首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Free and membrane-bound polyribosomes were isolated from the forebrain of actively myelinating 24-day-old rats. The poly(A)+ RNA (polyadenylated RNA) extracted from both fractions was translated in vitro in reticulocyte lysates [Hall & Lim (1981) Biochem. J. 196. 327-336] in the presence or absence of a heterologous microsomal membrane fraction from dog pancreas. The rat myelin basic proteins synthesized in vitro were isolated by CM-cellulose chromatography and by immunoprecipitation with purified anti-(myelin basic protein) antibody. The large (mol.wt. 18 500) and small (mol.wt. 16 000) myelin basic proteins were translational products of poly(A)+ RNA from both free and membrane-bound polyribosomes. The identity of the myelin basic proteins was verified by analysis of peptides generated by the cathepsin D digestion of the immunoprecipitated proteins synthesized in vitro, in comparison with authentic rat myelin basic proteins. Although several other translational products of membrane-bound polyribosomal poly(A)+ RNA were modified when microsomal membranes were present during translation, molecular weights of the myelin basic proteins themselves were unchanged. The myelin basic proteins synthesized in vitro also did not differ significantly in size from the authentic myelin basic proteins, indicating that these membrane proteins are unlikely to be synthesized as substantially larger precursor molecules. The presence of the specific mRNA species on both free and membrane-bound polyribosomes is compatible with the extrinsic location of the myelin basic proteins on the cytoplasmic surface of the myelin membrane.  相似文献   

2.
Poly(A)+RNA fractions prepared from free and loosely and tightly membrane-bound polysome populations (poly(A)+RNAfree, poly(A)+RNAloose, and poly(A)+RNAtight) were used to drive cDNA in homologous and heterologous hybridization reactions. A large fraction by mass of sequences was shared among the three poly(A)+RNA populations, but shared sequences exhibited distinct frequency distributions within the different populations. 13-15 in vitro translation products of poly(A)+RNAfree and poly(A)+RNAloose detected by gel electrophoresis were shared. Most of these were produced in different relative quantities by the two RNA populations. Five or six higher mol wt polypeptides were produced by poly(A)+RNAloose that were not detected as products of either poly(A)+free or poly(A)+RNAtight. We suggest that loosely bound polysomes may not be artifactually derived as reflected in their quantitatively distinct poly(A)+RNA population. Two tightly membrane-bound RNP fractions were prepared from rat liver on the basis of their release from or retention on purified rough microsomes or a crude membrane fraction after in vitro disaggregation of polysomes with high-salt and puromycin. Homologous and heterologous hybridizations involving their poly(A)+RNA fractions revealed that a large portion by mass of sequences was shared but that these sequences exhibited distinct frequency distributions in the two fractions. The RNA fractions produced exhibited distinct frequency distributions in the two fractions. The RNA fractions produced an identical set of in vitro translation products but individual polypeptides were produced in different relative quantities. This indicates that the two RNP fractions do not arise by any random artifactual process and suggests that they may represent functionally distinct populations.  相似文献   

3.
Poly(A)-RNA fractions of dormant, dark-imbibed (non-germinating) and photoinduced (germinating) spores of Onoclea sensibilis were poor templates in the rabbit reticulocyte lysate protein synthesizing system, but the translational efficiency of poly(A)+RNA was considerably higher than that of unfractionated RNA. Poly(A)+RNA isolated from photoinduced spores had a consistently higher translational efficiency than poly(A)+RNA from dark-imbibed spores. Analysis of the translation products by one-dimensional polyacrylamide gel electrophoresis showed no qualitative differences in the mRNA populations of dormant, dark-imbibed, and photoinduced spores. However, poly(A)+RNA from dark-imbibed spores appeared to encode in vitro fewer detectable polypeptides at a reduced intensity than photoinduced spores. A DNA clone encoding the large subunit of maize ribulose bisphosphate carboxylase hybridized at strong to moderate intensity to RNA isolated from dark-imbibed spores, indicating the absence of mRNA degradation. Although alpha-amanitin did not inhibit the germination of spores, the drug prevented the elongation of the rhizoid and protonemal initial with a concomitant effect on the synthesis of poly(A)+RNA. These results are consistent with the view that some form of translational control involving stored mRNA operates during dark-imbibition and photoinduced germination of spores.  相似文献   

