首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In Escherichia coli, signal recognition particle (SRP)-dependent targeting of inner membrane proteins has been described. In vitro cross-linking studies have demonstrated that short nascent chains exposing a highly hydrophobic targeting signal interact with the SRP. This SRP, assisted by its receptor, FtsY, mediates the transfer to a common translocation site in the inner membrane that contains SecA, SecG, and SecY. Here we describe a further in vitro reconstitution of SRP-mediated membrane insertion in which purified ribosome-nascent chain-SRP complexes are targeted to the purified SecYEG complex contained in proteoliposomes in a process that requires the SRP-receptor FtsY and GTP. We found that in this system SecA and ATP are dispensable for both the transfer of the nascent inner membrane protein FtsQ to SecY and its stable membrane insertion. Release of the SRP from nascent FtsQ also occurred in the absence of SecYEG complex indicating a functional interaction of FtsY with lipids. These data suggest that SRP/FtsY and SecB/SecA constitute distinct targeting routes.  相似文献   

2.
Two distinct protein targeting pathways can direct proteins to the Escherichia coli inner membrane. The Sec pathway involves the cytosolic chaperone SecB that binds to the mature region of pre-proteins. SecB targets the pre-protein to SecA that mediates pre-protein translocation through the SecYEG translocon. The SRP pathway is probably used primarily for the targeting and assembly of inner membrane proteins. It involves the signal recognition particle (SRP) that interacts with the hydrophobic targeting signal of nascent proteins. By using a protein cross-linking approach, we demonstrate here that the SRP pathway delivers nascent inner membrane proteins at the membrane. The SRP receptor FtsY, GTP and inner membranes are required for release of the nascent proteins from the SRP. Upon release of the SRP at the membrane, the targeted nascent proteins insert into a translocon that contains at least SecA, SecY and SecG. Hence, as appears to be the case for several other translocation systems, multiple targeting mechanisms deliver a variety of precursor proteins to a common membrane translocation complex of the E.coli inner membrane.  相似文献   

3.
The Sec translocon of bacterial plasma membranes mediates the linear translocation of secretory proteins as well as the lateral integration of membrane proteins. Integration of many membrane proteins occurs co-translationally via the signal recognition particle (SRP)-dependent targeting of ribosome-associated nascent chains to the Sec translocon. In contrast, translocation of classical secretory proteins across the Sec translocon is a post-translational event requiring no SRP but the motor protein SecA. Secretory proteins were, however, reported to utilize SRP in addition to SecA, if the hydrophobicity of their signal sequences exceeds a certain threshold value. Here we have analyzed transport of this subgroup of secretory proteins across the Sec translocon employing an entirely defined in vitro system. We thus found SecA to be both necessary and sufficient for translocation of secretory proteins with hydrophobic signal sequences, whereas SRP and its receptor improved translocation efficiency. This SRP-mediated boost of translocation is likely due to the early capture of the hydrophobic signal sequence by SRP as revealed by site-specific photo cross-linking of ribosome nascent chain complexes.  相似文献   

4.
In Escherichia coli, three different types of proteins engage the SecY translocon of the inner bacterial membrane for translocation or insertion: 1) polytopic membrane proteins that prior to their insertion into the membrane are targeted to the translocon using the bacterial signal recognition particle (SRP) and its receptor; 2) secretory proteins that are targeted to and translocated across the SecY translocon in a SecA- and SecB-dependent reaction; and 3) membrane proteins with large periplasmic domains, requiring SRP for targeting and SecA for the translocation of the periplasmic moiety. In addition to its role as a targeting device for membrane proteins, a function of the bacterial SRP in the export of SecB-independent secretory proteins has also been postulated. In particular, beta-lactamase, a hydrolytic enzyme responsible for cleavage of the beta-lactam ring containing antibiotics, is considered to be recognized and targeted by SRP. To examine the role of the SRP pathway in beta-lactamase targeting and export, we performed a detailed in vitro analysis. Chemical cross-linking and membrane binding assays did not reveal any significant interaction between SRP and beta-lactamase nascent chains. More importantly, membrane vesicles prepared from mutants lacking a functional SRP pathway did block the integration of SRP-dependent membrane proteins but supported the export of beta-lactamase in the same way as that of the SRP-independent protein OmpA. These data demonstrate that in contrast to previous results, the bacterial SRP is not involved in the export of beta-lactamase and further suggest that secretory proteins of Gram-negative bacteria in general are not substrates of SRP.  相似文献   

