首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The consequences of a dietary n-3 PUFA supply was investigated on the blood pressure (BP) increase elicited by left renal artery stenosis in rats distributed in 3 groups (n = 8) fed for 8 weeks a semi-purified diet either as control diet or enriched diets (docosahexaenoic acid, DHA, or eicosapentaenoic acid, EPA). The PUFA intake induced large alterations in heart and kidney phospholipid fatty acid profile, but did not influence body weight, cardiac hypertrophy, renal left atrophy and right hypertrophy. Within 4 weeks, BP raised from 120-180 +/- 2 mm Hg in the control group, but only to 165 +/- 3 mm Hg in the n-3 PUFA groups. After stabilization of BP in the 3 groups, the rats received a short administration of increasing dose of perindopril. The lower dose (0.5 mg/kg) moderately decreased BP only in the control group. With higher doses (1, 5 and 10 mg/kg) BP was normalized in the 3 groups, with a higher amplitude of the BP lowering effect in the control group. A moderate n-3 PUFA intake can contribute to prevent the development of peripheral hypertension in rats by a mechanism that may involve angiotensin converting enzyme.  相似文献   

2.
Our aim was to study the influence of weight loss on the fatty acid (FA) composition of liver and erythrocyte phospholipids and oxidative stress status in obese, non-alcoholic, fatty liver disease (NAFLD) patients. Seven obese NAFLD patients who underwent subtotal gastrectomy with a gastro-jejunal anastomosis in roux and Y were studied immediately and 3 months after surgery. Seven non-obese patients who underwent anti-reflux surgery constituted the control group. Serum F2-isoprostane levels were measured by GS/NICI-MS/MS and FA composition was determined by GC. At the time of surgery, controls and obese patients exhibited a hepatic polyunsaturated fatty acid (PUFA) pattern that correlated with that of erythrocytes. Three months after surgery, NAFLD patients lost 21% of initial body weight; serum F2-isoprostane levels decreased by 76%; total PUFA, long-chain PUFA (LCPUFA), n-3 PUFA, and n-3 LCPUFA increased by 22, 29, 81, and 93%, respectively; n-6/n-3 LCPUFA ratio decreased by 51%; docosahexaenoic acid/docosapentaenoic acid ratio increased by 19-fold; and the n-3 product/precursor ratio (20: 5 + 22: 5 + 22: 6)/18: 3 increased by 164% (p<0.05). It is concluded that weight loss improves the n-3 LCPUFA status of obese patients in association with significant amelioration in the biomarkers of oxidative stress, membrane FA insaturation, and n-3 LCPUFA biosynthesis capacity, thus representing a central therapeutic issue in the improvement of obesity-related metabolic alterations involved in the mechanism of hepatic steatosis.  相似文献   

3.
We investigated whether maternal fat intake alters amniotic fluid and fetal intestine phospholipid n-6 and n-3 fatty acids. Female rats were fed a 20% by weight diet from fat with 20% linoleic acid (LA; 18:2n-6) and 8% alpha-linolenic acid (ALA; 18:3n-3) (control diet, n = 8) or 72% LA and 0.2% ALA (n-3 deficient diet, n = 7) from 2 wk before and then throughout gestation. Amniotic fluid and fetal intestine phospholipid fatty acids were analyzed at day 19 gestation using HPLC and gas-liquid chromotography. Amniotic fluid had significantly lower docosahexaenoic acid (DHA; 22:6n-3) and higher docosapentaenoic acid (DPA; 22:5n-6) levels in the n-3-deficient group than in the control group (DHA: 1.29 +/- 0.10 and 6.29 +/- 0.33 g/100 g fatty acid; DPA: 4.01 +/- 0.35 and 0.73 +/- 0.15 g/100 g fatty acid, respectively); these differences in DHA and DPA were present in amniotic fluid cholesterol esters and phosphatidylcholine (PC). Fetal intestines in the n-3-deficient group had significantly higher LA, arachidonic acid (20:4n-6), and DPA levels; lower eicosapentaenoic acid (EPA; 20:5n-3) and DHA levels in PC; and significantly higher DPA and lower EPA and DHA levels in phosphatidylethanolamine (PE) than in the control group; the n-6-to-n-3 fatty acid ratio was 4.9 +/- 0.2 and 32.2 +/- 2.1 in PC and 2.4 +/- 0.03 and 17.1 +/- 0.21 in PE in n-3-deficient and control group intestines, respectively. We demonstrate that maternal dietary fat influences amniotic fluid and fetal intestinal membrane structural lipid essential fatty acids. Maternal dietary fat can influence tissue composition by manipulation of amniotic fluid that is swallowed by the fetus or by transport across the placenta.  相似文献   

