首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
The minimal structure in the heat-stable inhibitor protein of cAMP-dependent protein kinase required for a low nanomolar potency of inhibition is the peptide Thr6-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly-Arg-Arg-Asn-Ala-+ ++Ile22-NH2 (PKI-(6-22)-amide). While primary structural determinants for interaction with the protein kinase are distributed throughout the 17 residues of this peptide, we have previously shown that phenylalanine 10 in the NH2-terminal portion is a particularly important determinant for high affinity binding (Glass, D. B., Cheng, H.-C., Mende-Mueller, L., Reed, J., and Walsh, D. A. (1989) J. Biol. Chem. 264, 8802-8810). To investigate this requirement further, peptide analogs of PKI-(6-22)-amide in which various natural and nonstandard amino acids are substituted for phenylalanine 10 have been synthesized and tested for inhibitory potency against the catalytic subunit of the protein kinase. Consistent with the importance of the hydrophobicity of phenylalanine, an alanine 10 substitution analog exhibited a 270-fold decrease in inhibitory potency, whereas the leucine 10 analog lost only 33-fold in activity as compared to the parent peptide PKI-(6-22)-amide. Peptides containing the spatial conformation analogs D-phenylalanine, homophenylalanine, or phenylglycine were 60-120-fold less potent than the parent peptide. Peptides containing various para-substituted phenylalanines at position 10 were only 5-11-fold less potent. One exception to this was (4'-azidophenylalanine 10)PKI-(6-22)-amide, which was nearly equipotent with the parent inhibitor. The most potent analogs were those peptides containing highly aromatic residues at position 10. The 2'-thienylalanine 10, tryptophan (formyl) 10, tryptophan 10, and the 1'-naphthylalanine 10 analogs were 3-fold less potent, equipotent, slightly more potent, and 4-fold more potent than the parent peptide inhibitor, respectively. We conclude that phenylalanine 10 in PKI-(6-22)-amide, and presumably in the native protein inhibitor, interacts through specific hydrophobic and/or aromatic binding to a hydrophobic pocket or cleft near the active site of the protein kinase.  相似文献   

