首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Somersalo  G. H. Krause 《Planta》1989,177(3):409-416
The effects of moderate light at chilling temperature on the photosynthesis of unhardened (acclimated to +18° C) and hardened (cold-acclimated) spinach (Spinacea oleracea L.) leaves were studied by means of fluorescence-induction measurements at 20° C and 77K and by determination of quantum yield of O2 evolution. Exposure to 550 mol photons·m-2·s-1 at +4° C induced a strong photoinhibition in the unhardened leaves within a few hours. Photoinhibition manifested by a decline in quantum yield was characterized by an increase in initial fluorescence (F o) and a decrease in variable fluorescence (F v) and in the ratio of variable to maximum fluorescence (F V/F M), both at 77K and 20° C. The decline in quantum yield was more closely related to the decrease in the F V/F M ratio measured at 20° C, as compared with F V/F M at 77K. Quenching of the variable fluorescence of photosystem II was accompanied by a decline in photosystem-I fluorescence at 77K, indicating increased thermal de-excitation of pigments as the main consequence of the light treatment. All these changes detected in fluorescence parameters as well as in the quantum yield of O2 evolution were fully reversible within 1–3 h at a higher temperature in low light. The fast recovery led us to the view that this photoinhibition represents a regulatory mechanism protecting the photosynthetic apparatus from the adverse effects of excess light by increasing thermal energy dissipation. Long-term cold acclimation probably enforces other protective mechanisms, as the hardened leaves were insensitive to the same light treatment that induced strong inhibition of photosynthesis in unhardened leaves.Abbreviations F 0 initial fluorescence - F M maximum fluorescence - F V variable fluorescence (F M-F 0 - PFD photon flux density - PS photosystem  相似文献   

2.
3.
4.
Isolated pea thylakoids were experimentally unstacked in low-salt buffer and incubated with Pronase or trypsin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that brief treatment with a very low concentration (1 μg/ml) of either enzyme had an effect primarily on the light-harvesting chlorophyll ab-protein complexes, which are more sensitive to proteolytic attack than the other proteins of the thylakoid membranes. This mild proteolysis cleaves a ~1000-dalton portion from the predominant 28,000-dalton polypeptide of these complexes. Extensive proteolysis (100 μg Pronase/ml for 15 min) degraded almost all membrane polypeptides not associated with the pigment-protein complexes and degraded the chlorophyll ab-protein complexes further than milder proteolysis. Pronase treatment of thylakoids in the presence of horseradish peroxidase was used to monitor membrane breakage during proteolysis. Treatment with 100 μg Pronase/ ml enabled considerable amounts of peroxidase activity, and presumably, proteolytic enzymes to enter into the intrathylakoid space. This trapping of peroxidase activity was seen only minimally with milder proteolysis (1 μg Pronase/ml). These results suggest that brief exposure to low concentrations of proteolytic enzymes affects only the outer, stromal thylakoid surface, while at higher concentrations, significant proteolysis takes place at both sides of the membrane.  相似文献   

5.
At chilling temperatures, plants suffer damage to photosynthesis. The sites and the mechanisms involved in this damage differ under different chilling conditions. The current status of our understanding of this damage is reviewed, and how chilling temperatures affect photosynthesis is discussed with emphasis on the role of light and the phase separation of membrane lipids. Recipient of the Botanical Society Award for Young Scientist, 1996  相似文献   