4.
Short-term weight-reducing regimens were shown to influence fatty acid composition of serum lipids unfavorably. Adding long chain n-3 polyunsaturated fatty acids (n-3 LC PUFA) to a low-calorie diet (LCD) could avoid these changes. The aim of this study was to examine the effect of a short-term in-patient weight-reducing regimen including LCD with yogurt enriched by low doses of n-3 PUFA (n-3 LCD). The enriched yogurt contained 790 mg of fish oil, predominantly eicosapentaenoic (20:5n-3; EPA) and docosahexaenoic (22:6n-3; DHA). Forty obese women were randomly assigned to the group consuming LCD and joghurt either with or without n-3 enrichment. Following the 3-week diet in the n-3 LCD group a significantly higher increase in the proportion of n-3 LC PUFA (sum of n-3 FA, EPA and DHA) in serum lipids was confirmed. In phospholipids (PL) a significant difference in the sum of n-6 fatty acids was found, a decrease in the n-3 LCD group and an increase in LCD group. Significantly higher increase in the PL palmitate (16:0) was shown in the LCD group. The results suggest that low doses of n-3 fatty acid enrichment can help to avoid unfavorable changes in fatty acid composition in serum lipids after a short-term weight-reducing regimen.  相似文献   

5.
Polyunsaturated fatty acid (PUFA) levels are altered in adults with cognitive decline and also depression. Depression facilitates progression from mild cognitive impairment (MCI) to dementia. We investigated associations between omega-3 (n-3) and omega-6 (n-6) PUFAs and cognition, memory and depression in 50 adults ≥65 years with MCI and 29 controls. Memory, depressive symptoms and erythrocyte PUFAs (% total fatty acids) were assessed. Eicosapentaenoic acid (EPA) was lower in MCI vs controls (.94% vs 1.26%, p<.01); n-6 PUFAs were higher: dihomo-gamma-linolenic acid (1.51% vs 1.32%, p<.01), arachidonic acid (11.54% vs 10.70%, p<.01), n-6 docosapentaenoic acid (DPA:.46% vs.34%, p<.01), and total n-6 PUFA (24.14% vs 23.37%, p<.05). Higher n-6 DPA predicted poorer mental health. Lower n-3 DPA was associated with higher self-reported bodily pain. Adults with MCI had higher depression scores (3.05±.39 vs 1.33±.24, p<.01). Depressive symptoms associated with elevated n-6 PUFA may contribute to cognitive decline in this population.  相似文献   

6.
Young turbot (1-20 g) were maintained for not less than 14 weeks on three diets: (1) a control diet containing normal amounts of polyunsaturated fatty acids (PUFA); (2) a diet totally deficient in PUFA; (3) a diet deficient in the (n-6) series of PUFA but containing (n-3) PUFA. At 14 weeks the fatty acid compositions of the phospholipids from liver, gut, gills and muscle were analysed. Large changes in the amounts of PUFA in the phospholipids were found. Fish maintained on the totally PUFA deficient diet 2 had retained arachidonic acid, 20:4(n-6), and docosahexaenoic acid, 22:6(n-3), at the expense of eicosapentaenoic acid, 20:5(n-3). Fish maintained on the (n-6) PUFA-deficient diet (3) contained decreased amounts of 20:4(n-6) and 22:6(n-3) while retaining 20:5(n-3). In all cases phosphatidylinositol had the lowest n-3/n-6 ratios. These results are discussed in terms of PUFA function.  相似文献   