4.
Poly(A)+RNA-containing material was extracted from the purified cytoplasmic membranes of dormant Artemia cysts by treatment with mild detergents. Sedimentation analysis of the extracts showed a predominant poly(A)-containing fraction at 40 S, associated with about 6% of the extracted proteins. Only limited amounts of poly(A)-containing material were found in the heavier fractions. Poly(A)+RNA extracted from the 40-S fraction sedimented around 14 S. The poly(A)-containing 40-S structures could be purified by treatment with non-ionic or zwitterionic detergents followed by resedimentation in sucrose gradients in the presence or absence of detergent. When the 40-S fraction was analyzed by isopycnic centrifugation in Cs2SO4 gradients, the main part of the poly(A)-containing material banded at a density of 1.27 g/ml. Electron-microscopic examination of this fraction revealed circular or slightly bullet-shaped profiles measuring 17-26 nm. When the 40-S fraction had been submitted to mild RNAase treatment prior to density gradient centrifugation, the material was displaced towards lower density and became less distinct. Purified 40-S particles showed a complex protein pattern not very similar to that of polyribosomal poly(A)+RNA-containing particles from developing embryos, but with components in common with unfractionated membranes. The particles also contained some lipids. The experiments indicate that a major part of the membrane-bound, latent poly(A)+RNA in dormant Artemia cysts occurs in the form of relatively uniform, detergent- and Cs2SO4-resistant structures, independent of ribosomes, but intimately associated with membrane components.  相似文献   

5.
A study has been made of the developmental changes that occur in the RNA and protein moieties of mRNA-protein particles isolated from newborn and adult rat forebrain free polyribosomes. mRNA-protein particles were isolated by oligo(dT)-cellulose chromatography from salt-washed polyribosomes dissociated by puromycin/0.5 M-KCl treatment as two fractions (E1 and E2) by using Tris/HCl/NaCl eluting buffers containing respectively 25 and 50% (v/v) formamide. Isopycnic centrifugation on CsCl gradients showed that the newborn-derived fractions E1 and E2 has buoyant densities of 1.48--1.50 and 1.41--1.43 g/cm3. Adult-derived E1 and E2 fractions had corresponding values of 1.47 and 1.42 g/cm3. The pooled mRNA-protein particles from the E1 and E2 fractions after deproteinization with proteinase K sedimented with a mean size of approx. 18 S on a sucrose gradient containing 85% formamide with little differences between mRNA molecules from newborn and adult. The mean lengths of the poly(A) segments were similar, being about 130 nucleotides long. Distinct changes were found in the protein composition of the mRNA-protein particles. Fractions E1 and E2 from the newborn contained two major proteins of mol.wts. 74 000 and 52 000 with differences in the relative proportions in each fraction. In contrast, adult fractions E1 and E2 contained predominantly the larger protein. However, the adult fraction E2 contained a more heterogeneous population of minor bands of proteins, including that of mol.wt. 52 000. The findings are discussed briefly in relation to other changes in the developing brain.  相似文献   