3.
PKI-(5-24)-amide is a 20-residue peptide with the sequence, Thr5-Thr-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly-Arg-Arg-Asn-A la-Ile-His- Asp24-NH2, that corresponds to the active portion of the heat-stable inhibitor protein of cAMP-dependent protein kinase (Cheng, H.-C., Kemp, B. E., Pearson, R. B., Smith, A. J., Misconi, L., Van Patten, S. M., and Walsh, D. A. (1986) J. Biol. Chem. 261, 989-992). Amino acid residues in PKI-(5-24)-amide responsible for the potent inhibition (Ki = 2.3 nM) of the catalytic subunit of protein kinase were further investigated using deletion and substitution analogs of the synthetic peptide. Residues 5, 23, and 24 were not required for activity since the 17-residue PKI-(6-22)-amide retained full potency. Sequential removal of the first seven amino acids from the NH2 terminus of PKI-(5-24)-amide caused a progressive 50-fold loss of inhibitory potency. In contrast, substitution of either Thr6, Asp9, or Ile11 with alanine, or Ala8 by leucine, in PKI-(5-22)-amide produced less than 3-fold decreases in potency. Of the 2 aromatic residues in PKI-(5-22)-amide, the individual substitution of Phe10 and Tyr7 by alanine caused, respectively, 90- and 5-fold decreases in inhibitory potency, demonstrating important roles for each. This NH2-terminal portion of the peptide is believed to contain a significant portion of alpha-helix. Many recognition or structural determinants are also essential in the COOH-terminal portion of PKI-(5-22)-amide. In addition to the basic subsite provided by the three arginines, several other of the residues are critical for full inhibitory potency. Substitution of Ile22 by glycine in either PKI-(5-22)-amide or PKI-(14-22)-amide lowered the inhibitory potency by 150- and 50-fold, respectively. Separate replacement of Gly17 or Asn20, in either PKI-(5-22)-amide or PKI-(14-22)-amide, caused 7-15-fold decreases in potency. Substitution of both Gly17 and Asn20 together (in PKI-(14-22)-amide) produced a synergistic loss of inhibitory activity. [Leu13,Ile14]PKI-(5-22)-amide, a doubly substituted analog exhibited a 42-fold increase in Ki value. We conclude that Ser13 and/or Gly14, Gly17, Asn20, and Ile22 each contribute important features to the binding of these inhibitory peptides to the protein kinase, either by providing recognition determinants, inducing structure, and/or allowing essential peptide backbone flexibility.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Affinities of the catalytic subunit (C1) of Saccharomyces cerevisiae cAMP-dependent protein kinase and of mammalian cGMP-dependent protein kinase were determined for the protein kinase inhibitor (PKI) peptide PKI(6-22)amide and seven analogues. These analogues contained structural alterations in the N-terminal alpha-helix, the C-terminal pseudosubstrate portion, or the central connecting region of the PKI peptide. In all cases, the PKI peptides were appreciably less active as inhibitors of yeast C1 than of mammalian C alpha subunit. Ki values ranged from 5- to 290-fold higher for the yeast enzyme than for its mammalian counterpart. Consistent with these results, yeast C1 exhibited a higher Km for the peptide substrate Kemptide. All of the PKI peptides were even less active against the mammalian cGMP-dependent protein kinase than toward yeast cAMP-dependent protein kinase, and Kemptide was a poorer substrate for the former enzyme. Alignment of amino acid sequences of these homologous protein kinases around residues in the active site of mammalian C alpha subunit known to interact with determinants in the PKI peptide [Knighton, D. R., Zheng, J., Ten Eyck, L. F., Xuong, N-h, Taylor, S. S., & Sowadski, J. M. (1991) Science 253, 414-420] provides a structural basis for the inherently lower affinities of yeast C1 and cGMP-dependent protein kinase for binding peptide inhibitors and substrates. Both yeast cAMP-dependent and mammalian cGMP-dependent protein kinases are missing two of the three acidic residues that interact with arginine-18 in the pseudosubstrate portion of PKI. Further, the cGMP-dependent protein kinase appears to completely lack the hydrophobic/aromatic pocket that recognizes the important phenylalanine-10 residue in the N-terminus of the PKI peptide, and binding of the inhibitor by the yeast protein kinase at this site appears to be partially compromised.  相似文献   

5.
PKI(6-22)amide is a 17 residue peptide corresponding to the active portion of the heat-stable inhibitor of cAMP-dependent protein kinase. The peptide is a potent (Ki = 1.6 nM), competitive inhibitor of the enzyme. The photoreactive peptide analog (4-azidophenylalanine10)PKI(6-22)amide was synthesized in both its non-radiolabeled and tritiated forms by chemical modification of precursor peptides that were prepared by stepwise solid-phase synthesis. (4-Amino[3,5-3H]phenylalanine10)PKI(6-22)amide, the precursor for the radiolabeled arylazide peptide, was obtained by catalytic reduction of the corresponding peptide containing the 3,5-diiodo-4-aminophenylalanine residue at position 10. The purified PKI peptides were analyzed by HPLC, amino acid analysis, and u.v. spectra. In the dark, (4-azidophenylalanine10)PKI(6-22)amide inhibited the catalytic subunit of cAMP-dependent protein kinase with a Ki value of 2.8 nM. The photoreactivity of the arylazide peptide was demonstrated by time-dependent u.v. spectral changes on exposure to light. Photolysis of the catalytic subunit (4-azido[3,5-3H]phenylalanine10)PKI(6-22)amide complex resulted in specific covalent labeling of the enzyme. The data indicate that this peptide is a useful photoaffinity labeling reagent for the active site of the protein kinase.  相似文献   