7.
Regulation of polyunsaturated fatty acid (PUFA) biosynthesis in proliferating and NGF-differentiated PC12 pheochromocytoma cells deficient in n-3 docosahexaenoic acid (DHA 22:6n-3) was studied. A dose- and time-dependent increase in eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5n-3) and DHA in phosphatidylethanolamine (PtdEtn) and phosphatidylserine (PtdSer) glycerophospholipids (GPL) via the elongation/desaturation pathway following alpha-linolenic acid (ALA, 18:3n-3) supplements was observed. That was accompanied by a marked reduction of eicosatrienoic acid (Mead acid 20:3n-9), an index of PUFA deficiency. EPA supplements were equally effective converted to 22:5n-3 and 22:6n-3. On the other hand, supplements of linoleic acid (LNA, 18:2n-6) were not effectively converted into higher n-6 PUFA intermediates nor did they impair elongation/desaturation of ALA. Co-supplements of DHA along with ALA did not interfere with 20:5n-3 biosynthesis but reduced further elongation to 22-hydrocarbon PUFA intermediates. A marked decrease in the newly synthesized 22:5n-3 and 22:6n-3 following ALA or EPA supplements was observed after nerve growth factor (NGF)-induced differentiation. NGF also inhibited the last step in 22:5n-6 formation from LNA. These results emphasize the importance of overcoming n-3 PUFA deficiency and raise the possibility that growth factor regulation of the last step in PUFA biosynthesis may constitute an important feature of neuronal phenotype acquisition.  相似文献   

8.
Objective: Fatty acid (FA) composition has a role in adipogenesis. The objective was to study serum phospholipid (PL) FAs in adolescents and their relation to abdominal adipose tissue (AT) compartments and metabolic markers. Research Methods and Procedures: Abdominal AT was measured by magnetic resonance imaging and FA pattern was determined in serum PL of 10 obese adolescents (5 females), median age 12.0 years (range, 10.4 to 16.4) and BMI 30.7 (26.8 to 40.4), and 15 lean control subjects (9 females), median age 12.6 years (range, 11.3 to 15.4), and BMI 19.5 (17.1 to 23.4). Results: Obese adolescents had relatively higher levels of saturated FA (SFA) and nervonic acid compared with controls. Serum PL concentration of n‐3 polyunsaturated fatty acids (PUFA) was lower in the obese vs. lean females (p = 0.01), including docosahexaenoic acid (DHA) (p = 0.01). The ratios of arachidonic acid to DHA and total n‐6/n‐3 FA were increased in obese children (p = 0.02 and 0.01, respectively). n‐3 PUFAs were inversely correlated to all subcutaneous AT compartments except visceral AT. The homeostasis model assessment index of β‐cell function related inversely to DHA concentration (p = 0.03). All changes were more marked in the females. Discussion: Serum FA pattern in obese adolescents differed significantly from that in age‐matched lean controls, reflecting a decrease in n‐3 PUFA, especially DHA, and an increase in SFA. The subcutaneous AT, but not visceral AT, correlated to the changes in PUFA and SFA, suggesting an abnormal essential FA metabolism in obese adolescents.  相似文献   

