长江中下游迅速发展的淡水渔业对湖泊湿地产生严重扰动,湖泊生态系统的结构和功能受到影响。为揭示大型底栖动物群落对湖泊扰动的响应,对安徽菜子湖群不同养殖程度的白兔湖、嬉子湖和菜子湖3个湖区进行了大型底栖动物周年定量调查。全湖设置49个样点,调查7次。共采集到大型底栖动物34属39种,优势种为摇蚊(Tendipes sp.)、苏氏尾鳃蚓(Branchiura sowerbyi)、长角涵螺(Alocinma longicornis)。大型底栖动物密度为(55.20±76.25) 个/m2,生物量为(19.56±65.37) g/m2,其中白兔湖、菜子湖、嬉子湖密度分别为(63.43±52.76)、(36.44±34.49)和(79.77±118.90) 个/m2,生物量分别为(17.48±28.24)、(21.70±39.44)和(4.94±18.46) g/m2。嬉子湖的节肢动物密度和生物量均显著大于白兔湖和菜子湖(P<0.01),而白兔湖和菜子湖的软体动物密度和生物量均显著大于嬉子湖(P<0.01)。聚类分析表明,白兔湖和菜子湖的大型底栖动物的群落结构相似性较高,但与嬉子湖养殖区的相似性较低。白兔湖和菜子湖大型底栖动物的Shannon-Wiener指数分别为2.25、1.71,嬉子湖仅为1.44。与2001年的资料相比,大型底栖动物的优势种发生了改变,群落多样性显著降低。水产养殖、修建堤坝等人为干扰已经对菜子湖群大型底栖动物群落结构产生了较大的影响,发展可持续渔业将是湖泊生态系统保护的重要途径。  相似文献   

19.
胶州湾西北部潮滩湿地大型底栖动物功能群   总被引:4,自引:0,他引:4  
Xin JH  Ren YP  Xu BD  Zhang CL  Xue Y  Ji YP 《应用生态学报》2011,22(7):1885-1892
2009年2、5、8和11月进行了7个断面35个站位的大型底栖动物调查,选取高潮区(A)、中潮区(B、C、D)和低潮区(E)研究了胶州湾西北部潮滩湿地大型底栖动物功能群组成及其时空变化.调查共发现大型底栖动物71种,主要种类为软体动物(31种)、环节动物(20种)和节肢动物(14种).潮区A、B、C、D、E物种数分别为26、33、35、38、31.依据食性将主要底栖动物划分为肉食者、浮游生物食者、碎屑食者和杂食者4个功能群.各功能群物种数占总物种数的百分比由高到低依次是肉食者、浮游生物食者、碎屑食者和杂食者.各功能群中肉食者的多样性指数最高,杂食者最低.各功能群的丰度、均匀度指数、多样性指数一般都是中潮区较高,高潮区和低潮区较低.大型底栖动物功能群的分布随潮区环境的改变而变化,是对生境状况的综合反映.  相似文献   

20.
浙江分水江水库大型底栖动物群落结构及水质评价   总被引:3,自引:0,他引:3  
2008年11月-2009年10月,在浙江桐庐分水江水库设置7个站点对大型底栖动物进行逐月调查.结果表明:调查共采集到37种底栖动物,主要由寡毛纲和摇蚊科物种组成.春、夏、秋季优势种均为霍甫水丝蚓,冬季优势种为羽摇蚊.直接收集者在物种数量、密度和生物量上均占绝对优势.群落年均密度和年均生物量分别为(488.0±48.8) ind·m-2和(1.86±0.49) g·m-2.底栖动物密度在站点间无明显差异但存在显著的季节变化,呈现春季>夏季>冬季>秋季的趋势,生物量在站点、季节间均无显著差异.水温和水深是影响底栖动物时空分布的主要因子.Shannon多样性指数和Goodnight-Whitley指数不适合用于该水库的水质评价,其他指数综合显示分水江水库属于轻度污染.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号