6.
Envelope- and stroma-free thylakoid membranes of Vicia faba chloroplasts were disintegrated and the electrophoretic behavior of the components studied with special regard to the pigment-protein complexes. The process of denaturation of the complexes was found to differ with respect to the other protein components. As the result of denaturation, the pigment-free protein moieties exhibit altered electrophoretic mobilities in relation to the “intact” complexes mainly conditioned by two processes contrary in their action, i.e. increase of charge and change of the hydrodynamic properties.Exhaustive extraction of the thylakoid membranes with 6 M guanidine · HCl removes the proteins mainly associated by polar and weak hydropobic interactions. The insoluble residue quantitatively exhibits the pigment-protein complexes including their denatured protein moieties, two extrinsic hydrophobic proteins as well as some protein traces. Electron-microscopic studies demonstrate the material still to have a high degree of order and preserved basic structure. After removing the lipids from the basic membrane, large amounts of the protein moiety of Complex II become soluble in guanidine · HCl. Since all other lamellar proteins are removable either by guanidine · HCl extraction or by trypsin digestion it is assumed the basic membrane of thylakoid to consist only of the pigment-protein complexes embedded into a lipid matrix.  相似文献   

7.
Thylakoids isolated from spinach leaves ( Spinacia oleracea L. cv. Monatol) were exposed to variable low temperatures under non-freezing conditions. After incubation, changes in the activities of several photochemical reactions and physical properties of the membranes were measured at room temperature.
Cyclic photophosphorylation was strictly dependent on the temperature and the electrolyte concentration: decrease in temperature and increase in NaCl concentration enhanced membrane damage. Inactivation of photophosphorylation was accompanied by stimulation of non-cyclic electron transport, increase in proton permeability and decrease in δpH. When dicyclohexylcarbodiimide was added, the proton gradient became completely restored. The temperature- and salt-dependent breakdown of photophosporylation was closely related to the release of the chloroplast coupling factor (CF1) from the membranes. The addition of Mg2+, very low concentrations of ATP or ADP, or higher concentrations of low-molecular-weight polyols prior to temperature treatment prevented thylakoid damage.
The data indicate that inactivation of photophosphorylation of thylakoids at low temperatures is determined to a considerable extent by the cold lability of the CF1. As a consequence, it must be concluded that damage of biomembranes caused by freezing is not due solely to changes resulting from the ice formation but additionally by temperature-dependent alterations of cold-labile proteins. Moreover, the data explain the mechanism of non-colligative cryoprotection of isolated thylakoid membranes.  相似文献   

8.
Chloroplast thylakoid lipids have been isolated free of photosynthetic pigments using a combination of high performance liquid and thin layer chromatography. The hydrophobic fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene (DPH) has been incorporated into aqueous dispersions of the isolated lipids in order to investigate dynamic and structural properties of the resulting bilayer membranes. Time dependent fluorescence anisotropy decays have been measured and analysed assuming the wobbling-in-cone model (Kinosita et al., Biophys J 20 (1977) 289–305). The DPH fluorescence lifetimes and the static and dynamic fluorescence anisotropy decay parameters for the probe in a total lipid mixture or in pure digalactosyldiacylglycerol (DGDG), changed in a predictable way with increasing temperature (10°–36°C). For a given temperature, it was found that the total lipid mixture was in general less ordered and showed greater dynamic motion as judged from DPH fluorescence anisotropy and compared with the pure DGDG system, although at 36°C differences in dynamic parameters were less evident. Overall the results obtained emphasize the highly fluid nature of thylakoid membrane lipids and give a basis for investigating how intrinsic proteins modify structural and dynamic properties of the in vivo membrane.  相似文献   

9.
Large unilamellar vesicles composed of thylakoid glycolipids, phosphatidylglycerol, and varying proportions of dipalmitoylphosphatidylglycerol (DPPG) have been examined for the temperature dependence of their permeability to 86Rb+ and for the occurrence of liquid-crystalline to gel (Lα-to-Lβ) phase separations. In vesicles in which the normal 12 mole percent of moderately unsaturated thylakoid phosphatidylglycerol was partially or completely replaced by DPPG, analysis by differential scanning calorimetry indicated that an Lα-to-Lβ phase separation did not occur between 0 and 60°C. However, in similar vesicle dispersions that were first subjected to a freeze-thaw cycle, Lα-to-Lβ phase separations were observed to occur between 17 and 53°C. The temperature and enthalpy of these phase separations were closely related to the proportion of DPPG in the original lipid mixture. In parallel experiments, large unilamellar vesicles were measured for their permeability to 86Rb+ between 7 and 30°C. There were no systematic increases in permeability to 86Rb+ as a function of DPPG content at the temperatures relevant to chilling stress in higher plants. It is concluded that (a) Lα-to-Lβ phase separations do not occur in well-defined galactolipid vesicles containing ≤12 mole percent DPPG between 0 and 60°C and (b) these vesicles show no alterations in permeability to 86Rb+ between 7 and 30°C that are relevant to chilling stress in higher plants.  相似文献   