6.
Cys-cdc2(8-20), a synthetic peptide derived from p34cdc2, was previously reported to be a specific and efficient substrate of a pp60c-src-related tyrosine kinase isolated from bovine spleen (the spleen tyrosine kinase) (Litwin, C.M.E., Cheng, H.-C., and Wang, J.H. (1991) J. Biol. Chem. 266, 2557-2566). The longer peptide, cdc2(1-24), was found to be phosphorylated by the kinase with similar efficiency, and Tyr15 was the only amino acid residue phosphorylated. This indicated that the amino acid sequence of cdc2(8-20) peptide, EKI-GEGTYGVVYK, contained the structural features important for protein tyrosine kinase substrate activity. A stepwise procedure using synthetic peptides was employed to investigate such structural features. First, a computer search of protein sequences homologous to cdc2(8-20) uncovered five protein kinases containing homologous sequence with tyrosine at a position corresponding to Tyr15 of p34cdc2. Second, a peptide derived from ribosomal S6 protein kinase (rsk(436-456] was synthesized. The rsk(436-456) peptide contained a segment, ETIGVGSYSVCKR, which is highly homologous to that of cdc2(8-20). It was found to be a very poor substrate of the spleen tyrosine kinase. Third, peptide analogs of cdc2(6-20) with single substitutions of amino acid residues Lys9, Glu12, Thr14, Gly16, Val18, and Tyr19 by amino acid residues at corresponding positions of rsk were synthesized and tested as spleen tyrosine kinase substrates. Only Glu12 and Thr14 substituted peptide analogs showed decreased substrate activities. (The substrate activity of a peptide is the ability of the peptide to serve as the substrate of the spleen tyrosine kinase. It was determined of the spleen tyrosine kinase. It was determined either by the kinetic parameters (Km and Vmax) of phosphorylation of the peptide or by the initial phosphorylation rate of the peptide by the spleen tyrosine kinase.) An analog with double substitution at Glu12 An analog with double substitution at Glu12 and Thr14 was found to be almost as poor a substrate as the rsk peptide. In addition, peptide analogs with Tyr15 substituted by Phe or D-Tyr had poor substrate activities as well as weak inhibitory activities. Thus, Glu12, Thr14, and Tyr15 residues of p34cdc2 contained structural components essential for the efficient phosphorylation of the peptides derived from p34cdc2 by the pp60c-src-related spleen tyrosine kinase.  相似文献   

7.
Fourier-transform i.r. spectroscopy, 1H-n.m.r. spectroscopy and X-ray scattering were used to study the conformation and shape of the peptide PKI(5-22)amide, which contains the active site of the inhibitor protein of the cyclic AMP-dependent protein kinase [Cheng, Van Pattern, Smith & Walsh (1985) Biochem. J. 231, 655-661]. The X-ray-scattering solution studies show that the peptide has a compact structure with Rg 0.9 nm (9.0 A) and a linear maximum dimension of 2.5 nm (25A). Compatible with this, Fourier-transform i.r. and n.m.r. determinations indicate that the peptide contains approx. 26% alpha-helix located in the N-terminal one-third of the molecule. This region contains the phenylalanine residue that is one essential recognition determinant for high-affinity binding to the protein kinase catalytic site.  相似文献   

8.
A series of synthetic peptide analogs of the cardiac troponin inhibitory subunit (TN-1) phosphorylation site sequence, Arg12-Pro-Ala-Pro-Ala-Val-Arg18-Arg19-Ser20-Asp21-Arg22-Ala, have been tested as substrates for the catalytic subunit of the cyclic AMP-dependent protein kinase (EC 2.7.1.37, ATP:protein phosphotransferase). As substrates, these peptides were generally inferior to the pyruvate kinase analog peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly or its COOH-terminal amide analog. Replacing Arg-19 with alanine had only a minor effect on the kinetics of phosphorylation of the TN-1 peptide analog. In contrast, replacement of Arg-22 and Arg-18 with alanine resulted in marked enhancement and reduction of the Vmax, respectively. The results of this study have demonstrated that synthetic peptide analogs of the local phosphorylation site sequences of natural substrates may differ widely in their capacity to act as substrates for this protein kinase. In the case of the TN-1 peptide analogs, the contribution of the 4 arginine residues can be distinguished in terms of their influence on the kinetics of phosphorylation.  相似文献   

