首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Mitochondrial morphology and dynamics were investigated during the onset of cell death in Arabidopsis thaliana. Cell death was induced by either chemical (reactive oxygen species (ROS)) or physical (heat) shock. Changes in mitochondrial morphology in leaf tissue, or isolated protoplasts, each expressing mitochondrial-targeted green fluorescent protein (GFP), were observed by epifluorescence microscopy, and quantified. Chemical induction of ROS production, or a mild heat shock, caused a rapid and consistent change in mitochondrial morphology (termed the mitochondrial morphology transition) that preceded cell death. Treatment of protoplasts with a cell-permeable superoxide dismutase analogue, TEMPOL, blocked this morphology change. Incubation of protoplasts in micromolar concentrations of the calcium channel-blocker lanthanum chloride, or the permeability transition pore inhibitor cyclosporin A, prevented both the mitochondrial morphology transition and subsequent cell death. It is concluded that the observed mitochondrial morphology transition is an early and specific indicator of cell death and is a necessary component of the cell death process.  相似文献   

2.
During the aging process, an accumulation of non-heme iron disrupts cellular homeostasis and contributes to the mitochondrial dysfunction typical of various neuromuscular degenerative diseases. Few studies have investigated the effects of iron accumulation on mitochondrial integrity and function in skeletal muscle and liver tissue. Thus, we isolated liver mitochondria (LM), as well as quadriceps-derived subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), from male Fischer 344 x Brown Norway rats at 8, 18, 29 and 37 months of age. Non-heme iron content in SSM, IFM and LM was significantly higher with age, reaching a maximum at 37 months of age. The mitochondrial permeability transition pore (mPTP) was more susceptible to the opening in aged mitochondria containing high levels of iron (i.e. SSM and LM) compared to IFM. Furthermore, mitochondrial RNA oxidation increased significantly with age in SSM and LM, but not in IFM. Levels of mitochondrial RNA oxidation in SSM and LM correlated positively with levels of mitochondrial iron, whereas a significant negative correlation was observed between the maximum Ca(2+) amounts needed to induce mPTP opening and iron contents in SSM, IFM and LM. Overall, our data suggest that age-dependent accumulation of mitochondrial iron may increase mitochondrial dysfunction and oxidative damage,thereby enhancing the susceptibility to apoptosis.  相似文献   

3.
葛根素抗心肌细胞过氧化氢损伤的线粒体相关机制   总被引:1,自引:0,他引:1  
目的:探讨葛根素(puerarin,Pue)预处理抗过氧化氢(H2O2)应激损伤的作用是否与线粒体渗透性转换孔和/或线粒体钙激活钾通道有关。方法:采用酶解分离大鼠心肌细胞模型,台盼蓝拒染法测定心肌细胞存活率;Rhodamine123孵育测定线粒体膜电位值,分离线粒体测定mPTP孔开放程度。结果:与H2O2应激组相比,Pue(0.24mmol/L)预处理5min可明显对抗H2O2应激引起的心肌细胞存活率的降低,线粒体钙激活钾通道阻断剂paxilline(Pax,1μmol/L,预处理30min)、线粒体渗透性转换孔开放剂atractyloside(20μmol/L,预处理20min)或PKC抑制剂chelerythrine(5μmol/L,预处理30min)可拮抗Pue的作用。Pue预处理或钙激活钾通道开放剂NS1619(10μmol/L,10min)都明显减弱H2O2应激引起的线粒体膜电位的去极化,线粒体渗透性转换孔开放剂atractyloside能明显减弱Pue的作用。在分离心肌线粒体模型上,Pue(0.24mmol/L,5min)显著减弱CaCl2诱导的线粒体在A520处吸光度降低,Pax(1μmol/L,5min)可拮抗Pue的作用。结论:在大鼠分离心肌细胞模型或分离线粒体模型上,Pue预处理具有抗过氧化氢应激损伤的作用,这种保护作用可能与其抑制线粒体渗透性转换孔的开放和促进线粒体钙激活钾通道的开放有关。  相似文献   