10.
Thylakoid membranes from cucumbers and peas have been examined by high-sensitivity differential scanning calorimetry. Data was collected during both heating and subsequent cooling scans in order to observe reversibility. Cucumber thylakoids exhibited almost no reversibility; a very small reversible exothermic peak was observed at approximately 12 degrees C in cooling scans. However, thylakoids from peas had reversible transitions at 50 and 68 degrees C, as well as other transitions which were visible as shoulders in a second heating scan. When pea grana thylakoids were unstacked, the high temperature transitions were sharpened and their reversibility was enhanced. This is the first report of chloroplast thylakoid membranes exhibiting reversible high temperature transitions. The results indicate that considerable variation can occur in the calorimetric profiles of thylakoids from different plants.  相似文献   

11.
Scott IM  Clarke SM  Wood JE  Mur LA 《Plant physiology》2004,135(2):1040-1049
The growth of Arabidopsis plants in chilling conditions could be related to their levels of salicylic acid (SA). Plants with the SA hydroxylase NahG transgene grew at similar rates to Col-0 wild types at 23 degrees C, and growth of both genotypes was slowed by transfer to 5 degrees C. However, at 5 degrees C, NahG plants displayed relative growth rates about one-third greater than Col-0, so that by 2 months NahG plants were typically 2.7-fold larger. This resulted primarily from greater cell expansion in NahG rosette leaves. Specific leaf areas and leaf area ratios remained similar in both genotypes. Net assimilation rates were similar in both genotypes at 23 degrees C, but higher in NahG at 5 degrees C. Chlorophyll fluorescence measurements revealed no PSII photodamage in chilled leaves of either genotype. Col-0 shoots at 5 degrees C accumulated SA, particularly in glucosylated form. SA in NahG shoots showed similar tendencies at 5 degrees C, but at greatly depleted levels. Catechol was not detected as a metabolite of the NahG transgene product. We also examined growth and SA levels in SA signaling and metabolism mutants at 5 degrees C. The partially SA-insensitive npr1 mutant displayed growth intermediate between NahG and Col-0, while the SA-deficient eds5 mutant behaved like NahG. In contrast, the cpr1 mutant at 5 degrees C accumulated very high levels of SA and its growth was much more inhibited than wild type. At both temperatures, cpr1 was the only SA-responsive genotype in which oxidative damage (measured as thiobarbituric acid-reactive substances) was significantly different from wild type.  相似文献   

12.
植物叶绿体类囊体膜及膜蛋白研究进展   总被引:5,自引:0,他引:5  
叶绿体是植物和真核藻类进行光合作用的场所。存在于叶绿体类囊体膜上的蛋白质复合物含有光反应所需的光合色素和电子传递链组分,在光合作用过程中,光化学反应发生在类囊体膜上。因此,类囊体膜是光能向化学能转化的主要场所,因而也一直是光合作用研究的热点。叶绿体类囊体膜的深入研究可以促进光合作用的分子机理研究。该文就叶绿体类囊体膜的三维构象及类囊体膜蛋白的组成和功能研究进行了综述。  相似文献   