9.
《The Journal of cell biology》1994,127(6):1683-1692
Genetic, biochemical, and structural data support a model in which axonemal radial spokes regulate dynein-driven microtubule sliding in Chlamydomonas flagella. However, the molecular mechanism by which dynein activity is regulated is unknown. We describe results from three different in vitro approaches to test the hypothesis that an axonemal protein kinase inhibits dynein in spoke-deficient axonemes from Chlamydomonas flagella. First, the velocity of dynein-driven microtubule sliding in spoke-deficient mutants (pf14, pf17) was increased to wild-type level after treatment with the kinase inhibitors HA-1004 or H-7 or by the specific peptide inhibitors of cAMP-dependent protein kinase (cAPK) PKI(6-22)amide or N alpha-acetyl-PKI(6-22)amide. In particular, the peptide inhibitors of cAPK were very potent, stimulating half-maximal velocity at 12-15 nM. In contrast, kinase inhibitors did not affect microtubule sliding in axonemes from wild- type cells. PKI treatment of axonemes from a double mutant missing both the radial spokes and the outer row of dynein arms (pf14pf28) also increased microtubule sliding to control (pf28) velocity. Second, addition of the type-II regulatory subunit of cAPK (RII) to spoke- deficient axonemes increased microtubule sliding to wild-type velocity. Addition of 10 microM cAMP to spokeless axonemes, reconstituted with RII, reversed the effect of RII. Third, our previous studies revealed that inner dynein arms from the Chlamydomonas mutants pf28 or pf14pf28 could be extracted in high salt buffer and subsequently reconstituted onto extracted axonemes restoring original microtubule sliding activity. Inner arm dyneins isolated from PKI-treated axonemes (mutant strain pf14pf28) generated fast microtubule sliding velocities when reconstituted onto both PKI-treated or control axonemes. In contrast, dynein from control axonemes generated slow microtubule sliding velocities on either PKI-treated or control axonemes. Together, the data indicate that an endogenous axonemal cAPK-type protein kinase inhibits dynein-driven microtubule sliding in spoke-deficient axonemes. The kinase is likely to reside in close association with its substrate(s), and the substrate targets are not exclusively localized to the central pair, radial spokes, dynein regulatory complex, or outer dynein arms. The results are consistent with a model in which the radial spokes regulate dynein activity through suppression of a cAMP- mediated mechanism.  相似文献   

10.
Aimes RT  Hemmer W  Taylor SS 《Biochemistry》2000,39(28):8325-8332
The glycine-rich loop, one of the most important motifs in the conserved protein kinase catalytic core, embraces the entire nucleotide, is very mobile, and is exquisitely sensitive to what occupies the active site cleft. Of the three conserved glycines [G(50)TG(52)SFG(55) in cAMP-dependent protein kinase (cAPK)], Gly(52) is the most important for catalysis because it allows the backbone amide of Ser(53) at the tip of the loop to hydrogen bond to the gamma-phosphate of ATP [Grant, B. D. et al. (1998) Biochemistry 37, 7708]. The structural model of the catalytic subunit:ATP:PKI((5)(-)(24)) (heat-stable protein kinase inhibitor) ternary complex in the closed conformation suggests that Ser(53) also might be essential for stabilization of the peptide substrate-enzyme complex via a hydrogen bond between the P-site carbonyl in PKI and the Ser(53) side-chain hydroxyl [Bossemeyer, D. et al. (1993) EMBO J. 12, 849]. To address the importance of the Ser(53) side chain in catalysis, inhibition, and P-site specificity, Ser(53) was replaced with threonine, glycine, and proline. Removal of the side chain (i.e., mutation to glycine) had no effect on the steady-state phosphorylation of a peptide substrate (LRRASLG) or on the interaction with physiological inhibitors, including the type-I and -II regulatory subunits and PKI. However, this mutation did affect the P-site specificity; the glycine mutant can more readily phosphorylate a P-site threonine in a peptide substrate (5-6-fold better than wild-type). The proline mutant is compromised catalytically with altered k(cat) and K(m) for both peptide and ATP and with altered sensitivity to both regulatory subunits and PKI. Steric constraints as well as restricted flexibility could account for these effects. These combined results demonstrate that while the backbone amide of Ser(53) may be required for efficient catalysis, the side chain is not.  相似文献   