9.
2-arachidonoylglycerol (2-AG) is a putative endogenous ligand for cannabinoid receptors and was suggested to play an important role in both physiological and pathological events in the central nervous system (CNS) as well as in peripheral organs. The sequential hydrolysis of arachidonic acid (20:4n-6, AA)-containing phospholipids has been proposed as a major biosynthetic route of 2-AG. On the other hand, the manipulation of the dietary n-3 polyunsaturated fatty acid (PUFA) status changes the AA level in tissue phospholipids. We, therefore, conducted two separate experiments to confirm whether the dietary n-3 PUFA status influences the 2-AG level in the mouse brain. In the first experiment, we fed mice with n-3 PUFA-deficient diet, which resulted in a marked decrease in the docosahexaenoic acid (22:6n-3, DHA) levels without a change in the AA level in brain phospholipids as compared with the mice fed with an n-3 PUFA-sufficient diet. The brain 2-AG level in the n-3 PUFA-deficient group was significantly higher than in the n-3 PUFA sufficient group. In the second experiment, we found that short-term supplementation of DHA-rich fish oil reduced brain 2-AG level as compared with the supplementation with low n-3 PUFA. The decrease in the AA level and the increase in the DHA level in the major phospholipids occurred in the brains of the mice fed the fish oil diet compared with those fed the low n-3 PUFA diet. Our results indicate that the n-3 PUFA deficiency elevates and n-3 PUFA enrichment reduces the brain 2-AG level in mice, suggesting that physiological and pathological events mediated by 2-AG through cannabinoid receptor in the CNS could be modified by the manipulation of the dietary n-3 PUFA status.  相似文献   

10.
Zinc (Zn) has been implicated in altered adipose metabolism, insulin resistance and obesity. The objective of this study was to investigate the effects dietary Zn deficiency and supplementation on adiposity, serum leptin and fatty acid composition of adipose triglycerides and phospholipid in C57BL/6J mice fed low-fat (LF) or high-fat (HF) diets for a 16 week period. Weanling C57BL/6J mice were fed LF (16% kcal from soybean oil) or HF (39% kcal from lard and 16% kcal from soybean oil) diets containing 3, 30 or 150 mg Zn/kg diet (ZD = Zn-deficient, ZC = Zn control and ZS = Zn-supplemented, respectively). HF-fed mice had higher fat pad weights and lower adipose Zn concentrations than the LF-fed mice. The ZD and ZS groups had a reduced content of fatty acids in adipose triglycerides compared to the ZC group, suggesting that zinc status may influence fatty acid accumulation in adipose tissue. Serum leptin concentration was positively correlated with body weight and body fat, and negatively correlated with adipose Zn concentration. Dietary fat, but not dietary Zn, altered the fatty acid composition of adipose tissue phospholipid and triglyceride despite differences in Zn status assessed by femur Zn concentrations. The fatty acid profile of adipose triglycerides generally reflected the diets. HF-fed mice had a higher percentage of C20:4 n-6, elevated ratio of n-6/n-3, lower ratio of PUFA/SAT and reduced percentage of total n-3 fatty acids in adipose phospholipid, a fatty acid profile associated with obesity-induced risks for insulin resistance and impaired glucose transport. In summary, the reduced adipose Zn concentrations in HF-fed mice and the negative correlation between serum leptin and adipose Zn concentrations support an interrelationship among obesity, leptin and Zn metabolism.  相似文献   

11.
The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of lead (Pb) poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for 3 weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with decreased triglycerides and increased cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.  相似文献   

