首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
pH-dependence of carnitine acetyltransferase activity   总被引:15,自引:15,他引:0       下载免费PDF全文
1. The pH-dependence of the kinetic constants of the carnitine acetyltransferase reaction has been investigated with the enzyme from pigeon breast muscle. 2. Michaelis constants for (-)-carnitine and acetyl-(-)-carnitine vary in a similar fashion in the pH range 6.0-9.0. A single ionizing group on the enzyme with an apparent pK7.2 is required in the basic form for binding of these substrates. 3. Binding of CoASH or acetyl-CoA raises the apparent pK of an ionizing group on the enzyme from 7.85 to 8.25. This group is probably not directly involved in forming the enzyme-substrate complex, but its microscopic environment is presumably altered. Another group in either the substrate or the free enzyme, with an apparent pK6.4, is needed in the basic form for optimum binding of CoA substrates. 4. This last group has been unequivocally identified as the 3'-phosphate of CoA, by showing that the K(m) of carnitine acetyltransferase for the substrate acetyl-3'-dephospho-CoA is independent of pH in the range 6.0-7.8. 5. V'(max.), the maximum velocity of the catalysed reaction between acetyl-CoA and (-)-carnitine, is constant between pH6.0 and 8.8. 6. The significance of these results in terms of a previously postulated reaction scheme for this enzyme is discussed.  相似文献   

2.
The substrate specificity of carnitine acetyltransferase   总被引:13,自引:12,他引:1       下载免费PDF全文
1. A study of the acyl group specificity of the carnitine acetyltransferase reaction [acyl-(-)carnitine+CoASH right harpoon over left harpoon (-)-carnitine+acyl-CoA] has been made with the enzyme from pigeon breast muscle. Acyl groups containing up to 10 carbon atoms are transferred and detailed kinetic investigations with a range of acyl-CoA and acylcarnitine substrates are reported. 2. Acyl-CoA derivatives with 12 or more carbon atoms in the acyl group are potent reversible inhibitors of carnitine acetyltransferase, competing with acetyl-CoA. Lauroyl- and myristoyl-CoA show a mixed inhibition with respect to (-)-carnitine, but palmitoyl-CoA competes strictly with this substrate also. Palmitoyl-dl-carnitine shows none of these effects. 3. Ammonium palmitate inhibits the enzyme competitively with respect to (-)-carnitine and non-competitively with respect to acetyl-CoA. 4. It is suggested that a hydrophobic site exists on the carnitine acetyltransferase molecule. The hydrocarbon chain of an acyl-CoA derivative containing eight or more carbon atoms in the acyl group may interact with this, which results in enhanced acyl-CoA binding. Competition occurs between ligands bound to this hydrophobic site and the carnitine binding site. 5. The possible physiological significance of long-chain acyl-CoA inhibition of this enzyme is discussed.  相似文献   

3.
A stereospecific hydrogen exchange between tritiated water and the hydrogen at C3 of (R)-carnitine takes place under the coupled catalyses of (R)-carnitine dehydrogenase from Pseudomonas aeruginosa and α-lipoamide dehydrogenase (diaphorase) from pig heart. This exchange reaction can be used to synthesize (R)-(3-3H) -carnitine. The amount of tritium released from the C3 position of (R)-(3-3H) -carnitine into water is decreased proportionally by the addition of non labelled (R)-carnitine, making possible a new sensitive assay for (R)-carnitine.  相似文献   

4.
微波辐射法合成苄基-2-萘基醚的研究   总被引:1,自引:0,他引:1  
在微波辐射条件下,以2-萘酚和氯化苄为原料,用氢氧化钠作碱剂,碘化钾作催化剂,以水和N,N-二甲基甲酰胺(DMF)为溶剂合成了苄基-2-萘基醚;采用单因素实验法,考察了反应物的摩尔比、催化剂用量、微波功率、辐射时间等因素对苄基-2-萘基醚产率的影响。实验结果表明:在n(2-萘酚):n(氢氧化钠):n(氯化苄):n(碘化钾)=1:1.1:1:0.018,水7 ml,DMF 25 ml,微波功率320 W和辐射时间75 s的优化条件下,苄基-2-萘基醚的产率可达88.03%。  相似文献   