11.
Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein of cAMP-dependent protein kinase (Cheng, H.-C., Kemp, B. E., Pearson, R. B., Smith, A. J., Misconi, L., Van Patten, S. M., and Walsh, D. A. (1986) J. Biol. Chem. 261, 989-992) were tested as inhibitors of cGMP-dependent protein kinase. The peptides themselves were not substrates. cGMP-dependent protein kinase activity was assayed using histone H2B and two synthetic peptide substrates. Consistent with previous observations of other peptide inhibitors of this enzyme (Glass, D. B. (1983) Biochem. J. 213, 159-164), the inhibitory peptides had no effect on the phosphorylation of histone H2B, but they competitively inhibited cGMP-dependent phosphorylation of the two peptide substrates. The parent inhibitor peptide, PKI(5-24)amide, and a series of analogs had Ki (or IC50) values for cGMP-dependent protein kinase in the range of 15-190 microM. In contrast to their effects on the cAMP-dependent protein kinase, the inhibitory peptides were substantially less potent with cGMP-dependent protein kinase, and potency was reduced by the presence of the NH2-terminal residues (residues 5-13). We conclude that the two protein kinases share a recognition of the basic amino acid cluster within the pseudosubstrate region of the peptide, but that the cGMP-dependent protein kinase does not recognize additional NH2-terminal determinants that make the inhibitor protein extremely potent toward the cAMP-dependent enzyme. Even- when tested at high concentrations and with peptide substrates, the native inhibitor protein did not inhibit cGMP-dependent protein kinase under assay conditions in which the peptides derived from it were inhibitory. Thus, the native inhibitor protein appears to have structural features which block interaction with the cGMP-dependent enzyme and enhance its selectivity for cAMP-dependent protein kinase.  相似文献   

12.
Peptide 1, Leu-Arg-Arg-Ala-Ser-Leu-Gly, is an excellent substrate for cAMP-dependent protein kinase. While the importance of both arginines for effective enzyme-substrate interactions has been shown, it has not been known whether the kinase will catalyze phosphorylation of substrates which contain other than peptide bonds. We report that analogs of peptide 1 which contain depsi linkages replacing selected amide bonds are good protein kinase substrates. Therefore, with the possible exception of the serine amide proton, no peptide 1 amide hydrogens are involved in peptide-peptide or peptide-enzyme hydrogen bonding crucial to defining the high substrate activity of this peptide. It is thus unlikely that peptide 1 is bound by the protein kinase while in an alpha-helical or a beta-turn structure. Three peptides were found to be very poor substrates for protein kinase, those containing N-methyl amino acids in place of Ser5 or Leu6 and a peptide containing Pro in place of Leu6. These peptides are poor substrates for the enzyme possibly because they are unable to adopt a conformation necessary for catalysis of phosphoryl group transfer to occur or due to steric effects in the enzymatic active site.  相似文献   

13.
The COOH-terminal residue in peptide analogs of the phosphorylation site sequence in smooth muscle myosin light chains, Lys11-Lys12-Arg13-Ala-Ala-Arg16-Ala-Thr-Ser19 -(P)Asn20-Val21-Phe22-Ala23, were shown to have a strong influence on the kinetics of peptide phosphorylation. The peptides 11-19, 11-20, 11-21, 11-22, and 11-23 were all phosphorylated by the myosin light chain kinase with similar apparent Km values in the range 11-17 microM. The Vmax varied 40-fold, with the peptides 11-19, 11-20, 11-21, 11-22, and 11-23 having Vmax values of 0.035, 0.045, 0.32, 1.74, and 1.43 mumol X min-1 X mg-1 respectively. These results indicated that Ala23 was not essential whereas Phe22 and Val21 had a strong influence on the Vmax of peptide phosphorylation. This series of peptides competitively inhibited myosin light chain phosphorylation with Ki values similar to their respective Km values. Peptide 11-19 had a Ki value of approximately 10 microM and a Vmax less than 0.1% of the value with myosin light chains and is therefore an effective inhibitor of the smooth muscle myosin kinase.  相似文献   