4.
Mitochondrial permeability transition occurs through a Ca2+-dependent opening of atransmembrane pore, whose identity has been attributed to that of the adenine nucleotide translocase(ANT). In this work, we induced permeability transition by adding 0.5 M carboxyatractyloside.The process was evaluated analyzing Ca2+ efflux, a drop in transmembrane electric gradient,and swelling. We found that the amphiphyllic cations octylguanidine and octylamine, at theconcentration of 100 M, inhibited, almost completely, nonspecific membrane permeability.Hexylguanidine, hexylamine, as well as guanidine chloride and hydroxylamine failed to doso. The inhibition was reversed after the addition of 40 mM Li+, Na+ K+,Rb+, or Cs+; K+ wasthe most effective. We propose that the positive charge of the amines interact with negativecharges of membrane proteins, more likely the ADP/ATP carrier, while the alkyl chain penetratesinto the hydrophobic milieu of the inner membrane, fixing the reagent.  相似文献   

5.
6.
7.
The involvement of the mitochondrial permeability transition pore (PTP) in the responses of mitochondria from adjuvant-induced arthritic rats to Ca(2+) addition was investigated. The respiratory activity, the Ca(2+)-induced osmotic swelling and the electrophoretic (45)Ca(2+) uptake were evaluated in the absence and in the presence of cyclosporin A (CsA), a well-known inhibitor of the mitochondrial PTP. The Ca(2+)-induced mitochondrial permeability transition (MPT) process occurred in mitochondria from arthritic rats even in the presence of a low Ca(2+) concentration. Whereas in the normal condition, the Ca(2+)-induced uncoupling of oxidative phosphorylation and osmotic swelling was observed in the presence of 10 or 20 microM Ca(2+) concentration, in the arthritic condition, these events occurred at 1.0 microM concentration. In addition, mitochondria from arthritic rats presented an impaired ability to accumulate (45)Ca(2+). All these effects were completely prevented by the administration of CsA. The results of the present study suggest that the higher sensitivity of mitochondria from arthritic rats to Ca(2+)-induced MPT may be an important factor in the pathogenesis of the arthritis disease.  相似文献   

8.
The mitochondrial permeability transition pore (PTP) is a Ca2+-dependent megachannel that plays an important role in mitochondrial physiology and cell fate. Cyclophilin D (CyPD) is a well-characterized PTP regulator, and its binding to the PTP favors pore opening. It has previously been shown that p53 physically interacts with CyPD and opens the PTP during necrosis. Accumulating studies also suggest that the F-ATP synthase contributes to the regulation and formation of the PTP. F-ATP synthase IF1 (mitochondrial ATP synthase inhibitory factor 1) is a natural inhibitor of F-ATP synthase activity; however, whether IF1 participates in the modulation of PTP opening is basically unknown. Here, we demonstrate using calcium retention capacity assay that IF1 overexpression promotes mitochondrial permeability transition via opening of the PTP. Intriguingly, we show that IF1 can interact with the p53–CyPD complex and facilitate cell death. We also demonstrate that the presence of IF1 is necessary for the formation of p53–CyPD complex. Therefore, we suggest that IF1 regulates the PTP via interaction with the p53–CyPD complex, and that IF1 is necessary for the inducing effect of p53–CyPD complex on PTP opening.  相似文献   

9.
Ammonia is a neurotoxin that predominantly affects astrocytes. Disturbed mitochondrial function and oxidative stress, factors implicated in the induction of the mitochondrial permeability transition (MPT), appear to be involved in the mechanism of ammonia neurotoxicity. We have recently shown that ammonia induces the MPT in cultured astrocytes. To elucidate the mechanisms of the MPT, we examined the role of oxidative stress and glutamine, a byproduct of ammonia metabolism. The ammonia-induced MPT was blocked by antioxidants, suggesting a causal role of oxidative stress. Direct application of glutamine (4.5-7.0 mM) to cultured astrocytes increased free radical production and induced the MPT. Treatment of astrocytes with the mitochondrial glutaminase inhibitor, 6-diazo-5-oxo-L-norleucine, completely blocked free radical formation and the MPT, suggesting that high ammonia concentrations in mitochondria resulting from glutamine hydrolysis may be responsible for the effects of glutamine. These studies suggest that oxidative stress and glutamine play major roles in the induction of the MPT associated with ammonia neurotoxicity.  相似文献   

10.
We have provided evidence that mitochondrial membrane permeability transition induced by inorganic phosphate, uncouplers or prooxidants such as t-butyl hydroperoxide and diamide is caused by a Ca2+-stimulated production of reactive oxygen species (ROS) by the respiratory chain, at the level of the coenzyme Q. The ROS attack to membrane protein thiols produces cross-linkage reactions, that may open membrane pores upon Ca2+ binding. Studies with submitochondrial particles have demonstrated that the binding of Ca2+ to these particles (possibly to cardiolipin) induces lipid lateral phase separation detected by electron paramagnetic resonance experiments exploying stearic acids spin labels. This condition leads to a disorganization of respiratory chain components, favoring ROS production and consequent protein and lipid oxidation.  相似文献   