6.
Namalwa and Raji cells, originally obtained from a Burkitt tumor biopsy, grow as continuous cell lines in vitro and contain the Epstein-Barr virus (EBV)-related nuclear antigen EBNA (B. M. Reedman and G. Klein, Int. J. Cancer 11:499-520, 1973) and RNA homologous to at least 17 and 30% of the EBV genome, respectively (S. D. Hayward and E. Kieff, J. Virol. 18:518-525, 1976; T. Orellana and E. Kieff, J. Virol. 22:321-330, 1977). The polyribosomal and polyadenylated [poly(A)+] RNA fractions of Namalwa and Raji cells are enriched for a class of viral RNA homologous to 5 to 7% of EBV DNA (Hayward and Kieff, J. Virol. 18:518-525, 1976; Orellana and Kieff, J. Virol. 22:321-330, 1977). The objective of the experiments described in this communication was to determine the location within the map of the EBV genome (D. Given and E. Kieff, J. Virol. 28:524-542, 1978) of the DNA which encodes the viral RNA in the poly(A)+ and non-polyadenylated [poly(A)-] RNA fractions of Namalwa cells. Hybridization of labeled DNA homologous to Namalwa poly(A)+ or poly(A)- RNA to blots containing EcoRI, Hsu I, or Hsu I/EcoRI double-cut fragments of EBV (B95-8) or (W91) DNA indicated that these RNAs are encoded by DNA contained primarily in the Hsu I A/EcoRI A and Hsu I B/EcoRI A fragments and, to a lesser extent, in other fragments of the EBV genome. Hybridizations of Namalwa poly(A)+ and poly(A)- RNA in solution to denatured labeled EcoRI A or B fragments, Hsu I A, B, or D fragments, and Hsu I A/EcoRI A or Bam I S fragments and of Raji polyribosomal poly(A)+ RNA to the EcoRI A fragment indicated that (i) Namalwa poly(A)+ RNA is encoded primarily by 6 x 10(5) daltons of a 2 x 10(6)-dalton segment of DNA, Bam I S, which is tandemly reiterated, approximately 10 times, in the Hsu I A/EcoRI A fragment and is encoded to a lesser extent by DNA in the Hsu I B, EcoRI B, and Hsu I D fragments. Raji polyribosomal poly(A)+ RNA is encoded by a similar fraction of the EcoRI A fragment as that which encodes Namalwa poly(A)+ RNA. (ii) The fraction of the Bam I S fragment homologous to Namalwa poly(A)- RNA is similar to the fraction homologous to Namalwa poly(A)+ RNA. However, Namalwa poly(A)- RNA is homologous to a larger fraction of the DNA in the Hsu I B, Hsu I D, and EcoRI B fragments.  相似文献   

7.
To investigate the regulation of age-related changes in albumin synthesis in the rat liver, total postnuclear RNA and polyribosomes, both membrane-bound and free, were prepared from livers of rats of different ages. By the use of a specific complementary DNA probe, the albumin mRNA sequence content was quantitated in these RNA fractions. These studies showed a specific increase in albumin mRNA sequence content in total postnuclear RNA and membrane-bound polyribosomes at between 12 and 24 months of age. Between 24 and 36 months of age, the increase in the amount of albumin mRNA in these two fractions was due only to an increase in liver weight. The increase in albumin mRNA sequence content was not found in the poly(A)+ fraction but in the RNA extracted from the void of oligo(dT)-cellulose column chromatography. The isolated polyribosomes were translated in a cell-free system to assess age-related changes in total protein and albumin synthesis due to translational control. No changes with age were found in the translational capacity of membrane-bound and free polyribosomes per RNA unit. Immunoprecipitation of the synthesized albumin in the translation products revealed that albumin synthesis in the cell-free system is not increased proportionally with the elevated albumin mRNA level between 12 and 24 months of age. This indicates that albumin mRNAs present in the livers of old rats are biologically less active than those found in younger animals.  相似文献   

8.
Total cellular RNA extracted from Rhodospirillum rubrum cultured in butyrate-containing medium under strict photosynthetic conditions to the stationary phase of growth has been fractionated on an oligodeoxythymidylic acid-cellulose column into polyadenylated [poly(A)+] RNA and poly(A)- RNA fractions. The poly(A)+ fraction was 9 to 10% of the total bulk RNA isolated. Analysis of the poly(A)+ RNA on a denaturing urea-polyacrylamide gel revealed four sharp bands of RNA distributed in heterodisperse fashion between 16S and 9S. Similar fractionation of the poly(A)- RNA resulted in the separation of 23, 16, and 5S rRNAs and 4S tRNA. Poly(A)+ fragments isolated after combined digestion with pancreatic A and T1 RNases and analysis by denaturing gel electrophoresis demonstrated two major components of 80 and 100 residues. Alkaline hydrolysis of the nuclease-resistant, purified residues showed AMP-rich nucleotides. Through the use of snake venom phosphodiesterase, poly(A) tracts were placed at the 3' end of poly(A)+ RNA. Stimulation of [3H]leucine incorporation into hot trichloroacetic acid-precipitable polypeptides in a cell-free system from wheat germ primed by the poly(A)+ RNA mixture was found to be 220-fold higher than that for poly(A)- RNAs (on a unit mass basis), a finding which demonstrated that poly(A)+ RNAs in R. rubrum are mRNAs. Gel electrophoretic analysis of the translation mixture revealed numerous 3H-labeled products including a major band (Mr, 52,000). The parent protein was precipitated by antibodies to ribulose bisphosphate carboxylase-oxygenase and comprised 6.5% of the total translation products.  相似文献   

