首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ganglia from Auerbach's plexus of the large intestine (caecum, appendix vermiformis, colon transversum and rectum) in man, rhesus monkey and guinea-pig are composed of nerve cells and their processes, typical Schwann cells and a vast neuropil. The neuropil consists of dendrites and axons of intrinsic nerve cell perikarya and axons of extrinsic neurons. Axonal profiles in large nerve fibre bundles are of uniform size and appearance, embedded in infoldings of Schwann cell cytoplasm and contain occasional large granular vesicles, mitochondria and neurotubules. Preterminal axons widen into vesicle filled varicosities, some of which establish synaptic contact with intrinsic nerve cell bodies.At least three different types of neuronal processes can be distinguished in the myenteric neuropil according to the size, appearance and commutual proportion of vesicles present in axonal varicosities, and their ability to accumulate exogenous 5- and 6-hydroxydopamine and 5-hydroxydopa: 1. Axonal enlargements containing a major population of small electron lucent synaptic vesicles (350–600 Å in diameter) together with a small number of membrane-bound, opaque granules (800–1,100 Å). These profiles have been identified as cholinergic axons. The boutons establish synaptic contacts with dendritic processes of intrinsic nerve cell bodies; membrane specializations are found at the preand postsynaptic sites. 2. Axonal beads of sometimes very large diameter, containing an approximately equal amount of large granular vesicles (850–1,600 Å) and small, electron lucent or faintly opaque vesicles (400–600 Å). The granular core of the large vesicles is of medium electron density and may either fill the entire vesicle or is separated from the limiting membrane by a more or less clear interspace. The fibres probably belong to intrinsic neurons, and because of the similarity of the large, membrane-bound vesicles with neurosecretory elementary granules, they have been designated p-type fibres (polypeptide fibres). The granular core of the vesicles in these fibres becomes more electron dense after treatment with 5-OH-dopa. The accumulation of an amine precursor analogue in combination with a possible storage of a polypeptide substance (or an ATP-like substance) resembles the situation in several diffusely distributed endocrine cell systems. 3. Varicosities of axons equipped with small (400–600 Å) empty or sometimes granular vesicles, medium sized (500–900 Å) vesicles with highly electron dense cores and occasional large (900–1,300 Å) granular vesicles. Pretreatment with 5-OH-dopamine increases the electron density in almost all medium-sized granular vesicles and some of the large granular vesicles; an osmiophilic core develops in some small vesicles. 6-hydroxydopamine results in degenerative changes in the varicosities of this type of neurons. Concomitantly, both catecholamine analogues markedly reduce neuronal noradrenaline in the large intestine, as demonstrated by fluorescence histochemistry and in fluorimetric determinations. The ultrastructural features of these varicosities and their reaction to 5- and 6-OH-dopamine indicate that they belong to adrenergic, sympathetic nerves. No membrane specializations could be detected at sites of close contact of the adrenergic boutons with dendrites and cell bodies of intrinsic nerve cells.Supported by grants from the Deutsche Forschungsgemeinschaft.Supported by a grant from Albert Pahlsson's Foundation, Sweden. The work was carried out within a research organization sponsored by the Swedish Medical Research Council (projects No. B70-14X-1007-05B, B70-14X-712-05, and B70-14X-56-06).  相似文献   