11.
12.
The amino acid glutamate, synthesized in the mitochondria, serves multiple functions, including acting as a neurotransmitter and participating in degradative and synthetic pathways. We have previously shown that glutamate modulates the channel activity of bilayer-reconstituted voltage-dependent anion channel (VDAC). In this study, we demonstrate that glutamate also modulates the opening of the mitochondrial permeability transition pore (PTP), of which VDAC is an essential component. Glutamate inhibited PTP opening, as monitored by transient Ca2+ accumulation, mitochondrial swelling and accompanying release of cytochrome c. Exposure to L-glutamate delayed the onset of PTP opening up to 3-times longer, with an IC50 of 0.5 mM. Inhibition of PTP opening by L-glutamate is highly specific, not being mimicked by D-glutamate, L-glutamine, L-aspartate, or L-asparagine. The interaction of L-glutamate with VDAC and its inhibition of VDAC's channel activity and PTP opening suggest that glutamate may also act as an intracellular messenger in the mitochondria-mediated apoptotic pathway.  相似文献   

13.
Electrophysiology of the inner mitochondrial membrane   总被引:11,自引:0,他引:11  
The application of electrophysiological techniques to mitochondrial membranes has allowed the observation and partial characterization of several ion channels, including an ATP-sensitive K+-selective one, a high-conductance megachannel, a 107 pS anionic channel and three others studied at alkaline pH's. A reliable correlation with the results of non-electrophysiological studies has been obtained so far only for the first two cases. Activities presumed to be associated with the Ca2+ uniporter and with the adenine nucleotide translocator, as well as the presence of various other conductances have also been reported. The review summarizes the main properties of these pores and their possible relationship to permeation pathways identified in biochemical studies.  相似文献   

14.
Deguelin exhibits chemopreventive properties in animal carcinogenesis models. The mechanism underpinning the chemopreventive effects of deguelin has not been fully elucidated. However, it has been suggested that this agent reduces ornithine decarboxylase activity, and perhaps the activity of other signaling intermediates associated with tumorigenesis, by inhibiting mitochondrial bioenergetics. We sought to determine if deguelin could trigger apoptosis by inhibiting mitochondrial bioenergetics. Therefore, we compared and contrasted the effects of deguelin on cells from two human cutaneous squamous cell carcinoma cell lines (parental cells) and their respiration-deficient clones lacking mitochondrial DNA (rho0). While deguelin promoted marked apoptosis in the parental cells in a dose- and time-dependent manner, it failed to do so in the rho0 clones. Furthermore, short-term exposure to deguelin diminished oxygen consumption by the parental cells and promoted mitochondrial permeability transition as evidenced by the dissipation of mitochondrial inner transmembrane potential, reactive oxygen species production, cardiolipin peroxidation, caspase activation, and mitochondrial swelling. Mitochondrial permeability transition was not observed in the rho0 clones exposed to deguelin. These results demonstrate that deguelin induces apoptosis in skin cancer cells by inhibiting mitochondrial bioenergetics and provide a novel mechanism for the putative anticancer activity of this agent.  相似文献   

15.
目的:明确线粒体ATP敏感钾通道与钙激活钾通道对正常和缺血脑线粒体渗透性转变的作用。方法:实验采用分光光度法,在分离的线粒体上分别观察两种线粒体钾通道激动剂对正常与缺血脑线粒体肿胀的影响。结果:在正常脑线粒体,diazoxide与NSl619能有效抑制由钙诱导的线粒体氏20下降,但其效应可被atractyloside所阻断。与正常相比,缺血损伤后的脑线粒体在钙离子诱导下线粒体A520下降较快,diazoxide与NS1619仍可抑制由钙诱导的线粒体A520下降,其作用同样为atractykxside所阻断。结论:线粒体ATP敏感钾通道与钙激活钾通道激活在离体条件均具有保护脑线粒体的作用,其作用可能是通过影响线粒体通透性转变而实现。  相似文献   

