首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Many embryonic stem (ES) cell lines have been isolated from various mouse strains, but production of germ-line chimeras has been achieved with only strain 129. This report describes the isolation of a new ES cell line, F1/1, from a mouse blastocyst with the C57BL/6 X CBA male genotype and tests on its ability to produce germ-line chimeras by two techniques, blastocyst injection and 8-cell embryo injection. Chimera production using CD-1 blastocysts as a host was low (20%), as reported by others. But by the 8-cell embryo injection method, in which F1/1 cells were injected into the perivitelline space through a slit in the zona pellucida of 8-cell embryos, chimeric mice with extremely high chimerism were obtained at a rate of 80%. Breeding tests showed that 89% of the fertile males were germ-line chimeras and in most case, the majority of the sperms in their testes were derived from F1/1 cells. This F1/1 cell line with a different genotype from the 129 strain shows high ability to produce functional germ cells, moreover, the 8-cell embryo injection method using F1/1 cells seems to be an efficient way to produce viable germ-line chimeras.  相似文献   

2.
Lee KH  Chuang CK  Wang HW  Stone L  Chen CH  Tu CF 《Theriogenology》2007,67(2):228-237
The generation of germline competent chimeric mice via embryonic stem (ES) cells is a crucial step in developing gene-manipulated mouse models. To date, techniques for generating chimeric mice include direct microinjection of ES cells into the cavity of 3.5-d post-coitum (dpc) blastocysts and aggregating or coculturing 2.5 dpc zona pellucida-free (denuded) embryos with ES cells. We present here a procedure that is simple and reproducible for mass producing (10-150 embryos/vial/time) chimeric embryos by coculturing denuded 8-cell embryos and morula in 0.8 mL KSOM-AA medium containing 5 x 10(5)mL-1 purified green fluorescence protein-expressing ES cells (either fresh or thawed) in an 1.7 mL Eppendorf vial for 3h. The resulting chimeras had substantial levels of chimerism and high germline transmission rates. Therefore, the method developed in this study can provide a simple and mass reproducible alternative method (to germline transmitter chimeric mice), without technological and instrumental difficulties, for generating chimeric embryos.  相似文献   

3.
Gene targeting in embryonic stem (ES) cells allows the production of mice with specified genetic mutations. Currently, germline-competent ES cell lines are available from only a limited number of mouse strains, and inappropriate ES cell/host blastocyst combinations often restrict the efficient production of gene-targeted mice. Here, we describe the derivation of C57BL/6J (B6) ES lines and compare the effectiveness of two host blastocyst donors, FVB/NJ (FVB) and the coisogenic strain C57BL/6-Tyr(c)-2J (c2J), for the production of germline chimeras. We found that when B6 ES cells were injected into c2J host blastocysts, a high rate of coat-color chimerism was detected, and germline transmission could be obtained with few blastocyst injections. In all but one case, highly chimeric mice transmitted to 100% of their offspring. The injection of B6 ES cells into FVB blastocysts produced some chimeric mice. However; the proportion of coat-color chimerism was low, with many more blastocyst injections required to generate chimeras capable of germline transmission. Our data support the use of the coisogenic albino host strain, c2J, for the generation of germline-competent chimeric mice when using B6 ES cells.  相似文献   

4.
胚胎干细胞(embryonic stem cells,ESCs)是从囊胚的内细胞团分离出来的多潜能干细胞,具有多向分化的能力。将外源基因导入ES细胞建立转基因动物,对于研究外源基因的功能和调控具有一定的价值。载有外源性基因的病毒在感染ES细胞后,可通过囊胚注射获得具有胚系遗传的该转基因动物,并且这一外源基因可以稳定遗传和表达。该研究主要是利用携带hPML-RARα基因的慢病毒感染小鼠ES细胞系(R1),获得携带该基因的ES细胞,感染后的ES细胞核型正常。在此基础上,将感染后的ES细胞经囊胚注射,获得了携带有hPML-RARα基因的3只嵌合小鼠,其中,有1只具有遗传特性。对嵌合体小鼠与C57杂交的后代给予强力霉素(doxycycline)处理,3天以后骨髓细胞hPML-RARα基因开始表达,这证明了在小鼠体内该外源基因表达的可诱导性。以上证实,已经成功利用ES细胞建立了可诱导的白血病转基因小鼠模型。  相似文献   