2.
Summary In parallel fine structural, fluorescence histochemical and biochemical experiments the effect of 6-OH-DA administered in vivo and in vitro on the adrenergic nerves in the mouse iris was studied. As seen in the electron microscope, in vivo administration of 6-OH-DA causes a selective, rapid degeneration of the adrenergic axon terminals similar to that found after axotomy, whereas the cholinergic nerves are unaffected at all time intervals studied. Already 1 hr after the injection of 6-OH-DA the axonal enlargements swell and the size of the dense core of the granular vesicles is strongly reduced. Since the NA stores are almost completely depleted at this time interval, the small core present may be due to a reaction between 6-OH-DA and the fixative. From 2–4 hr after the injection increasing numbers of axonal enlargements with a high electron density are observed in the Schwann cell cytoplasm, which later are digested and completely absent about 48–72 hr after the 6-OH-DA injection. During the following weeks adrenergic axons reappear. This time course of degeneration obtained is considerably faster than that seen after axotomy in other studies. After incubation in 6-OH-DA containing media similar changes were observed in the axonal enlargements, starting already after 30 min of incubation. At this time-point there is a considerable reduction of endogenous NA and a severe damage of the membrane pump uptake mechanism. Incubation with 6-OH-DA and subsequent rinsing for 2 hr caused marked changes, including partly swelling of axons and partly shrinking of the axons into electron dense bodies.The fluorescence histochemical and biochemical results are in good agreement with the ultrastructural studies demonstrating a rapid loss of NA from the adrenergic nerve terminals and main axons and a long lasting depletion of the NA, with a gradual recovery to 75% 6 weeks after the injection.The investigation has been supported by research grants from the Swedish Medical Research Council (14X-2295, 14X-2887 and 04X-3881) Karolinska Institutet, Magnus Bergvalls and Carl-Berthel Nathorst Stiftelser. For generous supplies of drugs we are indebted to the following companies: AB Hässle (6-OH-DA, through Dr H. Corrodi), Pfizer (Niamid®), Ciba (Serpasil®). The skilful technical assistance of Miss Bodil Flock, Mrs Waltraut Hiort and Mrs Eva Lindqvist is gratefully acknowledged.  相似文献   

3.
The uptake and retrograde transport of noradrenaline (NA) within the axons of sympathetic neurons was investigated in an in vitro system. Dissociated neurons from the sympathetic ganglia of newborn rats were cultured for 3-6 wk in the absence of non-neuronal cells in a culture dish divided into three chambers. These allowed separate access to the axonal networks and to their cell bodies of origin. [3H]NA (0.5 X 10(-6) M), added to the axon chambers, was taken up by the desmethylimipramine- and cocaine-sensitive neuronal amine uptake mechanisms, and a substantial part was rapidly transported retrogradely along the axons to the nerve cell bodies. This transport was blocked by vinblastine or colchicine. In contrast with the storage of [3H]NA in the axonal varicosities, which was totally prevented by reserpine (a drug that selectively inactivates the uptake of NA into adrenergic storage vesicles), the retrograde transport of [3H]NA was only slightly diminished by reserpine pretreatment. Electron microscopic localization of the NA analogue 5-hydroxydopamine (5-OHDA) indicated that mainly large dense-core vesicles (700-1,200-A diam) are the transport compartment involved. Whereas the majority of small and large vesicles lost their amine dense-core and were resistant to this drug. It, therefore, seems that these vesicles maintained the amine uptake and storage mechanisms characteristic for adrenergic vesicles, but have lost the sensitivity of their amine carrier for reserpine. The retrograde transport of NA and 5-OHDA probably reflects the return of used synaptic vesicle membrane to the cell body in a form that is distinct from the membranous cisternae and prelysosomal structures involved in the retrograde axonal transport of extracellular tracers.  相似文献   