5.
A novel effect of carnitine and O-acylcarnitine derivatives has been described. The presence of these compounds has been shown to inhibit the aggregation of erythrocytes otherwise elicited by the addition of clusterin or fetuin. The specificity of carnitine action has been investigated by comparing influences of chemically related compounds. The concentrations required for inhibition by approximately 50% of aggregation of erythrocytes by clusterin under in vitro conditions defined were determined to be 1.5 mM for L(-) or D(+) enantiomers of carnitine; 0.5 mM for decanoyl(-)- or (+)-carnitine; 0.13 mM for lauroyl(-)- or (+)-carnitine, and 0.05 mM for myristoyl(-)- or (+)-carnitine. In contrast, concentrations up to 12.5 mM of dimethylcarnitine, deoxycarnitine, acetylcholine, acetyl-beta-methylcholine, or inositol had no detectable inhibitory effect on aggregation elicited by clusterin. Clusterin addition also resulted in the aggregation of three other cell types examined (guinea pig spermatozoa, a cell line derived from testes of neonatal mice called TM4 cells, and Sertoli cells from testes of 20 day-old rats). As in the case with erythrocytes, the presence of carnitine inhibited aggregation of spermatozoa, TM4 cells, and Sertoli cells in suspension. We consider possible mechanisms by which carnitine inhibits aggregation of erythrocytes and other populations of dispersed cells incubated in the presence of clusterin.  相似文献   

6.
Carnitine dehydratase from Escherichia coli 044 K74 is an inducible enzyme detectable in cells grown anaerobically in the presence of L(-)-carnitine or crotonobetaine. It has been purified 500-fold to electrophoretic homogeneity by chromatography on phenyl-Sepharose, hydroxyapatite, DEAE-Sepharose, second phenyl-Sepharose and finally gel filtration on a Sephadex G-100 column. During the purification procedure a low-molecular-weight effector essential for enzyme activity was separated from the enzyme. The addition of this still unknown effector caused reactivation of the apoenzyme. The relative molecular mass of the apoenzyme has been estimated to be 85,000. It seems to be composed of two identical subunits with a relative molecular mass of 45,000. The purified and reactivated enzyme has been further characterized with respect to pH and temperature optimum (7.8 and 37-42 degrees C), equilibrium constant (Keq = 1.5 +/- 0.2) and substrate specifity. The enzyme is inhibited by thiol reagents. The Km value for crotonobetaine is 1.2.10(-2) M. gamma-Butyrobetaine, D(+)-carnitine and choline are competitive inhibitors of crotonobetaine hydration.  相似文献   

7.
1. Carnitine acetyltransferase is very rapidly inhibited in the presence of bromoacetyl-(-)-carnitine plus CoA or of bromoacetyl-CoA plus (-)-carnitine. 2. Under appropriate conditions, the enzyme may be titrated with either bromoacetyl substrate analogue; in each case about 1mole of inhibitor is required to inactivate completely 1mole of enzyme of molecular weight 58000+/-3000. 3. Inhibition by bromoacetyl-CoA plus (-)-carnitine results in the formation of an inactive enzyme species, containing stoicheiometric amounts of bound adenine nucleotide and (-)-carnitine in a form that is not removed by gel filtration. This is shown to be S-carboxymethyl-CoA (-)-carnitine ester. 4. The inhibited enzyme recovers activity slowly on prolonged standing at 4 degrees . 5. Incubation with S-carboxymethyl-CoA (-)-carnitine ester causes a slow inhibition of carnitine acetyltransferase. 6. The formation of bound S-carboxymethyl-CoA (-)-carnitine ester by the enzyme is discussed. Presumably the resulting inhibition reflects binding of the ester to both the CoA- and carnitine-binding sites on the enzyme and its consequent very slow dissociation. These observations confirm that carnitine acetyltransferase can form ternary enzyme-substrate complexes; this also appears to be the case with carnitine palmitoyltransferase and choline acetyltransferase.  相似文献   

8.
Nitric oxide (NO) acts as an autacoid molecule that diffuses from its endothelial production site to the neighboring muscular cells. NO-donors are often used to mimic the physiological effects of NO in biological systems. Organic nitrates are commonly used as NO-donors; the most popular, glycerol trinitrate (GTN), has been used in therapy for more than a century. Carnitine nitrates have been synthesized using an endogenous non-toxic molecule: (L)-carnitine. The biotransformation of carnitine nitro-derivatives in biological fluids (saliva and blood plasma) and in red blood cells (RBC) has been monitored by an electrochemical assay and the interaction of carnitine nitrates with the plasma membrane carnitine transporter has been investigated. Differences in the way carnitine nitro-derivatives are metabolized in biological fluids and cells and transported by OCTN2 transporter are modulated by the chemical structures and by the length of the acyl template which carries the nitro-group.  相似文献   