5.
MSM/Ms is an inbred mouse strain established from the Japanese wild mouse, Mus musculus molossinus, which has been phylogenetically distinct from common laboratory mouse strains for about 1 million years. The nucleotide substitution rate between MSM/Ms and C57BL/6 is estimated to be 0.96%. MSM/Ms mice display unique characteristics not observed in the commonly used laboratory strains, including an extremely low incidence of tumor development, high locomotor activity, and resistance to high-fat-diet-induced diabetes. Thus, functional genomic analyses using MSM/Ms should provide a powerful tool for the identification of novel phenotypes and gene functions. We report here the derivation of germline-competent embryonic stem (ES) cell lines from MSM/Ms blastocysts, allowing genetic manipulation of the M. m. molossinus genome. Fifteen blastocysts were cultured in ES cell medium and three ES lines, Mol/MSM-1, -2, and -3, were established. They were tested for germline competency by aggregation with ICR morulae and germline chimeras were obtained from all three lines. We also injected Mol/MSM-1 ES cells into blastocysts of ICR or C57BL/6 × BDF1 mice and found that blastocyst injection resulted in a higher production rate of chimeric mice than did aggregation. Furthermore, Mol/MSM-1 subclones electroporated with a gene trap vector were also highly efficient at producing germline chimeras using C57BL/6 × BDF1 blastocyst injection. This Mol/MSM-1 ES line should provide an excellent new tool allowing the genetic manipulation of the MSM/Ms genome.  相似文献   

6.
Markers and the means to detect them are required to monitor the fate of living cells. However, few suitable markers for living cells were known until a green fluorescent protein (GFP) was discovered. We have established mouse embryonic stem (ES) cell lines that express mutant GFP under the chicken beta-actin (CAG) promoter. Using these cell lines, we were able to follow the migration of ES cells during blastocyst formation both in sandwiching and coculture methods, even if only a single ES cell was used. Furthermore, the contribution of ES cells to the inner cell mass (ICM) was easily estimated at the blastocyst stage. We compared sandwiching with coculture aggregation relative to the contribution of the ES cell in the ICM, and the results indicated that there was no difference in the ratios of chimeric embryos having ICM contributed from cultured ES cells. Furthermore, an aggregated single ES cell was able to contribute three or four cells to the ICM at the blastocyst stage. Thus we conclude that one, instead of two, embryos is enough to make aggregation with ES cells, and a single ES cell attached to an embryo is enough to produce germline chimeras. Moreover, we could clearly observe single cell fate during blastocyst formation. This suggests that our established cell line can be used for monitoring single cell fate in vivo. In addition, we have shown that up to five doses of 30 sec of UV irradiation using GFP filters have no effect on the embryonic development.  相似文献   

7.
The developmental competence of in vitro cultured embryos vitrified-warmed at an early cleavage stage (2- or 4, 8-cell stage) was examined by both direct transfer into recipient animals and after in vitro manipulation for chimeric mice production using embryonic stem (ES) cells. Vitrified-warmed embryos transferred at the morulae and blastocyst stages showed fetus development comparable to control embryos, although blastocyst development of vitrified-warmed embryos was significantly slower than that of controls. When vitrified-warmed early cleavage stage embryos were used for chimeric mouse production using ES cells, 1 to 10% of the injected or aggregated embryos developed into chimeric neonates and germ-line chimeric mice were obtained from all ES cell lines. This study indicates that embryos developed in vitro from vitrified-warmed embryos have equivalent competence with unvitrified embryos irrespective of stage of vitrification and that these vitrified-warmed embryos maintain adequate viability even after in vitro manipulation such as aggregation and microinjection with ES cells.  相似文献   