4.
Summary Monoamine-containing neurons in the gut of Lampetra fluviatilis are characterized by histochemical, electron microscopical and biochemical methods. Strongly yellow fluorescent, probably serotonin-containing intrinsic neurons are found along the entire length of the intestine. Their processes aggregate to form large bundles of mainly non-terminal axons, constituting a subepithelial fibre plexus. This subepithelial, ganglion cell comprising plexus is connected to a wide-meshed subserosal plexus which has ganglion cells of different size and few varicose, single axons. Intermingled with both plexus there occur — in the anterior and middle but not in the preanal portion of the lamprey intestine — scattered green fluorescent intrinsic perikarya, emanating faintly green fluorescent, poorly varicosed axons.The formaldehyde-induced neuronal fluorophores conform to serotonin (yellow fluorescent compound), noradrenaline, and dopamine (green fluorescent substance), as revealed in microspectrofluorimetric recordings. The electron microscopical analysis of the yellow fluorescent intrinsic neurons in the terminal hindgut shows nerve cell pericarya and axons equipped with a typical population of occasional small granular and many large granular vesicles (750–1600 Å). The number and opacity of cores of the small and the osmiophilia of the cores of the large granular vesicles are significantly increased following short-term treatment with 5,6-dihydroxytryptamine. Long-term treatment with 5,6- or 5,7-dihydroxytryptamine provokes severe signs of ultrastructure impairment and eventual degeneration in the supposed serotonin-containing axons, besides indications of piling-up of organelles in the non-terminal axons due to arrest of axonal transport.Chromatography of acid extracts from the lamprey intestine, gills and kidney reveals the presence of serotonin (besides another unidentified indoleamine) and dopamine and noradrenaline in the gut, but only dopamine in the brain. The detection of serotonin, noradrenaline and dopamine in the lamprey gut is confirmed by chemical determinations.The occurrence of intrinsic serotonin-, noradrenaline- and dopamine-containing neurons in the gut of Lampetra fluviatilis deviates from the established pattern of innervation of the vertebrate intestine and is considered to be a remnant of an autonomic innervation principle common in invertebrates.Supported by grants from the Deutsche Forschungsgemeinschaft.Supported by grants from the Swedish Medical Research Council (No. 14X-712 and 14X-56.The authors are indebted to Lilan Bengtsson, Gertrude Stridsberg, Eva Svensson and Rolf Frank for skilful technical assistance.  相似文献   

5.
Summary Thyroid parafollicular cells of normocalcemic and vitamin D2-treated rats were investigated by electron microscopy and with the histochemical fluorescence technique of Hillarp and Falck.Administration of high doses of vitamin D2 caused hypercalcemia and an extensive degranulation of the parafollicular cells.The formation and storage of monoamines in granulated and degranulated parafollicular cells was investigated by fluorescence microscopy after injection of monoamine precursors (DOPA, 5-HTP), alone or in combination with Ro 4-4602, nialamide or reserpine.No fluorescence was observed in parafollicular cells of untreated rats. l-DOPA and l-5-HTP (but not the corresponding D-amino acids) were taken up by a process closely linked to the decarboxylation of the amino acids to the corresponding amines (dopamine and 5-hydroxytryptamine). Treatment with vitamin D2 did not seem to affect the formation of amines in the parafollicular cells or the formation and storage of amines in other cell systems investigated. The amine itself (dopamine) was not taken up by the parafollicular cells.In normocalcemic rats, the amine formed was retained in the cytoplasm of the parafollicular cells by a partially reserpine-resistant mechanism. The storage of amines is concluded to occur in association with the calcitonin-containing granules.In parafollicular cells of vitamin D2-treated rats, a certain amount of amine was bound in the cytoplasm in the absence of typical granules. As a considerable amount of calcitonin is known to remain in the thyroid of vitamin D2-treated rats, the present observations may indicate an association between the amine and the polypeptide hormone calcitonin, whether the latter is confined to typical granules or not.The present study was supported by grants B72-12X-3352-02 and B72-14X-2207-06B from the Swedish Medical Research Council and by grants from Magnus Bergwall's Foundation, Gustav and Majen Lundgren's Foundation, Wilhelm and Martina Lundgren's Foundation and from the Faculty of Medicine, University of Göteborg, Sweden. For skilful technical assistance we are indebted to Mrs. Kirsten Collin and Mr. Pär-Anders Larsson.  相似文献   