9.
1. Free and membrane-bound polyribosomes were isolated and the associated mRNA species characterized by cell-free protein synthesis, RNA-complexity analysis and polyribosome run-off in vitro. 2. Of the recovered polyribosomal RNA 85% was associated with membrane-bound polyribosomes and contained 87--93% of the total milk-protein mRNA species as assessed by cell-free protein synthesis or RNA-complexity analysis. 3. RNA-complexity analysis showed that the abundant (milk-protein mRNA assumed) species constituted 55% of the post-nuclear poly(A)-containing RNA population, the remainder consisting of a moderately abundant population (18%) and a low abundance population (27%). Calculations suggest that each population contained up to 2, 48 and 5000 different species respectively. 4. RNA-complexity analysis of the free polyribosomal poly(A)-containing RNA demonstrated that all the species in the post-nuclear fraction were present, though in different proportions, the abundant, moderately abundant and low-abundance groups representing 38, 30 and 32% of this population. 5. RNA-complexity analysis of the membrane-bound polyribosomal poly(A)-containing RNA revealed a more limited population, 72% consisting of the abundant (milk-protein mRNA) species, and 28% a population of up to 900 RNA species. 6. Polyribosome run-off confirmed that milk-protein mRNA was associated with the membrane-bound and free polyribosomes, but represented only a small fraction of the total protein synthesized by the latter. 7. Comparative analysis of milk proteins synthesized in mRNA-directed cell-free systems, or by run-off of free and of membrane-bound polyribosomes, is consistent with the interpretation that in vivo the initiation of protein synthesis occurs on free polyribosomes, followed by the attachment of a limited population to the endoplasmic reticulum. After attachment, but before completion of peptide synthesis, the detachable N-terminal peptide sequence of one of these(pre-alpha-lactalbumin) is removed. 8. The results are discussed in terms of the mechanisms involved in the intracellular segregation of mRNA species in the lactating guinea-pig mammary gland.  相似文献   

10.
Abstract: Neuronal-enriched and glial-enriched fractions from rat cerebral cortex at 2. 5, 9, 14 and 23 days postnatally, and subcellular fractions from 2, 14 and 46 day old rat were prepared. The polypeptide composition of all fractions was analysed by sodium dodecyl sulphate (SDS) polyacrylamide gel electro-phoresis and quantified by densitometry. Fifty-nine polypeptides (mol. wts., 13,200–251,000) were resolved in the cell fractions of which the majority remained unchanged throughout postnatal development. Three polypeptides (mol. wts., 102,000, 56,000, 53,700) were found to increase in amount devel-opmentally in both cellular fractions, the latter two showing a peak in relative amount on day 14 and a subsequent decline. Three polypeptides (mol. wts., 47,000, 28,200, 17,400) were found to be common to the glial-enriched fraction as well as the myelin fraction, and all showed a developmental increase. The neuronal-enriched fraction was found to be enriched in five polypeptides of which one (mol. wt., 51,900) showed a developmental increase after ten days postnatally, the others (mol. wts., 178,700, 142,000, 109,000, 24,000) showing a decrease. In vitro incorporation of [35S]-methionine into the glial-enriched fraction was carried out, and a developmental decline was observed in the labelling of a polypeptide of 42,000 mol. wt.  相似文献   