16.
目的:研究心功能自然衰退过程中线拉体通透性转换孔(MPTP)开放改变规律及其相关机制.方法:检测不同月龄(3、6、9、12月龄)SD大鼠左室心功能;分离各月龄大鼠心肌线粒体,检测MPTP开放改变、线粒体Mn-SOD活性.结果:9月龄和12月龄大鼠心功能同3月龄大鼠相比均出现明显减退,表现为左室收缩压LVSP减小(P<0...  相似文献   

17.
Mitochondrial permeability transition in apoptosis and necrosis   总被引:7,自引:0,他引:7  
Apoptosis has classically been viewed as a process not involving mitochondria, whereas the implication of mitochondrial dysfunction in necrosis has been recognized for several decades. Recently, it has become clear that apoptosis implies a disruption of mitochondrial membrane intregrity that is decisive for the cell death process. Cytofluorometric methods assessing the mitochondrial membrane function and structure can be employed to demonstrate that, at least in most models of apoptosis, mitochondrial changes precede caspase and nuclease activation. Moreover, pharmacological and genetic experiments suggest that the loss of mitochondrial membrane integrity is a critical event of the apoptotic process, beyond or at the point of no return of programmed cell death. Inhibitors of the mitochondrial megachannel (= permeability transition pore) can prevent both the mitochondrial and the post-mitochondrial manifestations of apoptosis.  相似文献   

18.
One critical step of the apoptotic process is the opening of the mitochondrial permeability transition (PT) pore leading to the disruption of mitochondrial membrane integrity and to the dissipation of the inner transmembrane proton gradient (ΔΨm). The mitochondrial PT pore is a polyprotein structure which is inhibited by the apoptosis-inhibitory oncoprotein Bcl-2 and which is closely associated with the mitochondrial benzodiazepine receptor (mBzR). Here we show that PK11195, a prototypic ligand of the 18-kDa mBzR, facilitates the induction of ΔΨmdisruption and subsequent apoptosis by a number of different agents,including agonists of the glucocorticoid receptor,chemotherapeutic agents (etoposide, doxorubicin),gamma irradiation, and the proapoptotic second messenger ceramide. Whereas PK11195 itself has no cytotoxic effect, it enhances apoptosis induction by these agents. This effect is not observed for benzodiazepine diazepam, whose binding site in the mBzR differs from PK11195. PK11195 partially reverses Bcl-2 mediated inhibition of apoptosis in two different cell lines. Thus, transfection-enforced Bcl-2 overexpression confers protection against glucocorticoids and chemotherapeutic agents, and this protection is largely reversed by the addition of PK11195. This effect is observed at the level of ΔΨmdissipation as well as at the level of nuclear apoptosis. To gain insights into the site of action of PK11195, we performed experiments on isolated organelles. PK11195 reverses the Bcl-2-mediated mitochondrial retention of apoptogenic factors which cause isolated nuclei to undergo apoptosis in a cell-free system. Mitochondria from control cells, but not mitochondria from Bcl-2-overexpressing cells, readily release such apoptogenic factors in response to atractyloside, a ligand of the adenine nucleotide translocator. However, control and Bcl-2-overexpressing mitochondria respond equally well to a combination of atractyloside and PK11195. Altogether, these findings indicate that PK11195 abolishes apoptosis inhibition by Bcl-2 via a direct effect on mitochondria. Moreover, they suggest a novel strategy for enhancing the susceptibility of cells to apoptosis induction and, concomitantly, for reversing Bcl-2-mediated cytoprotection.  相似文献   

19.
线粒体双层膜的完整性是细胞存活的关键因素,其遭到破坏后会使细胞发生凋亡、焦亡或炎症。线粒体膜的破坏包括线粒体外膜通透、线粒体内膜通透、通透性转换,三者可通过调控不同的信号通路导致不同的细胞命运。然而,这些信号通路之间存在交叉关联,使得线粒体膜对细胞命运的调控错综复杂,导致人们对其机制缺乏清晰的认识。本综述首先分析了不同程度线粒体外膜通透在细胞存活、癌变或凋亡中的作用,接着讨论了线粒体内膜通透通过引发线粒体DNA释放促进炎症发生的分子机制,然后阐述了线粒体通透性转换引发焦亡的作用机制,最后总结出线粒体膜完整性影响细胞命运决策的内在关联。深入了解线粒体膜完整性调控细胞命运的分子动力学机制,有助于为癌症和神经退行性疾病的诊疗提供思路。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号