12.
The study examined the ability of dietary n-3 fatty acids to modify mouse peritoneal macrophage glycerophospholipid molecular species and peptidoleukotriene synthesis. After a 2-week feeding period, fish versus corn oil feeding significantly (P less than 0.01) lowered n-6 polyunsaturated fatty acid (PUFA) mol % levels, i.e., arachidonic acid (20:4n-6) in diacylphosphatidylserine (PtdSer), diacylphosphatidylinositol (PtdIns), diacylglycerophosphoethanolamine (PtdEtn), alkenylacylglycerophosphoethanolamine (PlsEtn), and diacylglycerophosphocholine (PtdCho). A notable exception was alkylacylglycerophosphocholine (PakCho), where only moderate decreases in 16:0-20:4n-6 and 18:0-20:4n-6 species were observed after fish oil supplementation. The predominant n-3 PUFA in macrophage phospholipid subclasses was docosapentaenoic acid (22:5n-3). The major n-3 species were 18:0-22:5n-3 in PtdIns, PtdSer, glycerophosphoethanolamines (EtnGpl) and 16:0-22:5n-3 in PtdCho and PlsEtn. The major n-3-containing species in PakCho were 16:0-20:5n-3 and 18:1-22:6n-3. These findings indicate that n-3 PUFA are differentially incorporated into macrophage phospholipid subclasses after dietary fish oil supplementation, and suggest that phospholipid remodeling enzymes selectively discriminate between substrates based on compatibility of sn-1 covalent linkage and the composition of the sn-1 and sn-2 aliphatic chains. Macrophage peptidoleukotriene synthesis was also strongly influenced after fish oil feeding; the LTC5/LTC4 ratio was significantly higher (P less than 0.01) in fish oil-fed animals than in corn oil-fed animals, 0.85 versus 0.01, respectively. These ratios were subsequently compared to phospholipid molecular species 20:5n-3/20:4n-6 ratios in order to determine potential sources of eicosanoid precursors.  相似文献   

13.
Essential fatty acids (EFA) are important structural and functional components of cell membranes. Their deficiency has been associated with several clinical and biochemical abnormalities. In the present study, the lipid profile as well as the concentration, composition, and metabolism of lipoproteins were examined in rats rendered EFA-deficient over a period of 12 weeks. Changes in plasma fatty acids mainly induced an increase of palmitoleic (16:1 n-7) and eicosatrienoic (20:3 n-9) acids, while linoleic (18:2 n-6), arachidonic (20:4 n-6), linolenic (18:3 n-3), and docosahexaenoic (22:6 n-3) acids were decreased. The results show increased concentrations of free fatty acids (FFA) (P less than 0.001), triglycerides (P less than 0.001), total cholesterol (P less than 0.02), free cholesterol (P less than 0.005), and phospholipids (P less than 0.05) when compared to pair-fed controls. Similar levels of cholesteryl esters were found in the two groups, and lecithin: cholesterol acyltransferase activity (nmol/100 microliters plasma per h) (8.98 +/- 1.44 vs 8.72 +/- 0.50) did not differ. On the other hand, postheparin extrahepatic lipoprotein lipase (LPL) activity was significantly (P less than 0.002) decreased (5.96 +/- 0.29 vs 7.29 +/- 0.68 mumol FFA/ml per h) and could account for the hypertriglyceridemia as well for the relative triglyceride enrichment of very low density lipoprotein, intermediate density lipoprotein, and low density lipoprotein particles. This enzymatic depletion of LPL was mainly due to the adipose tissue, since a higher level (P less than 0.001) of hepatic lipase (325.8 +/- 16.0 vs 130.8 +/- 9.5 nmol FFA/mg protein per h) was found in liver acetone powder extracts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Typical omega 3 polyunsaturated fatty acids (n-3 PUFAs) are docosahexaenoic acid and eicosapentaenoic acid in the form of fish oils and α linolenic acid from flaxseed oil. Epidemiological studies suggested the benefits of n-3 PUFA on cardiovascular health. Intervention studies confirmed that the consumption of n-3 PUFA provided benefits for primary and secondary prevention of cardiovascular disease. Evidence from cellular and molecular research studies indicates that the cardioprotective effects of n-3 PUFA result from a synergism between multiple, intricate mechanisms that involve antiinflammation, proresolving lipid mediators, modulation of cardiac ion channels, reduction of triglycerides, influence on membrane microdomains and downstream cell signaling pathways and antithrombotic and antiarrhythmic effects. n-3 PUFAs inhibit inflammatory signaling pathways (nuclear factor-κ B activity) and down-regulate fatty acid (FA) synthesis gene expression (sterol regulatory element binding protein-1c) and up-regulate gene expression involved in FA oxidation (peroxisome proliferator-activated receptor α). This review examines the various mechanisms by which n-3 PUFA exert beneficial effects against CVD.  相似文献   