5.
The general secretory (Sec) system of Escherichia coli translocates both periplasmic and outer membrane proteins through the cytoplasmic membrane. The pathway through the membrane is provided by a highly conserved translocon, which in E. coli comprises two heterotrimeric integral membrane complexes, SecY, SecE, and SecG (SecYEG), and SecD, SecF, and YajC (SecDF/YajC). SecA is an associated ATPase that is essential to the function of the Sec system. SecA plays two roles, it targets precursors to the translocon with the help of SecB and it provides energy via hydrolysis of ATP. SecA exists both free in the cytoplasm and integrally membrane associated. Here we describe details of association of the amino‐terminal region of SecA with membrane. We use site‐directed spin labelling and electron paramagnetic resonance spectroscopy to show that when SecA is co‐assembled into lipids with SecYEG to yield highly active translocons, the N‐terminal region of SecA penetrates the membrane and lies at the interface between the polar and the hydrophobic regions, parallel to the plane of the membrane at a depth of approximately 5 Å. When SecA is bound to SecYEG, preassembled into proteoliposomes, or nonspecifically bound to lipids in the absence of SecYEG, the N‐terminal region penetrates more deeply (8 Å). Implications of partitioning of the SecA N‐terminal region into lipids on the complex between SecB carrying a precursor and SecA are discussed.  相似文献   

6.
SecA is the ATPase that provides energy for translocation of precursor polypeptides through the SecYEG translocon in Escherichia coli during protein export. We showed previously that when SecA receives the precursor from SecB, the ternary complex is fully active only when two protomers of SecA are bound. Here we used variants of SecA and of SecB that populate complexes containing two protomers of SecA to different degrees to examine both the hydrolysis of ATP and the translocation of polypeptides. We conclude that the low activity of the complexes with only one protomer is the result of a low efficiency of coupling between ATP hydrolysis and translocation.  相似文献   

7.
During co-translational membrane insertion of membrane proteins with large periplasmic domains, the bacterial SecYEG complex needs to interact both with the ribosome and the SecA ATPase. Although the binding sites for SecA and the ribosome overlap, it has been suggested that these ligands can interact simultaneously with SecYEG. We used surface plasmon resonance and fluorescence correlation spectroscopy to examine the interaction of SecA and ribosomes with the SecYEG complex present in membrane vesicles and the purified SecYEG complex present in a detergent-solubilized state or reconstituted into nanodiscs. Ribosome binding to the SecYEG complex is strongly stimulated when the ribosomes are charged with nascent chains of the monotopic membrane protein FtsQ. This binding is competed by an excess of SecA, indicating that binding of SecA and ribosomes to SecYEG is mutually exclusive.  相似文献   

8.
Filamentous haemagglutinin (FHA) is the major adhesin of Bordetella pertussis, the whooping cough agent. FHA is synthesized as a 367-kDa precursor harbouring a remarkably long signal peptide with an N-terminal extension that is conserved among related virulence proteins. FHA is secreted via the two-partner secretion pathway that involves transport across the outer membrane by a cognate transporter protein. Here we have analyzed the mechanism by which FHA is targeted to, and translocated across, the inner membrane. Studies were performed both in vitro using Escherichia coli inside-out inner membrane vesicles and in vivo by pulse-chase labelling of Bordetella pertussis cells. The data collectively indicate that like classical periplasmic and outer membrane proteins, FHA requires SecA and SecB for its export through the SecYEG translocon in the inner membrane. Although short nascent chains of FHA were found to cross-link to signal recognition particle (SRP), we did not obtain indication for an SRP-dependent, co-translational membrane targeting provoked by the FHA signal sequence. Our results rule out that the extended signal peptide of FHA determines a specific mode of membrane targeting but rather suggest that it might influence the export rate at the inner membrane.  相似文献   