9.
Several 3,5-diiodotryrosyl derivatives have been synthesized by both sodium iodideiodine and the sodium iodide-iodic acid methods. Conditions optimizing yield and purity of the product have been established for the latter reaction. Under those conditions, treatment of N-acetyl-tyrosyl ethyl ester with sodium [125I]iodide and iodic acid gave N-acetyl-3,5-di[125I]iodotyrosyl ethyl ester (ADITEE) with high specific activity. Hydrazination of [125I]ADITEE produces N-acetyl-3,5-di[125I]iodotyrosyl hydrazide. This hydrazide has been successfully used to modify four different ribonucleoside dialdehydes.  相似文献   

10.
d(+)-Carnitine dehydrogenase from Agrobacterium sp. catalyzes the oxidation of d(+)-carnitine to 3-dehydrocarnitine as initial step of d(+)-carnitine degradation. The NAD+-specific, cytosolic enzyme was purified 126-fold to apparent electrophoretic homogeneity by 4 chromatographic steps. The molecular mass of the native enzyme was estimated to be 88 kDa by size-exclusion chromatography. It seems to be composed of 3 identical subunits with a relative molecular mass of 28 kDa as found by sodium dodecyl sulfate polyacrylamide gel electrophoresis and laser-induced mass spectrometry. The isoelectric point was found to be 4.7–5.0. The optimum temperature is 37°C and the optimum pH for the oxidation and the reduction reaction are 9.0–9.5 and 5.5–6.5, respectively. The purified enzyme was further characterized with respect to substrate specificity, kinetic parameters and amino terminal sequence. Analogues of d(+)-carnitine (l(−)-carnitine, crotonobetaine, γ-butyrobetaine, carnitine amide, glycine betaine, choline) are competitive inhibitors of d(+)-carnitine oxidation. The equilibrium constant of the reaction of d(+)-carnitine dehydrogenase was determined to be 2.2 × 10−12. The purified d(+)-carnitine dehydrogenase has similar kinetic properties to the l(−)-carnitine dehydrogenase from the same microorganism as well as to l(−)-carnitine dehydrogenases of other bacteria.  相似文献   

11.
The L(-)-carnitine production by biotransformation using the recombinant strain Escherichia coli pT7-5KE32 has been studied and optimized with crotonobetaine and D(+)-carnitine as substrates. A resting rather than a growing cells system for L(-)-carnitine production was chosen, crotonobetaine being the best substrate. High biocatalytic activity was obtained after growing the cells under anaerobic conditions at 37°C and with crotonobetaine or L(-)-carnitine as inducer. The growth incubation temperature (37°C) was high enough as to activate the heat-inducible λpL promoter inserted in the plasmid pGP1-2. The best biotransformation conditions were with resting cells, under aerobiosis, with 4 g l−1 and 100 mM biomass and substrate concentrations respectively. Under these conditions the biotransformation time (1 h) was shorter and the L(-)-carnitine yield (70%) higher than previously reported. Consequently productivity value (11.3 g l−1h−1) was highly improved when comparing with other published works. The resting cells could be reused until eight times maintaining product yield levels well over 50% that meant to increase ten times the L(-)-carnitine obtained per gram of biomass.  相似文献   

12.
Carnitine treatment has an appreciable effect on the hatchery-reared sea bass, Dicentrarchus labrax , fry.
The administration of the laevorotatory isomer (1-carnitine) which is engaged in the transport of the acyl and acetyl groups through the mitochondrial membrane, stimulating lipid metabolism, increases the growth rate and the protein content of the treated fry.
The dextrorotatory isomer (d-carnitine), which is an antagonist of the 1-carnitine, has an opposite effect on the growth and metabolism of the treated fry.  相似文献   