14.
The purpose of this work was to study the conformation of cyclic peptide 1, cyclo(1,12)-Pen1-Ile2-Thr3-Asp4-Gly5-Glu6-Ala7- Thr8-Asp9-Ser10-Gly11-Cys12-OH, derived from the I-domain of the LFA-1 alpha-subunit. We found that cyclic peptide 1 can bind to the D1-domain of ICAM-1 and inhibit ICAM-1/LFA-1-mediated homotypic and heterotypic T-cell adhesion. To understand the bioactive conformation and binding requirements for cyclic peptide 1, its solution structure was studied using NMR, CD, and molecular dynamics simulations. Furthermore, possible binding properties between the cyclic peptide and the D1-domain of ICAM-1 were evaluated using docking experiments. This cyclic peptide has a stable betaII -turn at Asp4- Gly5-Glu6-Ala7 and a betaI-turn at Pen1-Ile2-Thr3-Asp4; a less stable betaV-turn is found at the C-terminal region. The beta-turn at Asp4- Gly5-Glu6-Ala7 was also found in the X-ray structure of the I-domain of LFA-1. Our CD studies showed that the peptide binds to calcium/magnesium and forms a 1:1 (peptide:calcium/magnesium) complex with low cation concentrations and multiple types of complexes with higher cation concentrations. Binding to divalent cations causes a conformational change in peptide 1; this is consistent with our previous study that binding of peptide 1 to ICAM-1 was influenced by divalent cations. Docking studies show the interaction between cyclic peptide 1 and the D1-domain of ICAM-1; it indicates that the Ile2-Thr3-Asp4-Gly4-Glu6-Ala7-Thr8 sequence interacts with the F and C strands of the D1-domain. Finally, these studies will help us design a new generation of selective peptides that may bind better to the D1-domain of ICAM-1.  相似文献   

15.
MUC1 mucin is a large transmembrane glycoprotein, the extracellular domain of which is formed by a repeating 20 amino acid sequence, GVTSAPDTRPAPGSTAPPAH. In normal breast epithelial cells, the extracellular domain is densely covered with highly branched complex carbohydrate structures. However, in neoplastic breast tissue, the extracellular domain is under-glycosylated, resulting in the exposure of a highly immunogenic core peptide epitope (PDTRP in bold above), as well as in the exposure of normally cryptic core Tn (GalNAc), STn (sialyl alpha2-6 GalNAc) and TF (Gal beta1-3 GalNAc) carbohydrates. Here, we report the results of 1H NMR structural studies, natural abundance 13C NMR relaxation measurements and distance-restrained MD simulations designed to probe the structural and dynamical effects of Tn-glycosylation within the PDTRP core peptide epitope. Two synthetic peptides were studied: a nine-residue MUC1 peptide of the sequence, Thr1-Ser2-Ala3-Pro4-Asp5-Thr6-Arg7-Pro8-Ala9, and a Tn-glycosylated version of this peptide, Thr1-Ser2-Ala3-Pro4-Asp5-Thr6(alphaGalNAc)-Arg7-Pro8-Ala9. The results of these studies show that a type I beta-turn conformation is adopted by residues PDTR within the PDTRP region of the unglycosylated MUC1 sequence. The existence of a similar beta-turn within the PDTRP core peptide epitope of the under-glycosylated cancer-associated MUC1 mucin protein might explain the immunodominance of this region in vivo, as the presence of defined secondary structure within peptide epitope regions has been correlated with increased immunogenicity in other systems. Our results have also shown that Tn glycosylation at the central threonine within the PDTRP core epitope region shifts the conformational equilibrium away from the type I beta-turn conformation and toward a more rigid and extended state. The significance of these results are discussed in relation to the possible roles that peptide epitope secondary structure and glycosylation state may play in MUC1 tumor immunogenicity.  相似文献   