9.
Protein export mediated by the general secretory Sec system in Escherichia coli proceeds by a dynamic transfer of a precursor polypeptide from the chaperone SecB to the SecA ATPase motor of the translocon and subsequently into and through the channel of the membrane‐embedded SecYEG heterotrimer. The complex between SecA and SecB is stabilized by several separate sites of contact. Here we have demonstrated directly an interaction between the N‐terminal residues 2 through 11 of SecA and the C‐terminal 13 residues of SecB by isothermal titration calorimetry and analytical sedimentation velocity centrifugation. We discuss the unusual binding properties of SecA and SecB in context of a model for transfer of the precursor along the pathway of export.  相似文献   

10.
细菌细胞中,三分之一的蛋白质是在合成后被转运到细胞质外才发挥功能的.其中大多数蛋白是通过Sec途径(即分泌途径secretion pathway)进行跨膜运动的.Sec转运酶是一个多组分的蛋白质复合体,膜蛋白三聚体SecYEG及水解ATP的动力蛋白SecA构成了Sec转运酶的核心.整合膜蛋白SecD,SecF和vajC形成了一个复合体亚单位,可与SecYEG相连并稳定SecA蛋白的膜结合形式.SecB是蛋白质转运中的伴侣分子,可以和很多蛋白质前体结合.SecM是由位于secA基因上游的secM基因编码的,可调节SecA蛋白的合成量,维持细胞在不同环境条件下的正常生长.新生肽链的信号肽被高度保守的SRP特异性识别.伴侣分子SecB通过与细胞膜上的SecA二聚体特异性结合将蛋白质前体引导至Sec转运途径,起始转运过程.结合蛋白质前体的SecA与组成转运通道的SecYEG复合体具有较高的亲和性.SecA经历插入和脱离细胞内膜SecYEG通道的循环,为转运提供所需的能量,每一次循环可推动20多个氨基酸的连续跨膜运动.  相似文献   

11.
Recently it has been recognized that the signal recognition particle (SRP) of Escherichia coli represents a specific targeting device for hydrophobic inner membrane proteins. It has remained unclear, however, whether the bacterial SRP functions in concert with SecA, which is required for the translocation of secretory proteins across the inner membrane. Here, we have analyzed a hybrid protein constructed by fusing the signal anchor sequence of an SRP-dependent inner membrane protein (MtlA) to the mature part of an exclusively SecA-requiring secretory protein (OmpA). We show that the signal anchor sequence of MtlA confers the novel properties onto nascent chains of OmpA of being co-translationally recognized and targeted to SecY by SRP. Once targeted to SecY, ribosome-associated nascent chains of the hybrid protein, however, remain untranslocated unless SecA is present. These results indicate that SRP and SecA cooperate in a sequential, non-overlapping manner in the topogenesis of those membrane proteins which, in addition to a signal anchor sequence, harbor a substantial hydrophilic domain to be translocated into the periplasm.  相似文献   

12.
In Escherichia coli, the insertion of most inner membrane proteins is mediated by the Sec translocase. Ribosome-bound nascent chains of Sec-dependent inner membrane proteins are targeted to the SecYEG complex via the signal recognition particle pathway. We now demonstrate that the signal recognition particle-dependent co-translational membrane targeting and membrane insertion of FtsQ can be reconstituted with proteoliposomes containing purified SecYEG. SecA and a transmembrane electrical potential are essential for the translocation of the large periplasmic domain of FtsQ, whereas co-reconstituted YidC has an inhibitory effect. These data demonstrate that membrane protein insertion can be reconstituted with a minimal set of purified Sec components.  相似文献   