13.
Heparin, an anionic polysaccharide, inhibited the ferredoxin-catalyzed reduction of NADP in spinach chloroplast thylakoid membranes. Under the same conditions of assay, heparin did not interfere markedly with photoreduction of methyl viologen, anthraquinone sulfonate, or ferredoxin. A kinetic analysis of the heparin-induced interference with NADP photoreduction showed partial competitive inhibition. Heparin also interfered with NADPH oxidation by membrane-bound ferredoxin-NADP reductase (with dichlorophenol-indophenol as the acceptor) by a mechanism that involves partial competitive inhibition. This reaction was sensitive to the presence of salts; increasing ionic strength increases the heparin Ki for inhibition of NADPH oxidation. These results show that heparin binds to ferredoxin-NADP reductase, and in doing so interferes with binding to the reductase by both ferredoxin and NADP(H). Since heparin is redox inactive and does not interfere with the photophosphorylation reaction, it is a useful inhibitor of thylakoid membrane reactions which require the catalytic activity of ferredoxin-NADP reductase.  相似文献   

14.
Several monoclonal antibodies have been produced against partially purified photosystem I reaction center complexes isolated from spinach chloroplasts. One of the clones was shown to be highly specific for the 28,000 and 27,000 dalton subunits of purified light harvesting chlorophyll a/b binding complex. Studies with thylakoids suggest at least a portion of the light harvesting chlorophyll a/b binding protein molecules are exposed on a normally inaccessible surface of the membrane.  相似文献   

15.
Abstract. Fully expanded leaves of 25°C grown Phaseolus vulgaris and six other species were exposed for 3 h to chilling temperatures at photon flux densities equivalent to full sunlight. In four of the species this treatment resulted in substantial inhibition of the subsequent quantum yield of CO2 uptake, indicating reduction of the photochemical efficiency of photosynthesis. The extent of inhibition was dependent on the photon flux density during chilling and no inhibition occurred when chilling occurred at a low photon flux density. No inhibition occurred at temperatures above 11.5°C, even in the presence of the equivalent of full sunlight. This interaction between chilling and light to cause inhibition of photosynthesis was promoted by the presence of oxygen at normal air partial pressures and was unaffected by the CO2 partial pressure present when chilling occurred in air. When chilling occurred at low O2 partial pressures, CO2 was effective in reducing the degree of inhibition. Apparently, when leaves of chilling-sensitive plants are exposed to chilling temperatures in air of normal composition then light is instrumental in inducing rapid damage to the photochemical efficiency of photosynthesis.  相似文献   

16.
The mechanism of chilling resistance was investigated in 4-week-old plants of the chilling-sensitive cultivated tomato, Lycopersicon esculentum Mill. cv H722, and rooted cuttings of its chilling-resistant wild relative, L. hirsutum Humb. and Bonpl., which were chilled for 3 days at 2°C with a 14-hour photoperiod and light intensity of 250 micromoles per square meter per second. This chilling stress reduced the chlorophyll fluorescence ratio, stomatal conductance, and dry matter accumulation more in the sensitive L. esculentum than in the resistant L. hirsutum. Photosynthetic CO2 uptake at the end of the chilling treatment was reduced more in the resistant L. hirsutum than in L. esculentum, but recovered at a faster rate when the plants were returned to 25°C. The reduction of the spin trap, Tiron, by isolated thylakoids at 750 micromoles per square meter per second light intensity was taken as a relative indication of the tendency for the thylakoids to produce activated oxygen. Thylakoids isolated from the resistant L. hirsutum with or without chilling treatment were essentially similar, whereas those from chilled leaves of L. esculentum reduced more Tiron than the nonchilled controls. Whole chain photosynthetic electron transport was measured on thylakoids isolated from chilled and control leaves of the two species at a range of assay temperatures from 5 to 25°C. In both species, electron transport of the thylakoids from chilled leaves was lower than the controls when measured at 25°C, and electron transport declined as the assay temperature was reduced. However, the temperature sensitivity of thylakoids from chilled L. esculentum was altered such that at all temperatures below 20°C, the rate of electron transport exceeded the control values. In contrast, the thylakoids from chilled L. hirsutum maintained their temperature sensitivity, and the electron transport rates were proportionately reduced at all temperatures. This sublethal chilling stress caused no significant changes in thylakoid galactolipid, phospholipid, or protein levels in either species. Nonchilled thylakoid membranes from L. hirsutum had fourfold higher levels of the fatty acid 16:1, than those from L. esculentum. Chilling caused retailoring of the acyl chains in L. hirsutum but not in L. esculentum. The chilling resistance of L. hirsutum may be related to an ability to reduce the potential for free radical production by close regulation of electron transport within the chloroplast.  相似文献   