11.
Differentially polyadenylated subpopulatons of encephalomyocarditis (EMC) viral RNA were isolated by affinity chromatography on oligodeoxythymidylic acid-cellulose. Translation of these RNA fractions in several in vitro protein-synthesizing systems, isolated from Ehrlich ascites tumor cells, demonstrated that poly(A)+EMC viral RNA was translated two to three times more efficiently than poly(A)-EMC viral RNA. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the polypetides synthesized by the in vitro system in response to the different RNAs showed no detectable differences in the size or relative amount- of the translational products. mRNA saturation curves indicated that the in vitro systems were stimulated maximally by equivalent amounts of RNA, wheter it be poly(A)-or poly(A)+ EMC viral RNA. Time course experiments showed that the differences in translatability were more pronounced late in the reaction when reinitiation was required, and that by eliminating reinitiation with high salt the apparent effect of poly(A) on translation was diminished. Together, these results suggest that poly(A) may be required for efficient initiation and reinitiation of protein synthesis in the cell-free systems. This interpretation is discussed relative to earlier data.  相似文献   

12.
Free and membrane-bound polysomes were isolated from rat liver in high yields with minimal degradation, cross-contamination, or contamination by nuclear or nonpolysomal cytoplasmic ribonucleoprotein. Poly(A)+ RNA fractions isolated from free and bound polysomal RNA (poly(A)+ RNAfree and poly(A)+ RNAbound) by oligo(dT) cellulose chromatography exhibited number-average lengths of 1,600 and 1,200 nucleotides, respectively, on formamide sucrose gradients. Poly(A)+ RNAfree and poly(A)+ RNAbound contain 9.1 +/- 0.55 and 10.7 +/- 0.50% poly(A) as measured by hybridization to [3H]poly(U) and comprise 2.37 and 1.22% of their respective polysomal RNA populations. Homologous poly(A)+ RNA-cDNA hybridizations revealed that greater than 95% of the mass of poly(A)+ RNAfree and poly(A)+ RNAbound contain nucleotide complexities of about 3.4 x 10(7) and 6.0 x 10(6), respectively. This represents about 20,000 and 5,000 poly(A)+ RNA species of average sizes. Heterologous hybridizations suggested that considerable overlap exists between poly(A)+ RNAfree and poly(A)+ RNAbound sequences that cannot be attributed to cross-contamination. This was confirmed by conducting heterologous reactions using kinetically enriched cDNA populations. Heterologous hybridizations involving poly(A)+ RNA derived from tightly bound polysomes and cDNAfree indicated tha most of the overlapping sequences are not contributed by loosely bound (high-salt releasable) polysomes. The ramifications of these findings are discussed.  相似文献   

13.
The cytoplasm of vesicular stomatitis virus (VSV)-infected BHK cells has been separated into a fraction containing the membrane-bound polysomes and the remaining supernatant fraction. Total poly(A)-containing RNA was isolated from each fraction and purified. A 17S class of VSV mRNA was found associated almost exclusively with the membrane-bound polysomes, whereas 14,5S and 12S RNAs were found mostly in the postmembrane cytoplasmic supernatant. Poly(A)-containing VSV RNA synthesized in vitro by purified virus was resolved into the same size classes. The individual RNA fractions isolated from VSV-infected cells or synthesized in vitro were translated in cell-free extracts of wheat germ, and their polypeptide products were compared by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. The corresponding in vivo and in vitro RNA fractions qualitatively direct the synthesis of the same viral polypeptides and therefore appear to contain the same mRNA species. By tryptic peptide analysis of their translation products, the in vivo VSV mRNA species have been identified. The 17S RNA, which is compartmentalized on membrane-bound polysomes, codes for a protein of molecular weight 63,000 (P-63) which is most probably a nonglycosylated form of the viral glycoprotein, G. Of the viral RNA species present in the remaining cytoplasmic supernatant, the 14.5S RNA codes almost exclusively for the N protein, whereas the 12S RNA codes predominantly for both the NS and M proteins of the virion.  相似文献   