8.
Ten primary clones of hybrid cells were produced by the fusion of diploid embryonic stem (ES) cells, viz., line E14Tg2aSc4TP6.3 marked by green fluorescent protein (GFP), with diploid embryonic or adult fibroblasts derived from DD/c mice. All the hybrid clones had many characteristics similar to those of ES cells and were positive for GFP. Five hybrid clones having ploidy close to tetraploidy (over 80% of cells had 76–80 chromosomes) were chosen for the generation of chimeras via injection into C57BL blastocysts. These hybrid clones also contained microsatellites marking all ES cell and fibroblast chromosomes judging from microsatellite analysis. Twenty chimeric embryos at 11–13 days post-conception were obtained after injection of hybrid cells derived from two of three clones. Many embryos showed a high content of GFP-positive descendents of the tested hybrid cells. Twenty one adult chimeras were generated by the injection of hybrid cells derived from three clones. The contribution of GFP-labeled hybrid cells was significant and comparable with that of diploid E14Tg2aSc4TP6.3 cells. Cytogenetic and microsatellite analyses of cell cultures derived from chimeric embryos or adults indicated that the initial karyotype of the tested hybrid cells remained stable during the development of the chimeras, i.e., the hybrid cells were mainly responsible for the generation of the chimeras. Thus, ES cell/fibroblast hybrid cells with near-tetraploid karyotype are able to generate chimeras at a high rate, and many adult chimeras contain a high percentage of descendants of the hybrid cells. A. A. Kruglova and E. A. Kizilova contributed equally to this work. This study was financially supported by grants from the Russian Academy of Sciences, Siberian Branch 5.2 and 14.0.  相似文献   

9.
从129S1小鼠早期胚胎的内细胞团分离、培养类胚胎样细胞,经反复传代,成功地建立了129S1小鼠胚胎干细胞系,命名为NM-2细胞系。形态学鉴定具有胚胎干细胞的典型形态特征,正常核型率为80%;呈碱性磷酸酶阳性、表达胚胎干细胞特异性转录因子OCT-4;体内分化后可形成源于三胚层的组织结构;经囊胚腔显微注射后所获得的子代个体中79%具有毛色嵌合表型;雄性嵌合个体中31%发生生殖腺嵌合;同时,通过育种观察到所有生殖腺嵌合体的子代小鼠表型正常。以上结果证实NM-2细胞系为一株具高生殖腺嵌合能力的小鼠胚胎干细胞系。  相似文献   

10.
Inbred ES lines, though useful for generating targeted mutations in mice, are used infrequently. To appreciate the relative efficiency of inbred ES lines, a C57BL/6 ES line was compared with 129 strain ES lines for effectiveness in chimera formation leading to the establishment of targeted mutations in mice. Data from a transgenic facility spanning 7 years were collected. C57BL/6 ES cells injected into Balb/c embryos results in lower coat color chimerism than do 129 ES cells injected into C57BL/6 embryos. Combined data indicate that five independent targeted C57BL/6 clones should be injected as compared to three independent 129 clones to generate enough chimeras to effectively test for germ-line transmission. Thus, although less efficient than 129 ES lines, the C57BL/6 ES line is a relatively competent line and useful for the routine generation of targeted mutations in mice on a defined genetic background.  相似文献   

11.
ES细胞嵌合能力的强弱是人们利用ES细胞获得转基因小鼠时十分关心的问题。本文通过囊胚显微注射法将15个左右ES细胞注入C57 BL/6 J品系小鼠3.5天囊胚的囊胚腔中观察嵌合鼠毛色嵌合情况,统计嵌合鼠的出生率;以及用葡萄糖磷酸异构酶(GPI)电泳法检测ES细胞在嵌含鼠体内各种组织和器官的嵌合情况,对于HPRT缺陷(HDC)细胞和MES-PU-13细胞的嵌合能力我们作了较详细的研究,结果表明MESPU-13细胞嵌合能力较强,而HDC细胞嵌合能力较弱,并讨论分析了这种结果的原因。  相似文献   

12.
ES细胞嵌合能力的强弱是人们利用ES细胞获得转基因小鼠时十分关心的问题。本言语通过囊胚显微注射法将15个左右ES细胞注入C57BL/6J品系小鼠3.5天囊胚的囊胚腔中观察嵌合鼠毛色嵌合情况。统计嵌合鼠的出生率;以及用葡萄糖磷酸异构酶(GPI)电泳地检测ES细胞在嵌合鼠体内各种组织和器官的嵌合情况,对于HPRT缺陷(HDC)细胞和MESPU-13细胞的嵌合能力我们作了较详细的研究,结果表明MESPU  相似文献   