6.
In the green alga Scenedesmus acutus, Golgi bodies are located near the nucleus and supplied with transition vesicles that bud from the outer nuclear envelope membrane. Using this alga, we have shown previously that thiamine pyrophosphatase (TPPase), a marker enzyme of Golgi bodies, migrates in vesicles from the Golgi bodies to the ER via the nuclear envelope in the presence of BFA (Noguchi et al., Protoplasma 201, 202-212, 1998). In this study we demonstrate that both cytochalasin B and oryzalin (microtubule-disrupting agent) inhibit the BFA-induced migration of TPPase from Golgi bodies to the nuclear envelope. However, only actin filaments--not microtubules--can be detected between the nuclear envelope and the Golgi bodies in both BFA-treated and untreated cells. These observations suggest that actin filaments mediate the BFA-induced retrograde transport of vesicles. This mechanism differs from that found in mammalian cells, in which microtubules mediate BFA-induced retrograde transport by the elongation of membrane tubules from the Golgi cisternae. We also discuss the non-participation of the cytoskeleton in anterograde transport from the nuclear envelope to the Golgi bodies.  相似文献   

7.
Summary Evidence has been obtained by electron microscopy of a direct cytotoxic effect of intraventricularly administered 5,6-dihydroxytryptamine (5,6-DHT) on unmyelinated axons in the rat brain. Ultrastructural signs of axonal damage were observed in areas rich in indolamine nerve terminals as early as 2 hrs after injection. By 6–24 hrs, characteristic and more dramatic signs of degeneration developed, involving coalescence of all axonal constituents—often in combination with a uniform osmiophilic impregnation of the axoplasm—accompanied by engulfment of the dystrophic structures by glial processes. During the next five days, the degenerating axons and axon terminals appeared to be removed by glial cell phagocytosis, whose equivalents were the inclusion of axonal residues into membrane-bound lysosome-like bodies. Concomitantly, there was a progressively increasing number of extremely large and dilated axons in all regions analysed. These axonal swellings, which have an ultramorphology similar to that of dilated stumps of mechanically severed monoamine axons, correspond most probably to proximal, dilated portions of drug-damaged axons.The present results, in combination with biochemical and fluorescence microscopical data, indicate that within a proper dose range the 5,6-DHT-induced degeneration is largely restricted to indolamine axons and axon terminals. However, unselective effects on other unmyelinated axons, on myelin, and on glial cells were observed in narrow subependymal zones close to the lateral ventricles, i.e. close to the injection cannula.Supported by grants from the Deutsche Forschungsgemeinschaft.Supported by grants from the National Institutes of Health, USPHS (NS-06701-06) and from the Swedish Medical Research Council (grants No. B72-14X-712-07B and B72-14X-56-08B).  相似文献   

8.
Summary The turnover ofl-5-HTP,d-5-HTP and 5-HT in the exocrine pancreas have been studied by means of the fluorescence method ofFalck andHillarp. l- andd-5-HTP are easily taken up by the acinar cells, whereas 5-HT seems to pass into the cells only to a minor extent. After the administration ofl-5-HTP (and in some cases after 5-HT administration), specific fluorescence is seen in the form of apically located granules (probably identical with the zymogen granules) for a short period, which is prolonged, if the animals are pretreated with a MAO inhibitor. Decarboxylase inhibition prevents the appearance of these fluorescent granules. Administration ofd-5-HTP does not give rise to this granular fluorescence but to a diffuse fluorescence throughout the cells. Thus, there are reasons to assume that the granular fluorescence derives from 5-HT. The results obtained in this work correspond well with those from a similar study withl-DOPA and some of its analogues.abbreviations DOPA 3,4-dihydroxyphenylalanine - DA dopamine - NA noradrenaline - A adrenaline - 5-HTP 5-hydroxytryptophan - 5-HT 5-hydroxytryptamine - MAO monoamine oxidase This work was supported by grants from the Swedish Medical Research Council (B68-12X-712-03B and B68-14X-56-04B), the United States Public Health Service (06701-02) and the Faculty of Medicine, University of Lund, Lund, Sweden.  相似文献   