14.
Polyadenylated messenger RNA from mouse kidney labeled in vivo exhibited a pattern of methylation distinct from that of rRNA and tRNA. After mice were given L-[methyl-3H]methionine, 4% of the polyribosomal RNA label was bound to oligo (dT)-cellulose; 20-24% of orotate- or adenine-labeled polyribosomal RNA eluted in the poly(A)+ RNA fraction under similar conditions. [3H]Methyl radioactivity was not incorporated into low molecular weight (5-5.8 S) rRNA, indicating the extent of nonmethylpurine ring labeling was negligible. [3H]Methyl-labeled poly(A)+ RNA sedimented heterogeneously in sodium dodecyl sulfate containing gradients similarly to poly(A)+ mRNA labeled with [3H]orotic acid. Based on an average molecular length of 2970 nucleotides, renal mRNA was estimated to contain 8.6 methyl moieties per molecule. Analysis of alkaline-hydrolyzed RNA sampled by DEAE-Sephadex-urea chromatography provided estimates of the relative amounts of base and ribose methylation. Although 83% of the [3H]methyl radioactivity in rRNA was in the 2'-0-methylnucleotide fraction, no methylated dinucleotides were found in mRNA. In poly(A)+ mRNA 60% of the [3H]methyl label was in the mononucleotide fraction; the remainder eluted between the trinucleotide and tetranucleotide markers and had a net negative charge between -4 and -5. The larger structure, not yet charcterized, could result from two or three consecutive 2'-0-ribose methylations and is estimated to contain 2.6 methyl residues. Alternatively, the oligonucleotide could be a 5'-terminal methylated nucleotide species containing 5'-phosphate(s) in addition to the 3'-phosphate moiety resulting from alkaline hydrolysis. Either structure could have a role in the processing or translation of mRNA in mammalian cells.  相似文献   

15.
Poly(A)+ RNA (polyadenylated RNA) isolated from membrane-bound and free polyribosomes was translated in reticulocyte lysates, and the products were analysed by two-dimensional gel electrophoresis. Several translation products were specific to membrane-bound polyribosomal mRNA, including polypeptides of 47kDa, 35kDa and 21 kDa, whereas others (e.g. of 37 kDa, 17 kDa and 14 kDa) were specific to free polyribosomal mRNA. Although many products were common to both mRNA species, cross-contamination could be ruled out on the basis of the presence of these and other specific products. The common products included a 68 kDa microtubule-associated protein, tubulin, actin, the brain form of creatine kinase, neuron-specific enolase and protein 14-3-3 and calmodulin, all of which were identified on the basis of two-dimensional gel and peptide analyses. The 35 kDa protein product of membrane-specific mRNA was co-translationally processed in vitro by microsomal membranes, resulting in its cleavage to 33 kDa (and partial glycosylation). The 33 kDa processed protein (but not the 35 kDa precursor) was integrated into both dog pancreas and rat brain microsomal membranes. The occurrence of the enzymes and calmodulin as products of membrane-bound polyribosomal mRNA is discussed in the light of their presence on rat brain synaptic plasma membranes [Lim, Hall, Leung, Mahadevan & Whatley (1983) J. Neurochem. 41, 1177-1182] and their existence in a specific component of axonal flow. It is suggested that some of these translation products of the rough endoplasmic reticulum may represent proteins destined for the plasma membrane. However, the identity and location of the 35 kDa membrane-specific product (or its processed form) still remain unestablished.  相似文献   

16.
In vivo protein synthesis in duck erythroblasts was compared to in vitro translation of polyribosomal and free cytoplasmic mRNA. The in vivo study showed the absence of de novo synthesis of the Mr 73 000 poly(A)-binding protein found associated with all polyribosomal mRNA. In vitro translation demonstrated that the mRNA for this protein is absent from the polyribosomal mRNA fraction but constitutes a medium frequency messenger among the repressed free mRNA. This result confirms the existence of a qualitative translational control in terminal differentiating duck erythroblasts leading eventually to the arrest of the protein synthesizing machinery.  相似文献   