13.
Development to term of mouse androgenetic aggregation chimeras.   总被引:3,自引:0,他引:3  
Diploid androgenetic eggs contain two sperm-derived genomes, and only rarely develop to the early somite stage. Also, previous studies have indicated that androgenetic eggs cannot be rescued in aggregation chimeras beyond embryonic stages. Paradoxically, in blastocyst injection chimeras made with androgenetic embryonic stem (ES) cells of the 129/Sv strain, we previously obtained considerable improvement in developmental potential. Although considerable death occurred in utero, overtly normal chimeric fetuses and occasional postnatal chimeras that developed skeletal abnormalities were observed. Consequently, we have re-evaluated the developmental potential of androgenetic aggregation chimeras utilizing androgenetic eggs of the 129/Sv strain, and of the BALB/c and CD-1 strains for comparison. Regardless of strain, androgenetic aggregation chimeras were generally more inviable than previously observed with androgenetic ES cell chimeras, and often the embryoproper was abnormal even when an androgenetic contribution was detected only in the extra-embryonic membranes. This is at least a partial explanation of the greater viability of androgenetic ES cell chimeras, as ES cells do not colonize significantly certain extra-embryonic tissues. Nevertheless, in the 129/Sv strain, occasional development of chimeras to term was obtained, and one chimera that survived postnatally developed identical skeletal abnormalities to those observed previously in androgenetic ES cell chimeras. This result demonstrates that at least one example of paternal imprinting is faithfully conserved in androgenetic ES cells. Also, the postnatal chimerism shows that androgenetic eggs can give rise to terminally differentiated cell types, and are therefore pluripotent. In contrast, only possibly one BALB/c and no CD-1 androgenetic aggregation chimeras developed to term. Therefore, the developmental potential of androgenetic aggregation chimeras is to some extent dependent on mouse strain.  相似文献   

14.
Spermatogonial stem cells can convert into embryonic stem (ES) cell-like multipotent germline stem (mGS) cells in vitro and produce germline chimeras by blastocyst microinjection. Although homologous recombination was previously demonstrated in mGS cells, spermatogenesis was not found in chimeras, suggesting that they are not competent for germline modification. Here we conducted detailed analysis of chimeric animals to determine whether mGS cells retain germline potential after genetic manipulation. Spermatozoa that were deficient in the occludin gene could be recovered from animals that were chimeric with mGS cells that underwent homologous recombination. The phenotypes of the occludin knockout (KO) mice were similar to those reported for KO mice produced using ES cells, and the animals showed growth retardation, gastritis and male infertility. Furthermore, we found that heterozygous mGS cells acquire two copies of the G418-resistant genes and become homozygous for the targeted allele by culturing at high concentrations of G418. Cytogenetic analysis showed that the aneuploid mGS cells observed during genetic manipulation were trisomic for chromosome 8 or 11, which is a common chromosomal abnormality in ES cells. Thus, mGS cells can be used to produce KO animals, and this novel method of germline manipulation may prove useful in diverse mammalian species.  相似文献   

15.
Hundreds of new mutant mouse lines are being produced annually using gene targeting and gene trap approaches in embryonic stem (ES) cells, and the number is expected to continue to grow as the human and mouse genome projects progress. The availability of robust ES cell lines and a simple technology for making chimeras is more attractive now than ever before. We established several new ES cell lines from 129/SvEv and C57BL/6 mice and tested their ability to contribute to the germline following blastocyst injections and/or the less expensive and easier method of morula-ES cell aggregation. Using morula aggregation to produce chimeras, five newly derived 129/SvEv and two C57BL/6 ES cell lines tested at early passages were found to contribute extensively to chimeras and produce germline-transmitting male chimeras. Furthermore, the two 129S/vEv ES cell lines that were tested and one of the C57BL/6 ES cell lines were able to maintain these characteristics after many passages in vitro. Our results indicate that the ability of ES cells to contribute strongly to chimeras following aggregation with outbred embryos is a general property of early passage ES cells and can be maintained for many passages. C56BL/6-derived ES cell lines, however, have a greater tendency than 129-derived ES cell lines to lose their ability to colonize the germline.  相似文献   