13.
During localization to the periplasmic space or to the outer membrane of Escherichia coli some proteins are dependent on binding to the cytosolic chaperone SecB, which in turn is targeted to the membrane by specific interaction with SecA, a peripheral component of the translocase. Five variant forms of SecB, previously demonstrated to be defective in mediating export in vivo (Gannon, P. M., and Kumamoto, C. A. (1993) J. Biol. Chem. 268, 1590-1595; Kimsey, H. K., Dagarag, M. D., and Kumamoto, C. A. (1995) J. Biol. Chem. 270, 22831-22835) were investigated with respect to their ability to bind SecA both in solution and at the membrane translocase. We present evidence that at least two regions of SecA are involved in the formation of active complexes with SecB. The variant forms of SecB were all capable of interacting with SecA in solution to form complexes with stability similar to that of complexes between SecA and wild-type SecB. However, the variant forms were defective in interaction with a separate region of SecA, which was shown to trigger a change that was correlated to activation of the complex. The region of SecA involved in activation of the complexes was defined as the extreme carboxyl-terminal 21 aminoacyl residues.  相似文献   

14.
Besides SecA and SecB, Escherichia coli cells possess a signal recognition particle (SRP) to target exported proteins to the SecY translocon. Using chemical and site-specific cross-linking in vitro, we show that SRP recognizes the first signal anchor sequence of a polytopic membrane protein (MtlA) resulting in cotranslational targeting of MtlA to SecY and phospholipids of the plasma membrane. In contrast, a possible interaction of SRP with the secretory protein pOmpA is prevented by the association of trigger factor with nascent pOmpA. Trigger factor also prevents SecA from binding to the first 125 amino acids of pOmpA when they are still associated with the ribosome. Under no experimental conditions was SecA found to interact with MtlA. Likewise, virtually no binding of trigger factor to ribosome-bound MtlA occurs even in the complete absence of SRP. Collectively, our results indicate that at the stage of nascent polypeptides, polytopic membrane proteins are selected by SRP for co-translational membrane targeting, whereas secretory proteins are directed into the SecA/SecB-mediated post-translational targeting pathway by means of their preferential recognition by trigger factor.  相似文献   

15.
The general secretory, Sec, system translocates precursor polypeptides from the cytosol across the cytoplasmic membrane in Escherichia coli. SecB, a small cytosolic chaperone, captures the precursor polypeptides before they fold and delivers them to the membrane translocon through interactions with SecA. Both SecB and SecA display twofold symmetry and yet the complex between the two is stabilized by contacts that are distributed asymmetrically. Two distinct regions of interaction have been defined previously and here we identify a third. Calorimetric studies of complexes stabilized by different subsets of these interactions were carried out to determine the binding affinities and the thermodynamic parameters that underlie them. We show here that there is no change in affinity when either one of two contact areas out of the three is lacking. This fact and the asymmetry of the binding contacts may be important to the function of the complex in protein export.  相似文献   

16.
In bacteria, most secreted proteins are exported through the SecYEG translocon by the SecA ATPase motor via the general secretion or “Sec” pathway. The identification of an additional SecA protein, particularly in Gram-positive pathogens, has raised important questions about the role of SecA2 in both protein export and establishment of virulence. We previously showed in Mycobacterium tuberculosis, the causative agent of tuberculosis, the accessory SecA2 protein possesses ATPase activity that is required for bacterial survival in host macrophages, highlighting its importance in virulence. Here, we show that SecA2 binds ADP with much higher affinity than SecA1 and releases the nucleotide more slowly. Nucleotide binding also regulates movement of the precursor-binding domain in SecA2, unlike in SecA1 or conventional SecA proteins. This conformational change involving closure of the clamp in SecA2 may provide a mechanism for the cell to direct protein export through the conventional SecA1 pathway under normal growth conditions while preventing ordinary precursor proteins from interacting with the specialized SecA2 ATPase.  相似文献   