9.
Summary Intraocular injection of colchicine in doses which do not affect the protein synthesis in the retina has profound effects on the axonal transport of protein in the retinal ganglion cells of the rabbit. Rapid axonal transport in these cells is completely inhibited after treatment with relatively low amounts of colchicine. In contrast to this, a certain fraction of the slow axonal transport is resistant to colchicine treatment. Colchicine in doses which completely inhibits fast axonal transport caused discrete morphological changes in the perikaryon and in the axon of the retinal ganglion cell. No disappearance of microtubules and no general proliferation of neurofilaments was observed in the perikaryon of the retinal ganglion cells. There was a slight or moderate increase in the number of filaments in the intra-retinal part of the axons of the retinal ganglion cells.This work has been supported by grants from the Swedish Medical Research Council (B71-12X-2543-03, B71-13X-2226-05A) and the Swedish National Cancer Society (265-B70-02X).  相似文献   

10.
Summary The nerve supply to the iridic melanophores of the rat was studied with the electron microscope. The adrenergic and cholinergic terminals were identified with the aid of 5-hydroxydopamine, which produces dense-cored 400–800 Å synaptic vesicles in adrenergic axon varicosities, whereas the synaptic vesicles of cholinergic axons remain empty. It was found that both adrenergic and cholinergic terminal axons come in close apposition (200–250 Å) with the melanophores. The appositions have the same appearance as synapses in peripheral tissues. It seems likely that the murine iridic melanophores have a double innervation, although its functional significance is obscure.This work has been supported by grants from Lunds Läkarsällskap, the Swedish Medical Research Council (Project no. B69-14X-2321-02 and B69-14X-712-04C) and NIH (06701-02).  相似文献   

11.
Summary Efferent arterioles leaving juxtamedullary glomeruli in the kidneys of rats have a media comprized of a layer of closely packed smooth muscle cells. This muscle coat continues along the length of the efferent arterioles and arteriolae rectae to a level deep in the outer medullary zone, where smooth muscle cells are gradually replaced by pericytes characteristic of the non-muscular arterial vasa recta.Bundles of unmyelinated nerve fibers accompany the efferent arterioles and arteriolae rectae to the level where smooth muscle is no longer found in the media of the latter vessels. Close associations between smooth muscle cells and axons are marked by axonal dilatations which lie adjacent to muscle cells. There is no modification of either the axonal or the muscle cell membrane at these sites, nor do axons penetrate the basal lamina of muscle fibers. Large granular vesicles and small granular and agranular vesicles occur in most axons at the dilations, although the granular material in the small granular vesicles is usually sparse and in dispersed form.The nerves are considered to be primarily adrenergic because of strong catecholamine fluorescence demonstrated by other workers in association with the efferent arteries and arteriolae rectae. Poor definition of the small granular vesicles, which are commonly supposed to contain catecholamines, is ascribed to extraction of catecholamines during processing, discharge of granules prior to fixation, or inability of these axons to store catecholamines in quantity under physiological conditions.Financial assistance during the progress of this work was obtained from the Medical Research Council of Canada.  相似文献   

12.
Summary The lower spinal cord including the caudal neurosecretory system of the pike (Esox lucius) was investigated by means of light and electron microscopy and also with the fluorescence histochemical method of Falck and Hillarp for the visualization of monoamines. A system of perikarya displaying a specific green fluorescence of remarkably high intensity is disclosed in the basal part of the ventrolateral and lateral ependymal lining of the central canal. The area corresponding to the upper half of the urophysis has most cells; their number decreases caudally and cranially. A considerable number of their beaded neurites reach the neurosecretory neurons by different routes but are only occasionally present in the actual neurohemal region. An intensely fluorescent dendritic process is sometimes observed terminating with a bulbous enlargement at the ependymal surface in the central canal. Besides small, electron lucid vesicles in the terminal parts of the axons, the neurons contain numerous large dense-core vesicles which can apparently take up and store 5-hydroxydopa (5-OH-dopa) and 5-hydroxydopamine (5-OH-DA). These neurons are thought to be adrenergic and to contain a primary catecholamine, possibly noradrenaline.The varicosities of the adrenergic terminals are repeatedly observed contiguous to some of the neurosecretory axons, the membrane distance at places of contacts generally ranging from 150–200 Å. Another type of nerve terminals that contain only small empty vesicles, also after pretreatment with 5-OH-dopa or 5-OH-DA, are frequent among the neurosecretory neurons. These axons establish synaptic contacts with membrane thickenings on most of the neurosecretory neurons. Thus it seems that the neurosecretory neurons are innervated by neurons morphologically similar to cholinergic neurons and that part of them receive an adrenergic innervation, which supports the view hat the caudal neurosecretory cells do not constitute a functionally homogeneous population.Supported by the Deutsche Forschungsgemeinschaft and the Joachim-Jungius Gesellschaft zur Förderung der Wissenschaften, Hamburg.Supported by the Swedish Natural Research Council (No. 99-35). This work was in part carried out within a research organization sponsored by the Swedish Medical Research Council (Projects No. B70-14X-56-06 and B70-14X-712-05).Supported by the Deutsche Forschungsgemeinschaft and USPHS Research Grant TW 00295-02.  相似文献   