15.
The aim of this study was to study the effect of adding polyunsaturated fatty acid (PUFA) n-3 or placebo (containing oleic acid) to a combined statin-fibrate treatment on plasma lipoproteins, lipoperoxidation, glucose homeostasis, total homocysteine (tHcy) and microalbuminuria (MA) in patients with diabetic dyslipidemia (DDL). Twenty-four patients, who did not fulfill the recommended target lipid values with combined hypolipidemic therapy (pravastatin 20 mg+micronized fenofibrate 200 mg daily), were supplemented with 3.6 g PUFA n-3 daily for 3 months or placebo (olive oil) for the next 3 months. The concentrations of plasma lipids, fatty acid (FA) profiles of phosphatidylcholine (PC), cholesteryl esters (CE) and triglycerides (TG), tHcy levels, concentrations of conjugated dienes (CD) in low-density lipoprotein (LDL), and MA were determined in baseline state, after the PUFA n-3 and placebo treatment period. Supplementation with PUFA n-3 led to a significant decrease in plasma tHcy (-29%, P < .01) and TG (-28%, P < .05) levels, as well as to a significant decrease in MA (-24%, P < .05). The decrease in MA correlated significantly with the increase in total PUFA n-3 (r = -.509, P < or = .05) and docosahexaenoic acid (r = -.52, P < .01) in TG. The concentrations of CD in LDL increased significantly (+15%, P < .05). The supplementation with PUFA n-3 to the combined statin-fibrate treatment in patients with DDL decreased the TG and tHcy levels as well as MA. It could lead to decreased risk of atherothrombosis and delay of diabetic nephropathy onset and progression.  相似文献   

16.
Training improves insulin sensitivity, which in turn may affect performance by modulation of fuel availability. Insulin action, in turn, has been linked to specific patterns of muscle structural lipids in skeletal muscle. This study investigated whether regular exercise training exerts an effect on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P < 0.05). The ratio between n-6 and n-3 fatty acids was significantly lower in the trained (11.1 +/- 0.9) than the untrained leg (13.1 +/- 1.2, P < 0.05). In contrast, training did not affect muscle triacylglycerol fatty acid composition. Citrate synthase activity was increased by 17% in the trained compared with the untrained leg (P < 0.05). In this model, diet plays a minimal role, as the influence of dietary intake is similar on both legs. Regular exercise training per se influences the phospholipid fatty acid composition of muscle membranes but has no effect on the composition of fatty acids stored in triacylglycerols within the muscle.  相似文献   

17.
Male rat pups (21 days old) were placed on a diet deficient in n-3 polyunsaturated fatty acids (PUFAs) or on an n-3 PUFA adequate diet containing alpha-linolenic acid (alpha-LNA; 18 : 3n-3). After 15 weeks on a diet, [4,5-3H]docosahexaenoic acid (DHA; 22 : 6n-3) was injected into the right lateral cerebral ventricle, and the rats were killed at fixed times over a period of 60 days. Compared with the adequate diet, 15 weeks of n-3 PUFA deprivation reduced plasma DHA by 89% and brain DHA by 37%; these DHA concentrations did not change thereafter. In the n-3 PUFA adequate rats, DHA loss half-lives, calculated by plotting log10 (DHA radioactivity) against time after tracer injection, equaled 33 days in total brain phospholipid, 23 days in phosphatidylcholine, 32 days in phosphatidylethanolamine, 24 days in phosphatidylinositol and 58 days in phosphatidylserine; all had a decay slope significantly greater than 0 (p < 0.05). In the n-3 PUFA deprived rats, these half-lives were prolonged twofold or greater, and calculated rates of DHA loss from brain, Jout, were reduced. Mechanisms must exist in the adult rat brain to minimize DHA metabolic loss, and to do so even more effectively in the face of reduced n-3 PUFA availability for only 15 weeks.  相似文献   