17.
Export of DsbA, a protein disulfide bond-introducing enzyme, across the Escherichia coli cytoplasmic membrane was studied with special reference to the effects of various mutations affecting translocation factors. It was noted that both the internalized precursor retaining the signal peptide and the periplasmic mature product fold rapidly into a protease-resistant structure and they exhibited anomalies in sodium dodecyl sulfate-polyacrylamide gel electrophoresis in that the former migrated faster than the latter. The precursor, once accumulated, was not exported posttranslationally. DsbA export depended on the SecY translocon, the SecA ATPase, and Ffh (signal recognition particle), but not on SecB. SecY mutations, such as secY39 and secY205, that severely impair translocation of a number of secretory substrates by interfering with SecA actions only insignificantly impaired the DsbA export. In contrast, secY125, affecting a periplasmic domain and impairing a late step of translocation, exerted strong export inhibition of both classes of proteins. These results suggest that DsbA uses not only the signal recognition particle targeting pathway but also a special route of translocation through the translocon, which is hence suggested to actively discriminate pre-proteins.  相似文献   

18.
The Sec-dependent translocation pathway that involves the essential SecA protein and the membrane-bound SecYEG translocon is used to export many proteins across the cytoplasmic membrane. Recently, several pathogenic bacteria, including Mycobacterium tuberculosis, were shown to possess two SecA homologs, SecA1 and SecA2. SecA1 is essential for general protein export. SecA2 is specific for a subset of exported proteins and is important for M. tuberculosis virulence. The enzymatic activities of two SecA proteins from the same microorganism have not been defined for any bacteria. Here, M. tuberculosis SecA1 and SecA2 are shown to bind ATP with high affinity, though the affinity of SecA1 for ATP is weaker than that of SecA2 or Escherichia coli SecA. Amino acid substitution of arginine or alanine for the conserved lysine in the Walker A motif of SecA2 eliminated ATP binding. We used the SecA2(K115R) variant to show that ATP binding was necessary for the SecA2 function of promoting intracellular growth of M. tuberculosis in macrophages. These results are the first to show the importance of ATPase activity in the function of accessory SecA2 proteins.  相似文献   

19.
The SecYEG complex constitutes a protein conducting channel across the bacterial cytoplasmic membrane. It binds the peripheral ATPase SecA to form the translocase. When isoleucine 278 in transmembrane segment 7 of the SecY subunit was replaced by a unique cysteine, SecYEG supported an increased preprotein translocation and SecA translocation ATPase activity, and allowed translocation of a preprotein with a defective signal sequence. SecY(I278C)EG binds SecA with a higher affinity than normal SecYEG, in particular in the presence of ATP. The increased translocation activity of SecY(I278C)EG was confirmed in a purified system consisting of SecYEG proteoliposomes, while immunoprecipitation in detergent solution reveal that translocase-preprotein complexes are more stable with SecY(I278C) than with normal SecY. These data imply an important role for SecY transmembrane segment 7 in SecA binding. As improved SecA binding to SecY was also observed with the prlA4 suppressor mutation, it may be a general mechanism underlying signal sequence suppression.  相似文献   

20.
Kim J  Miller A  Wang L  Müller JP  Kendall DA 《Biochemistry》2001,40(12):3674-3680
In Escherichia coli, SecA is a critical component of the protein transport machinery which powers the translocation process by hydrolyzing ATP and recognizing signal peptides which are the earmark of secretory proteins. In contrast, SecB is utilized by only a subset of preproteins to prevent their premature folding and chaperone them to membrane-bound SecA. Using purified components and synthetic signal peptides, we have studied the interaction of SecB with SecA and with SecA-signal peptide complexes in vitro. Using a chemical cross-linking approach, we find that the formation of SecA-SecB complexes is accompanied by a decrease in the level of cross-linking of SecA dimers, suggesting that SecB induces a conformational change in SecA. Furthermore, functional signal peptides, but not dysfunctional ones, promote the formation of SecA-SecB complexes. SecB is also shown to directly enhance the ATPase activity of SecA in a concentration-dependent and saturable manner. To determine the biological consequence of this finding, the influence of SecB on the signal peptide-stimulated SecA/lipid ATPase was studied using synthetic peptides of varying hydrophobicity. Interestingly, the presence of SecB can sufficiently boost the response of signal peptides with moderate hydrophobicity such that it is comparable to the activity generated by a more hydrophobic peptide in the absence of SecB. The results suggest that SecB directly enhances the activity of SecA and provide a biochemical basis for the enhanced transport efficiency of preproteins in the presence of SecB in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号