13.
Axons from rats treated with the neurotoxic agent beta,beta'-iminodipropionitrile (IDPN) were examined by quick-freeze, deep-etch electron microscopy. Microtubules formed bundles in the central region of the axons, whereas neurofilaments were segregated to the periphery. Most membrane-bounded organelles, presumably including those involved in rapid axonal transport, were associated with the microtubule domain. The high resolution provided by quick-freeze, deep-etch electron microscopy revealed that the microtubules were coated with an extensive network of fine strands that served both to cross-link the microtubules and to interconnect them with the membrane-bounded organelles. The strands were decorated with granular materials and were irregular in dimension. They appeared either singly or as an extensive anastomosing network in fresh axons. The microtubule-associated strands were observed in fresh, saponin-extracted, or aldehyde-fixed tissue. To explore further the identity of the microtubule-associated strands, microtubules purified from brain tissue and containing the high molecular weight microtubule-associated proteins MAP 1 and MAP 2 were examined by quick-freeze, deep-etch electron microscopy. The purified microtubules were connected by a network of strands quite similar in appearance to those observed in the IDPN axons. Control microtubule preparations consisting only of tubulin and lacking the MAPs were devoid of associated strands. To learn which of the MAPs were present in the microtubule bundles in the axon, sections of axons from IDPN-treated rats were examined by immunofluorescence microscopy using antibodies to MAP 1A, MAP 1B, MAP 2, and tubulin. Anti-MAP 2 staining was only marginally detectable in the IDPN-treated axons, consistent with earlier observations. Anti-MAP 1A and anti-MAP 1B brightly stained the IDPN-treated axons, with the staining exclusively limited to the microtubule domains. Furthermore, thin section-immunoelectron microscopy using colloidal gold-labeled second antibodies revealed that both anti-MAP 1A and anti-MAP 1B stained fuzzy filamentous structures between microtubules. In view of earlier work indicating that rapid transport is associated with the microtubule domain in the IDPN-treated axon, it now appears that MAP 1A and MAP 1B may play a role in this process. We believe that MAP 1A and MAP 1B are major components of the microtubule-associated fibrillar matrix in the axon.  相似文献   

14.
Cultured hippocampal slices prepared from apolipoprotein E (apoE)-deficient mice were exposed to an inhibitor of cathepsins B and L and then processed for an ultrastructural analysis of neuronal features for pyramidal cell bodies. Electron microscopy showed that the nuclei of pyramidal cells from treated hippocampal slices were more eccentrically located than those from untreated slices. In addition, increased numbers of vesicles were associated with the Golgi complex while microtubules were less frequent in the proximal dendrites. Consistent with previous studies in rats, treated apoE-deficient slices had increased numbers of lysosomes and multivesicular bodies. Finally, there were reductions in the number of synapses around the cell body, a finding similar to that found in the brains from Alzheimer's disease patients. These results provide ultrastructural data indicating that partial lysosomal dysfunction in apoE-deficient brains rapidly induces characteristic features of the aged human brain.  相似文献   