16.
Two peptide analogs of Ca2+/calmodulin-dependent protein kinase II (CaMK-(peptides)) were synthesized and used to probe interactions of the various regulatory domains of the kinase. CaMK-(281-289) contained only Thr286, the major Ca2+-dependent autophosphorylation site of the kinase (Schworer, C. M., Colbran, R. J., Keefer, J. R. & Soderling, T. R. (1988) J. Biol. Chem. 263, 13486-13489), whereas CaMK-(281-309) contained Thr286 together with the previously identified calmodulin binding and inhibitory domains (Payne, M. E., Fong, Y.-L., Ono, T., Colbran, R. J., Kemp, B. E., Soderling, T. R. & Means, A. R. (1988) J. Biol. Chem. 263, 7190-7195). CaMK-(281-309), but not CaMK-(281-289), bound calmodulin and was a potent inhibitor (IC50 = 0.88 +/- 0.7 microM using 20 microM syntide-2) of exogenous substrate (syntide-2 or glycogen synthase) phosphorylation by a completely Ca2+/calmodulin-independent form of the kinase generated by limited proteolysis with chymotrypsin. This inhibition was completely relieved by the inclusion of Ca2+/calmodulin in excess of CaMK-(281-309) in the assays. CaMK-(281-289) was a good substrate (Km = 11 microM; Vmax = 3.15 mumol/min/mg) for the proteolyzed kinase whereas phosphorylation of CaMK-(281-309) showed nonlinear Michaelis-Menton kinetics, with maximal phosphorylation (0.1 mumol/min/mg) at 20 microM and decreased phosphorylation at higher concentrations. The addition of Ca2+/calmodulin to assays stimulated the phosphorylation of CaMK-(281-309) by the proteolyzed kinase approximately 10-fold but did not affect the phosphorylation of CaMK-(281-289). A model for the regulation of Ca2+/calmodulin-dependent protein kinase II is proposed based on the above observations and results from other laboratories.  相似文献   

17.
Substrate specificity of a multifunctional calmodulin-dependent protein kinase   总被引:31,自引:0,他引:31  
The substrate specificity of the multifunctional calmodulin-dependent protein kinase from skeletal muscle has been studied using a series of synthetic peptide analogs. The enzyme phosphorylated a synthetic peptide corresponding to the NH2-terminal 10 residues of glycogen synthase, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ser-Ser-NH2, stoichiometrically at Ser-7, the same residue phosphorylated in the parent protein. The synthetic peptide was phosphorylated with a Vmax of 12.5 mumol X min-1 X mg-1 and an apparent Km of 7.5 microM compared to values of 1.2 mumol X min-1 X mg-1 and 3.1 microM, respectively, for glycogen synthase. Similarly, a synthetic peptide corresponding to the NH2-terminal 23 residues of smooth muscle myosin light chain was readily phosphorylated on Ser-19 with a Km of 4 microM and a Vmax of 5.4 mumol X min-1 X mg-1. The importance of the arginine 3 residues NH2-terminal to the phosphorylated serine in each of these peptides was evident from experiments in which this arginine was substituted by either leucine or alanine, as well as from experiments in which its position in the myosin light chain sequence was varied. Positioning arginine 16 at residues 14 or 17 abolished phosphorylation, while location at residue 15 not only decreased Vmax 14-fold but switched the major site of phosphorylation from Ser-19 to Thr-18. It is concluded that the sequence Arg-X-Y-Ser(Thr) represents the minimum specificity determinant for the multifunctional calmodulin-dependent protein kinases. Studies with various synthetic peptide substrates and their analogs revealed that the specificity determinants of the multifunctional calmodulin-dependent protein kinase were distinct from several other "arginine-requiring" protein kinases.  相似文献   

18.
Ung MU  Lu B  McCammon JA 《Biopolymers》2006,81(6):428-439
The active site of the mammalian cAMP-dependent protein kinase catalytic subunit (C-subunit) has a cluster of nonconserved acidic residues-Glu127, Glu170, Glu203, Glu230, and Asp241-that are crucial for substrate recognition and binding. Studies have shown that the Glu230 to Gln mutant (E230Q) of the enzyme has physical properties similar to the wild-type enzyme and has decreased affinity for a short peptide substrate, Kemptide. However, recent experiments intended to crystallize ternary complex of the E230Q mutant with MgATP and protein kinase inhibitor (PKI) could only obtain crystals of the apo-enzyme of E230Q mutant. To deduce the possible mechanism that prevented ternary complex formation, we used the relaxed-complex method (Lin, J.-H., et al. J Am Chem Soc 2002, 24, 5632-5633) to study PKI binding to the E230Q mutant C-subunit. In the E230Q mutant, we observed local structural changes of the peptide binding site that correlated closely to the reduced PKI affinity. The structural changes occurred in the F-to-G helix loop and appeared to hinder PKI binding. Reduced electrostatic potential repulsion among Asp241 from the helix loop section and the other acidic residues in the peptide binding site appear to be responsible for the structural change.  相似文献   