13.
It has been shown previously [Faraci & Pratt (1985) Biochemistry 24, 903-910; (1986) Biochemistry 25, 2934-2941; (1986) Biochem. J. 238, 309-312] that certain beta-lactam-processing enzymes form inert acyl-enzymes with cephems that possess good leaving groups at the C-3' position. These inert species arise by elimination of the leaving group from the initially formed and more rapidly hydrolysing acyl-enzyme, which has the 'normal' cephalosporoate structure. The present paper shows that a strong nucleophile, thiophenoxide, can catalyse the re-activation of three examples of these inert acyl-enzymes, generated on reaction of cephalothin and cefoxitin with the PC1 beta-lactamase of Staphylococcus aureus and of cephalothin with D-alanyl-D-alanine transpeptidase/carboxypeptidase of Streptomyces R61. In view of the reversibility of the elimination reaction, demonstrated in model systems [Pratt & Faraci (1986) J. Am. Chem. Soc. 108, 5328-5333], this catalysis is proposed to arise through nucleophilic addition to the exo-methylene carbon atom of the inert acyl-enzyme to regenerate a more rapidly hydrolysing normal cephalosporoate. Strong support for this scenario was obtained through comparison of the kinetics of the catalysed re-activation reaction with those of turnover of the relevant 3'-thiophenoxycephems, thiophenoxycephalothin and thiophenoxycefoxitin. The enzymes appear to stabilize the products of the elimination reaction with respect to the normal cephalosporoate, but more strongly to destabilize the transition states. The effects of other nucleophiles, including cysteine, glycine amide and imidazole, on the above enzymes and on other beta-lactamases can be understood in terms of the model reaction kinetics and thermodynamics.  相似文献   

14.
A new synthetic method of cyclotene (3-methyl-2-cyclopenten-2-ol-1-one) (I) and its derivatives has been investigated. The reaction of 2-cyclopenten-2-ol-1-one and aniline in toluene gave the corresponding ketimine derivative (V) in good yield. The methylation of (V) afforded (I) and 5,5-dimethyl-2-cyclopenten-2-ol-1-one (II) as the major reaction products, and 3,5-dimethyl-2-cyclopenten-2-ol-1-one (III) and 3,5,5-trimethyl-2-cyclopenten-2-ol-1-one (II) as the minor products. Similarly, ketimine derivative of (I) was alkylated with methyl iodide and ethyl iodide to yield the corresponding (II), (III), and 5-methyl-5-ethyl-2-cyclopenten-2-ol-1-one (VII), 3-methyl-5-ethyl-2-cyclopenten-2-ol-1-one (VIII), respectively, as the major products.  相似文献   

15.
Rat kidneys were perfused for 30 min with a Krebs-Henseleit bicarbonate buffer with 5 mM glucose. Albumin proved superior to pluronic polyols as oncotic agent with regard to carnitine reabsorption in the perfused kidney. The reabsorption of 30 μM (−)-[methyl-3H]carnitine was approx. 96% during the first 10 min. At 750 μM the reabsorption decreased to 40%. The tubular reabsorptive maximum (Tmax) was approx. 170 nmol/min per kidney. The fractional reabsorption and clearance of (+)-carnitine, γ-butyrobetaine, and carnitine esters did not deviate significantly from that of (−)-carnitine. (+)-Carnitine was not metabolized by the perfused kidney. In perfusions with (−)-carnitine or (−)-carnitine plus 10 mM α-ketoisocaproate or α-ketoisovalerate increased amounts of acetylcarnitine, isovalerylcarnitine and isobutyrylcarnitine were found. Propionate (5 mM) inhibited acetylcarnitine formation. Isovalerylcarnitine, isobutyrylcarnitine and propionylcarnitine were actively degraded to free (−)-carnitine. In urine, we found a disproportionally high excretion of carnitine or carnitine esters formed in the kidney, compared to the same derivatives when ultrafiltrated. Leakage of metabolites formed in the kidney into preurine may explain this phenomenon.  相似文献   