15.
Neurons are unique polarized cells in which the growing axon is often located up to a meter or more from the cell body. Consequently, the intracellular movement of membrane lipids and proteins between cell bodies and axons poses a special challenge. The mechanisms of lipid transport within neurons are, for the most part, unknown although lipid transport via vesicles and via cholesterol- and sphingolipid-rich 'rafts' are considered likely mechanisms. Very active anterograde and retrograde transport of lipid-containing vesicles occurs between the cell body and distal axons. However, it is becoming clear that the axon need not obtain all of its membrane constituents from the cell body. For example, the synthesis of phosphatidylcholine, the major membrane phospholipid, occurs in axons, and its synthesis at this location is required for axonal elongation. In contrast, cholesterol synthesis appears to occur only in cell bodies, and cholesterol is efficiently delivered from cell bodies to axons by anterograde transport. Cholesterol that is required for axonal growth can also be exogenously supplied from lipoproteins to axons of cultured neurons. Several studies have suggested a role for apolipoprotein E in lipid delivery for growth and regeneration of axons after a nerve injury. Alternatively, or in addition, apolipoprotein E has been proposed to be a ligand for receptors that mediate signal transduction cascades. Lipids are also transported from axons to myelin, although the importance of this process for myelination is not clear.  相似文献   

16.
Summary An ultrastructural study was made of the neurons, satellite cells and vesiculated axons of the intestinal nerve of the domestic fowl. Broad membrane-to-membrane contacts between adjacent nerve cell bodies were sometimes observed. The cell bodies and processes were not always separated from the extracellular space by a capsule of satellite cells. Following fixation using potassium permanganate, catecholamine (CA)-containing neurons in the intestinal nerve, unlike those in the lumbar parasympathetic ganglia, did not possess any small granular vesicles (SGV). Following exposure to noradrenaline, SGV could be demonstrated in the cell bodies of the juxta-ileal ganglia but not the juxta-rectal ganglia of the intestinal nerve. Non-CA axons were examined in tissue from birds that had been pretreated with 6-hydroxydopamine. Approximately one half of the non-CA axons formed axo-somatic contacts. Most of the non-CA axons contained varying proportions of small clear vesicles, large clear vesicles and large granular vescles. Statistical analysis showed that the non-CA axons could not be subdivided according to their vesicle content. CA-axons contained many SGV and were found in close apposition to neuronal somata and processes, and in the neuropil.  相似文献   

17.
Summary The innervation of the gut of the venerid bivalve mollusc, Chione stutchburyi, has been examined by fluorescence histochemistry, electron microscopy and autoradiography. Specific green and yellow varicose fluorescent fibres indicate the presence of dopaminergic and serotonergic axons, respectively. Three different types of axons can be distinguished by the morphological characteristics of their vesicles. Type I axons contain predominantly small granular vesicles (average diameter 65 nm), Type II axons possess large granular vesicles (average diameter 100 nm) and Type III axons contain large opaque vesicles (average diameter 150 nm). The granular vesicles in both Types I and II axons react positively to dichromate, and their granularity is reduced by reserpine indicating that they are monoaminergic. Only Type I axons accumulate tritiated dopamine and are selectively damaged by 6-hydroxydopamine. It is concluded that Type I axons are dopaminergic. Type II axons are serotonergic: they alone take up tritiated 5-hydroxytryptamine, and 5,7-dihydroxytryptamine selectively causes degenerative changes in these axons. Type III axons contain an unidentified neurotransmitter substance. The large opaque vesicles of these axons do not react to dichromate and are unaffected by reserpine, 6-hydroxydopamine or 5,7-dihydroxytryptamine.  相似文献   