18.
Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2) (iPLA(2) )-VIA expression. We hypothesized that these changes are accompanied by up-regulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA 'adequate' (31.4 wt% linoleic acid) or 'deficient' (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-(14) C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid n-3 (DPAn-3, 22:5n-3), and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid (EtnGpl). Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promotes neuroprotection and alters neurotransmission.  相似文献   

19.
Moderate physical training induced a decrease in arterial blood pressure in fish oil-fed rats as compared to sunflower seed oil-fed rats. The purpose of this study was to determine if these changes were due to modifications of the left ventricular function of the heart. Forty rats were fed a semi-purified diet containing either 10% sunflower seed oil or 10% fish oil (EPAX 3000TG, Pronova). Each dietary group was assigned to two sub-groups, one being constituted by sedentary animals and the other by trained animals. Training was achieved by daily running for 60 minutes at moderate intensity for three weeks. At the end of the training period, the animals were sacrificed and their hearts were immediately perfused according to the working mode. The phospholipid fatty acid composition and parameters of the left ventricular function were determined. Feeding fish oil markedly reduced the proportion of n-6 polyunsaturated fatty acids (PUFA, 18:2 n-6, 20:4 n-6, 22:4 n-6 and 22:5 n-6) in cardiac phospholipids. The n-6 PUFA were replaced by n-3 PUFA (mainly docosahexaenoic acid). In sedentary animals, the fluid dynamic (aortic and coronary flow, cardiac output) was not modified by the diet. The heart rate was reduced (-10%) in n-3 PUFA-rich hearts. Physical training did not markedly alter the polyunsaturated fatty acid profile of cardiac phospholipids. Conversely, it reduced the heart rate, aortic flow and cardiac output (-11, -21 and -14%, respectively) at a similar extent in the two dietary groups. In a second set of experiments, the training period was repeated in animals fed a commercially available diet (A103, UAR) which simultaneously provided n-6 and n-3 fatty acids. In these dietary conditions, neither the aortic flow nor the heart rate was decreased by physical exercise. These results suggest that both n-6 and n-3 PUFA in the diet are necessary to ensure a good cardiac adaptation to moderate physical training. Furthermore, the fish oil-induced decrease in arterial blood pressure in trained animals was not related to changes in cardiac contractility, but to a decrease in vascular resistances. Moderate physical training + dietary n-3 PUFA might be used to prevent hypertension and cardiovascular diseases.  相似文献   

20.
Valencak TG  Ruf T 《Aging cell》2007,6(1):15-25
Although generally considered as beneficial components of dietary fats, polyunsaturated fatty acids (PUFA) have been suspected to compromise maximum lifespan (MLSP) in mammals. Specifically, high amounts of phospholipid PUFAs are thought to impair lifespan due to an increase in the susceptibility of membranes to lipid peroxidation and its damaging effect on cellular molecules. Also, there is evidence from in vitro studies suggesting that highly unsaturated PUFAs elevate basal metabolic rate (BMR). Previous comparative studies in this context were based on small sample sizes, however, and, except for one study, failed to address possible confounding influences of body weight and taxonomic relations between species. Therefore, we determined phospholipid membrane composition in skeletal muscle from 42 mammalian species to test for a relation with published data on MLSP, and with literature data on BMR (30 species). Using statistical models that adjust for the effects of body weight and phylogeny, we found that among mammals, MLSP indeed decreases as the ratio of n-3 to n-6 PUFAs increases. In contrast to previous studies, we found, however, no relation between MLSP and either membrane unsaturation (i.e. PUFA content or number of double bonds) or to the very long-chain, highly unsaturated docosahexaenoic acid (DHA). Similarly, our data set gave no evidence for any notable relation between muscle phospholipid fatty acid composition and BMR, or MLSP and BMR in mammals. These results contradict the 'membrane pacemaker theory of aging', that is, the concept of a direct link between high amounts of membrane PUFAs, elevated BMR, and thus, impaired longevity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号