17.
Isolation of poly(A)+ RNA by paper affinity chromatography   总被引:16,自引:0,他引:16  
Poly(A)+ RNA was isolated from in vitro short-term-labeled total cytoplasmic RNA of Ehrlich ascites tumor cells by oligo(dT) cellulose chromatography. This poly(A)+ RNA fraction was compared with a poly(A)+ RNA fraction isolated by a new procedure which involves specific binding of poly(A)+ RNA to messenger affinity paper (mAP) and its release in hot (70 degrees C) water. In typical experiments 10-11 micrograms (2.3%) of poly(A)+ RNA can be retained from 500 micrograms of total cytoplasmic RNA per cm2 of mAP in a quick one-step procedure. The poly(A)+ RNA preparations isolated by the two methods proved to be almost identical with respect to their fraction in total cytoplasmic RNA, specific radioactivities, sucrose gradient profiles, and translation assays. Since the isolation of poly(A)+ RNA by mAP is much less time consuming than that by oligo(dT) column chromatography and since the poly(A)+ RNA can be recovered from mAP in small volumes, which avoids further loss during precipitations, it can be advantageously used for preparative isolation of poly(A)+ RNA.  相似文献   

18.
Poly(A)+ (polyadenylated) RNA was isolated from vitellogenic female-locus fat-body by LiCl/urea extraction and poly(U)-Sepharose 4B affinity chromatography. Agarose-gel electrophoresis of this poly(A)+ RNA under denaturing conditions shows the presence of a high-molecular-weight species (greater than 31 S, 7100 nucleotides) as the major species, which is absent from the RNA prepared from male-locust fat-body. Inclusion of this poly(A)+ RNA in a mRNA-dependent reticulocyte-lysate system directs the synthesis of polypeptides that could be immunoprecipitated with monospecific antibodies against locust egg vitellin. DNA complementary (cDNA) to the poly(A)+ RNA was synthesized, and back-hybridization of the cDNA to its template reveals a major abundant species comprising about 45% of the total poly(A)+ RNA hybridizing with R0t 1/2 of 2 x 10(-2) mol . litre-1 . s. Abundant cDNA isolated from the total cDNA hybridizes to poly(A)+ RNA with a R0t 1/2 of 9 x 10(-3) mol . litre-1 . s. There are 9.1 x 10(3) copies of vitellogenin mRNA per cell of vitellogenic female-locust fat-body, comprising 55% of the poly(A)+ RNA and equivalent to 0.7% of total cellular RNA.  相似文献   

19.
Exposure of 32P-labelled human platelets to ionophore A23187 results in an increased incorporation of 32P into polypeptides with apparent mol.wts. of 47 000 (P47) and 20 000 (P20), whereas exposure to prostaglandin E1 results in increased labelling of polypeptides with apparent mol.wts. of 24 000 (P24) and 22 000 (P22) [Haslam, Lynham & Fox (1979) Biochem. J. 178, 397-406]. Labelled platelets that had been incubated with ionophore A23187 or prostaglandin E1 were sonicated and rapidly separated into three fractions by differential centrifugation. Electron microscopy and measurement of marker enzymes indicated that the 1300-19 000 gav. particulate fraction was enriched in granules, mitochondria and plasma membranes, that the 19 000-90 000 gav. particulate fraction was enriched in both intracellular and plasma membranes and that the 90 000 gav. supernatant contained only soluble proteins. 32P-labelled phosphopolypeptide P47 was present almost exclusively in the 90 000 gav. supernatant, whereas phosphopolypeptide P20 was largely dephosphorylated under fractionation conditions that protected other phosphopolypeptides. 32P-labelled phosphopolypeptide P24 was enriched in both particulate fractions, but particularly in the 19 000-90 000 gav. fraction, and may therefore be present in both the intracellular and plasma membranes. Phosphopolypeptide P22 appeared to be similarly distributed. Both particulate fractions were capable of the ATP-dependent oxalate-stimulated uptake of Ca2+. When the 19 000-90 000 gav. membrane fraction was prepared from platelets that had been incubated with ionophore A23187, active uptake of Ca2+ did not occur, but when this fraction was isolated from platelets that had been exposed to prostaglandin E1, uptake of Ca2+ was significantly greater than observed with the corresponding membranes from control platelets. It is suggested that phosphorylation of polypeptide P24 (or P22) by a cyclic AMP-dependent protein kinase may promote the active transport of Ca2+ out of the platelet cytosol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号