17.
【目的】类囊体是叶绿体光合作用中光反应进行的重要场所。类囊体腔是由类囊体膜包围形成的一个狭小空间。在类囊体腔中存在多种不同的蛋白家族,包括高叶绿素荧光(high chlorophyll fluorescence, HCF)蛋白、亲免蛋白、放氧复合物(oxygen-evolving complex, OEC)蛋白、PsbP类蛋白等,它们对植物的光合作用、核酸代谢以及氧化还原反应等都起着重要作用。【评论】文章分类综述了参与光合作用调控的类囊体腔蛋白在光系统组装、植物生长发育调节和高光逆境响应等生理活动中发挥的重要作用。【展望】文章可为未来研究类囊体腔蛋白的生理功能提供理论参考。  相似文献   

18.
Thylakoid dismantling is one of the most relevant processes occurring when chloroplasts are converted to non-photosynthetically active plastids. The process is well characterised in senescing leaves, but other systems could present different features. In this study, thylakoid dismantling has been analysed in dividing cells of the unicellular alga, Euglena gracilis , cultured in darkness. Changes in photosynthetic pigments and in the abundance of LHC and PSII core proteins (D2 and CP43) showed that: (i) during the 0–24 h interval, the decline in LHCII was faster than that in the PSII core; (ii) during the 24–48 h interval, PSII and LHCII were strongly degraded to nearly the same extent; (iii) in the 48–72 h interval, the PSII core proteins declined markedly, while LHCII was maintained. These changes were accompanied by variations in room temperature fluorescence emission spectra recorded from single living cells with a microspectrofluorimeter (excitation, 436 nm; range 620–780 nm). Emission in the 700–715 nm range was proposed to derive from LHCI-II assemblages; changes in emission at 678 nm relative to PSII matched PSII core degradation phases. Overall, the results suggest that, in degreening E. gracilis , thylakoid dismantling is somewhat different from that associated with senescence, because of the early loss of LHCII. Moreover, it is proposed that, in this alga, disruption of the correct LHCI-II stoichiometry alters the energy transfer to photosystems and destabilises membrane appression leading to the thylakoid destacking observed using transmission electron microscopy.  相似文献   

19.
《Plant science》1987,49(2):75-79
The photosynthetic activity of leaf slices from Spinacia oleracea L., Cucumis sativus L. and Nerium oleander L. was measured in 25° C immediately after preincubation for 2.5 h at various photon flux densities (PFD) with chilling at 4°C, or at a moderate (450 μmol m−2 s−1) PFD with various temperatures below 25°C. Inhibition of photosynthesis was evident in C. sativus and 45°C-grown N. oleander after preincubation at 4°C at all PFD. The inhibition was most severe at fluxes in excess of the moderate PFD under which the plants were grown. Photosynthesis in S. oleracea and 20°C-grown N. oleander was not inhibited at 4°C unless the PFD was in excess of this moderate PFD. The inhibition of photosynthesis was initiated in C. sativus below 13°C, and in 45°C-grown N. oleander below 8°C. A phase transition in the polar lipids from the thylakoids of these plants was detected at about the same temperatures. For S. oleracea and 20°C-grown N. oleander preincubated under the same conditions, there was no inhibition of photosynthesis and no phase transition above 0°C. These results show that some component of photosynthesis was disrupted in the light at temperatures below that of the phase transition in the thylakoid polar lipids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号