18.
In mature neurons, tau is abundant in axons, whereas microtubule- associated protein 2 (MAP2) and MAP2C are specifically localized in dendrites. Known mechanisms involved in the compartmentalization of these cytoskeletal proteins include the differential localization of mRNA (MAP2 mRNA in dendrites, MAP2C mRNA in cell body, and Tau mRNA in proximal axon revealed by in situ hybridization) (Garner, C.C., R.P. Tucker, and A. Matus. 1988. Nature (Lond.). 336:674-677; Litman, P., J. Barg, L. Rindzooski, and I. Ginzburg. 1993. Neuron. 10:627-638), suppressed transit of MAP2 into axons (revealed by cDNA transfection into neurons) (Kanai, Y., and N. Hirokawa. 1995. Neuron. 14:421-432), and differential turnover of MAP2 in axons vs dendrites (Okabe, S., and N. Hirokawa. 1989. Proc. Natl. Acad. Sci. USA. 86:4127-4131). To investigate whether differential turnover of MAPs contributes to localization of other major MAPs in general, we microinjected biotinylated tau, MAP2C, or MAP2 into mature spinal cord neurons in culture (approximately 3 wk) and then analyzed their fates by antibiotin immunocytochemistry. Initially, each was detected in axons and dendrites, although tau persisted only in axons, whereas MAP2C and MAP2 were restricted to cell bodies and dendrites. Injected MAP2C and MAP2 bound to dendritic microtubules more firmly than to microtubules in axons, while injected tau bound to axonal microtubules more firmly than to microtubules in dendrites. Thus, beyond contributions from mRNA localization and selective axonal transport, compartmentalization of each of the three major MAPs occurs through local differential turnover.  相似文献   

19.
Summary The ultrastructure of the innervation of the anterior cerebral artery of the rat was studied in control animals and in animals after superior cervical ganglionectomy.Fluorescence histochemistry shows a periarterial network of intensely fluorescent fibers which are divided into two groups, adventitial and periadventitial. The fluorescence begins to decrease 26 hours after, and completely disappears about 32 hours after, ganglionectomy.Fine structural changes are first observed 18 hours after ganglionectomy, when the axoplasm of degenerating axons becomes electron dense. This density gradually increases up to about 32 hours. By 32 hours most axons with disintegrating axolemmas become inclusion bodies of the Schwann cells. At this stage, synaptic vesicles can still be distinguished as less dense areas, but the membrane structures of synaptic vesicles and mitochondria are difficult to recognize. The degenerating axons are gradually absorbed and by 38 hours dense, residual bodies are observed in the Schwann cells. Generally speaking, the degeneration occurs first in the adventitial fibers and then in the periadventitial fibers. The transient appearance of small, granular vesicles is noticed in axon terminals about 18 hours after denervation, although very few small, granular vesicles are seen in control tissue or at later stages of degeneration.  相似文献   

20.
Summary Tritiated noradrenaline (NA) and 5-hydroxytryptamine (5-HT) (1.5–30 C) have been injected intraventricularly into normal or reserpine-nialamide pretreated rats 1/2 to 2 hours before the killing. Various parts of the brains were freeze-dried, reacted with formaldehyde gas and embedded in paraffin or Araldite. Before application of the stripping film emulsion many sections were photographed in the fluorescence microscope in order to perform a combined histochemical and autoradiographic study of the monoamine neurons. By such an approach it was possible to demonstrate 1. that the accumulation of radioactivity in cell bodies after 3H-NA and 3H-5-HT injection is localized to catecholamine (CA) and 5-HT cell bodies respectively; 2. that injected 3H-NA and 3H-5-HT in the doses used relatively selectively are taken up into the NA and 5-HT nerve terminals respectively, since the distribution of grains in the sections follow that of the fluorescent terminals; 3. that the accumulation of silver grains only reaches the zone (200–400 ) close to the ventricles and the ventral part of the subarachnoidal space. By grain counting it was possible to estimate that the degree of concentration of radioactivity in the monoamine cell bodies was up to 4 times that in the immediate surroundings. — The Araldite sections consistently gave a better resolution in the autoradiographic picture than the paraffin sections. It is postulated that freeze-drying and plastic embedding for autoradiography will be a valuable method for the cellular demonstration of certain biogenic amines which are not easily demonstrated by the histochemical fluorescence method and of other biologically active water-soluble compounds, since diffusion will be restricted to a minimum.This work has been supported by grants from the Medical Research Council (14X-715-04A, B69-14X-530-04) and by grants from M. Bergvalls Stiftelse and E. och O. Ericssons Stiftelse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号