16.
This study aimed at collecting background knowledge for chimeric pig production. We analyzed the genetic sex of the chimeric pigs in relation to phenotypic sex as well as to functional germ cell formation. Chimeric pigs were produced by injecting Day 6 or Day 7 inner cell mass (ICM) cells into Day 6 blastocysts. Approximately 20% of the piglets born from the injected blastocysts showed overt coat color chimerism regardless of the embryonic stage of donor cells. The male:female sex ratio was 7:2 and 6:1 in the chimeras derived from Day 6 and Day 7 ICM cells, respectively, showing an obvious bias toward males. When XX donor cells were injected into XY blastocysts at the same embryonic stage, the phenotypic sex of the resulting chimera was male with no germ-line cells formed from the donor cell lineage. On the other hand, when the donor was XY and the recipient blastocyst was XX, the phenotypic sex of the chimera was male, and germ-line cells were derived only from the donor cells. The combination of XY donor cells and XY blastocysts produced some chimeras in which the donor cell lineage did not contribute to germ-line formation even when it appeared in coat color. When the embryonic stage of the donor was advanced by 1 day in the XY-XY combination, 100% of the germ-line cells of the chimeras were derived from the donor cell lineage. These data showed that characteristics of sex differentiation and germ cell formation in chimeric pigs are similar to those in chimeric mice.  相似文献   

17.
Generation of mouse chimeras is useful for the elucidation of gene function. In the present report, we describe a new technique for the production of chimeras by injection of R1 embryonic stem (ES) cells into the perivitelline space of one-cell stage mouse embryos. One-cell embryos are injected with 2–6 ES cells into the perivitelline space under the zona pellucida without laser-assistance. Our embryo culture experiments reveal that ES cells injected at the one-cell stage embryo start to be incorporated into the blastomeres beginning at the 8-cell stage and form a chimeric blastocyst after 4 days. We have used this approach to successfully produce a high rate of mouse chimeras in two different mouse genetic backgrounds permitting the establishment of germ line transmitters. This method allows for the earlier introduction of ES cells into mouse embryos, and should free up the possibility of using frozen one-cell embryos for this purpose.  相似文献   

18.
Embryonic stem (ES) cells from a C57BL/6N (B6N) background injected into B6(Cg)-Tyrc-2J/J (B6-albino) recipient blastocysts are commonly used for generating genetically modified mouse models. To understand the influence of the recipient blastocyst strain on germline transmission, BALB/cAnNTac and B6-albino germline transmission rates were compared using the C57BL6/N-derived C2 ES cell line. A total of 92 ES cell clones from 27 constructs were injected. We compared blastocyst yield, birth rate, chimera formation rate, and high-percentage (>50 %) male chimera formation rate. For germline transmission, we analyzed 24 clones from 19 constructs, which generated high-percentage male chimeras from both donor strains. B6-albino hosts resulted in higher mean blastocyst yields per donor than did BALB/c ones (3.6 vs. 2.5). However, BALB/c hosts resulted in a higher birth rate than B6-albino ones (36 vs. 27 %), a higher chimera formation rate (50 vs. 42 %), a higher high-percentage male chimera rate (10 vs. 8 %), and a higher germline transmission rate (65 vs. 49 %), respectively. Our data suggest that BALB/c is a suitable blastocyst host strain for C2 ES cells and has an advantage over the B6-albino strain for receiving the injection of C2 ES cells.  相似文献   

19.
A useful approach for exploring gene function involves generating mutant mice from genetically modified embryonic stem (ES) cells. Recent advances in genetic engineering of ES cells have shifted the bottleneck in this process to the generation of mice. Conventional injections of ES cells into blastocyst hosts produce F0 generation chimeras that are only partially derived from ES cells, requiring additional breeding to obtain mutant mice that can be phenotyped. The tetraploid complementation approach directly yields mice that are almost entirely derived from ES cells, but it is inefficient, works only with certain hybrid ES cell lines and suffers from nonspecific lethality and abnormalities, complicating phenotypic analyses. Here we show that laser-assisted injection of either inbred or hybrid ES cells into eight cell-stage embryos efficiently yields F0 generation mice that are fully ES cell-derived and healthy, exhibit 100% germline transmission and allow immediate phenotypic analysis, greatly accelerating gene function assignment.  相似文献   

20.
小鼠ES细胞种系嵌合体的获得   总被引:14,自引:0,他引:14  
陈伟胜  韩嵘 《遗传学报》1999,26(2):126-134
种系嵌合体的获得是实现ES细胞介导的转基因途径的决定步骤,ES细胞种系分化能力的保持是决定种系嵌合的前提条件,而事体的主种系嵌合体的获得则是判定ES细胞系是否具有种系分化能力的唯一方法,为考察本室新近建立的3种小鼠ES细胞系MESPU21.MESPU22和MESPU29的种系分化能力,选用近交系C57BL/6J及远交系KMW和ICR为受体胚胎提供者,分别通过囊胚注射法和8细胞期桑椹胚注射法进行了嵌  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号