19.
cAMP-dependent protein kinase mediates a variety of cellular responses in most eukaryotic cells. Many of these responses are cytoplasmic, whereas others appear to require nuclear localization of the catalytic subunit. In order to understand further the molecular basis for subcellular localization of the catalytic subunit, the effect of the heat stable protein kinase inhibitor (PKI) was investigated. The subcellular localization of the catalytic (C) subunit was determined both in the presence and absence of PKI, by microinjecting fluorescently labeled C subunit into single living cells. When injected alone, a significant fraction of the dissociated C subunit localized to the nucleus. When coin-injected with an excess of PKI, little of the C subunit localized to the nucleus, suggesting that accumulation of catalytic subunit in the nucleus requires either enzymatic activity or a nuclear localization signal. Inactivation of the catalytic subunit in vitro by treatment with N-ethylmaleimide did not prevent localization in the nucleus, indicating that enzymatic activity was not a prerequisite for nuclear localization. In an effort to search for a specific signal that might mediate nuclear localization, a complex of the catalytic subunit with a 20-residue inhibitory peptide derived from PKI (PKI(5-24)) was microinjected. In contrast to intact PKI, the peptide was not sufficient to block nuclear accumulation. In the presence of PKI(5-24), the C subunit localized to the nucleus in a fashion analogous to that of dissociated, active C subunit despite evidence of no catalytic activity in situ. Thus, nuclear localization of the C subunit appears to be independent of enzymatic activity but most likely dependent upon a signal. The signal is apparently masked by both the regulatory subunit and PKI but not by the inhibitory peptide.  相似文献   

20.
The dodecapepetide sequence R-L-C-R-I-V-V-I-R-V-C-R with a disulfide bridge between the cysteine residues found in bovine neutrophils was synthesized by solid-phase procedures. Its antimicrobial activity against oral microorganisms such as Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Streptococcus mutans, and Streptococcus gordonii was examined, and its structural features were examined by CD and determined by two-dimensional (2D) nmr. The strains P. gingivalis (W50 and 381), A. actinomycetemcomitans (Y4 and 67), S. gordonii (DL1), and S. mutans (GS5) are found to be highly sensitive to this peptide at 2-2.5 microM concentrations, suggesting that the dodecapeptide is a potent antibiotic for oral pathogens. The weak negative n-sigma* band observed at approximately 265-270 nm in the CD spectra of this peptide provides evidence for the presence of a disulfide bridge. The negative n-pi* band at approximately 200 nm and the positive pi-pi* band at 185 nm suggest a folded structure for this peptide. The negative n-pi* shifts from 200 to 206 nm with an increase in intensity in dipalmitoylphosphotidylcholine vesicles, suggesting that the peptide might associate to form higher order aggregates in lipid medium. The assignment of backbone and side-chain proton resonances has been accomplished by the combined analysis of 2D total correlated and nuclear Overhauser effect spectroscopy. The temperature dependence of amide NH chemical shifts and (1)H-(2)H exchange effect on amide NH resonances indicate the involvement of amide NH groups of Cys3, Ile5, Ile8, Val10, and Arg12 in intramolecular hydrogen bonding. The coupling constant (J(NH-C(alpha)H)) values, the set of medium-, short-, and long-range nuclear Overhauser effects, and the results of restrained structure calculation using the distance geometry algorithm for nmr applications provide evidence for a folded, loop-like structure with a type I (III) beta-turn involving Ile5, Val6, Val7, and Ile8, and two antiparallel beta-strands involving the N-terminal Arg1, Leu2, Cys3, and Val4 and the C-terminal Arg9, Val10, Cys11, and Arg12 residues. The structure of the dodecapeptide mimics the amphiphilic structure of large 30-35 residue defensins and the peptide appears to exhibit similar antimicrobial potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号