16.
17.
J Pohlenz  S Refetoff 《Biochimie》1999,81(5):469-476
The ability to concentrate iodide actively is a characteristic feature of the thyroid gland and several other tissues. This function is mediated through the sodium iodide symporter (NIS), a protein that is located in the basolateral membrane of the thyrocyte. A defect in the NIS (iodide trapping defect) can result in hypothyroidism, the severity of which is variable and influenced, in part, by the amount of iodine supply. The molecular cloning of NIS and characterization of its genomic organization allowed the identification of NIS gene mutations in patients expressing the phenotype of iodide trapping defect. Six mutations (G93R, Q267E, C272X, T354P, Y531X and G543E) have been so far identified and their properties have been partially characterized. G93R, Q267E and Y531X were found in a compound heterozygous individual with NIS defect, C272X and G543E were detected in a homozygous state and T354P has been identified in both homozygotes and heterozygotes in combination with G93R. Heterozygous family members, expressing one normal allele, are clinically not affected. This was confirmed by in vitro analysis where all six mutants produced NISs with virtually no biological activity that did not interfere with the wild-type NIS function when cotransfected in mammalian cells. While the precise mechanisms by which mutant NISs cause iodide trapping defect are still unknown, preliminary data suggest that 354P interferes with the iodide transport function rather than targeting to the cell membrane.  相似文献   

18.
Carnitine dehydratase from Escherichia coli O44 K74 is an inducible enzyme detectable in cells grown anaerobically in the presence of L-(-)-carnitine or crotonobetaine. The purified enzyme catalyzes the dehydration of L-(-)-carnitine to crotonobetaine (H. Jung, K. Jung, and H.-P. Kleber, Biochim. Biophys. Acta 1003:270-276, 1989). The caiB gene, encoding carnitine dehydratase, was isolated by oligonucleotide screening from a genomic library of E. coli O44 K74. The caiB gene is 1,215 bp long, and it encodes a protein of 405 amino acids with a predicted M(r) of 45,074. The identity of the gene product was first assessed by its comigration in sodium dodecyl sulfate-polyacrylamide gels with the purified enzyme after overexpression in the pT7 system and by its enzymatic activity. Moreover, the N-terminal amino acid sequence of the purified protein was found to be identical to that predicted from the gene sequence. Northern (RNA) analysis showed that caiB is likely to be cotranscribed with at least one other gene. This other gene could be the gene encoding a 47-kDa protein, which was overexpressed upstream of caiB.  相似文献   

19.
Aims:  Characterization of the role of CaiC in the biotransformation of trimethylammonium compounds into l (−)-carnitine in Escherichia coli .
Methods and Results:  The caiC gene was cloned and overexpressed in E. coli and its effect on the production of l (−)-carnitine was analysed. Betaine:CoA ligase and CoA transferase activities were analysed in cell free extracts and products were studied by electrospray mass spectrometry (ESI-MS). Substrate specificity of the caiC gene product was high, reflecting the high specialization of the carnitine pathway. Although CoA-transferase activity was also detected in vitro , the main in vivo role of CaiC was found to be the synthesis of betainyl-CoAs. Overexpression of CaiC allowed the biotransformation of crotonobetaine to l (−)-carnitine to be enhanced nearly 20-fold, the yield reaching up to 30% (with growing cells). Higher yields were obtained using resting cells (up to 60%), even when d (+)-carnitine was used as substrate.
Conclusions:  The expression of CaiC is a control step in the biotransformation of trimethylammonium compounds in E. coli .
Significance and Impact of the Study:  A bacterial betaine:CoA ligase has been characterized for the first time, underlining its important role for the production of l -carnitine with Escherichia coli .  相似文献   

20.
L -Carnitine is an ubiquitous substance that plays a major role in the transportation of long-chain fatty acids. We investigated crucial factors that influence microbial conversion of γ-butyrobetaine to L-carnitine using an Achromobacter cycloclast strain. Two-stage culture results showed that γ-butyrobetaine induced enzymes essential for the conversion, which suggests that the precursor should be present in the initial cell growth stage. The addition of yeast extract enhanced L-carnitine production whereas inorganic nitrogen sources inhibited it. Under nitrogen-limiting conditions, the cells accumulated poly-β-hydroxybutyrate instead of L-carnitine. Among the trace elements tested, nickel addition enhanced L-carnitine production by almost twice that of the control and copper strongly inhibited the conversion. L-Carnitine production was reduced when the medium contained inorganic salts of sodium, potassium, and calcium at a concentration greater than 2 g l−1. A higher L-carnitine yield was achieved when cells were incubated in a lower culture volume. The optimal pH for L-carnitine production was 5 to 5.5, whereas that of growth was 7.0, indicating that a pH shift was required. Under optimal conditions, L-carnitine concentrations as high as 15 g l−1 were obtained in 62 h with a 45% molar conversion yield. Journal of Industrial Microbiology & Biotechnology (2001) 26, 309–315. Received 26 November 2000/ Accepted in revised form 27 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号