共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Yeast cells are incapable of translating RNAs containing the poliovirus 5'' untranslated region: evidence for a translational inhibitor. 下载免费PDF全文
We have expressed in the yeast Saccharomyces cerevisiae a full-length poliovirus cDNA clone under the control of the GAL10 promoter to better characterize the effect of poliovirus on host cell metabolism. We find that yeast cells are unable to translate poliovirus RNA in vivo and that this inhibition is mediated through the 5' untranslated region of the viral RNA. The in vivo inhibition of translation of poliovirus RNA and P2CAT RNA (which contains the 5' untranslated region fused upstream of the bacterial chloramphenicol transferase gene) can be mimicked in vitro in yeast translation lysates. In fact, a trans-acting inhibitor present in yeast lysates can inhibit translation of either poliovirus or P2CAT RNA in HeLa cell translation lysates. In contrast, when the inhibitor is added to translations programmed with chloramphenicol acetyltransferase RNA, yeast prepro-alpha-factor RNA, or an RNA containing the internal ribosome entry site of encephalomyocarditis virus, no inhibition is seen. The inhibitory activity has been partially purified by DEAE-Sephacel chromatography. The partially purified inhibitor is heat stable, escapes phenol extraction, is resistant to proteinase K and DNase I treatment, and is sensitive to RNase A digestion, suggesting that the inhibitor is an RNA. In an in vitro translation assay, the inhibitory activity can be overcome by increasing the concentration of HeLa cell lysate but not P2CAT RNA, suggesting that the inhibitor interacts (directly or indirectly) with one or more components of the HeLa cell translational machinery rather than with the viral RNA. 相似文献
4.
5.
6.
Expression of human alpha-tubulin genes: interspecies conservation of 3'' untranslated regions. 总被引:38,自引:28,他引:38 下载免费PDF全文
To examine the sequence complexity and differential expression of human alpha-tubulin genes, we constructed cDNA libraries from two unrelated tissue types (epidermis and fetal brain). The complete sequence of a positively hybridizing alpha-tubulin clone from each library is described. Each is shown to represent an abundantly expressed gene from fetal brain and keratinocytes, respectively. Although the coding regions are extensively homologous (97%), the 3' untranslated regions are totally dissimilar. This property has been used to dissect the human alpha-tubulin multigene family into members bearing sequence relatedness in this region. Surprisingly, each of these noncoding regions shares very high (65 to 80%) interspecies homology with the 3' untranslated region of one of the two rat alpha-tubulin genes of known sequence. These unexpected homologies imply the existence of selective pressure on the 3' untranslated regions of some cytoskeletal genes which maintains sequence fidelity during the course of evolution, perhaps as a consequence of an as yet unidentified functional requirement. 相似文献
7.
8.
Structure and expression of lck transcripts in human lymphoid cells 总被引:17,自引:0,他引:17
R M Perlmutter J D Marth D B Lewis R Peet S F Ziegler C B Wilson 《Journal of cellular biochemistry》1988,38(2):117-126
9.
10.
11.
The initiation of protein synthesis on mRNAs within eukaryotic cells is achieved either by a 5' cap-dependent mechanism or through internal initiation directed by an internal ribosome entry site (IRES). Picornavirus IRES elements, located in the 5' untranslated region (5'UTR), contain extensive secondary structure and multiple upstream AUG codons. These features can be expected to inhibit cap-dependent initiation of translation. However, we have now shown that certain mutant hepatitis C virus-like picornavirus IRES elements (from porcine teschovirus-1 and avian encephalomyelitis virus), which are unable to direct internal initiation, are not significant barriers to efficient translation of capped monocistronic mRNAs that contain these defective elements within their 5'UTRs. Moreover, the translation of these mRNAs is highly sensitive to the expression of an enterovirus 2A protease (which induces cleavage of eIF4G) and is also inhibited by hippuristanol, a specific inhibitor of eIF4A function, in contrast to their parental wild-type IRES elements. These results provide a possible basis for the evolution of viral IRES elements within the context of functional mRNAs that are translated by a cap-dependent mechanism. 相似文献
12.
13.
14.
15.
The sequences of rabbit kappa light chains of b4 and b5 allotypes differ more in their constant regions than in their 3'' untranslated regions. 总被引:7,自引:2,他引:7 下载免费PDF全文
We report the sequence of a cDNA clone encoding the entire variable and constant regions of a rabbit kappa light chain of b5 allotype. The deduced amino acid sequence of the variable region (positions 1-95) is 86% homologous to that of a b4 light chain protein [BS-1) (1) but the b4 and b5 constant regions are only 74% homologous. Comparison of this DNA sequence to that of a cDNA clone encoding a b4 constant region shows that the kappa allotypes b4 and b5 have diverged significantly more in their coding region than in the 3' untranslated regions (86% vs 96% nucleotide sequence homologies). This implies either a function for the 3' untranslated region with evolutionary pressures to conserve or an accelerated divergence of the coding regions. 相似文献
16.
Structure of the 5'' untranslated regulatory region of ferritin mRNA studied in solution. 总被引:5,自引:5,他引:5 下载免费PDF全文
Ferritin mRNAs are the first eukaryotic mRNAs for which a conserved, translational regulatory sequence has been identified. The sequence of twenty-eight nucleotides, called the IRE (iron regulatory element), is found in the 5'-noncoding region and is required for enhanced translation of ferritin mRNA by excess cellular iron; regulation occurs at initiation. The prediction of secondary structure in the IRE is a hairpin loop. We now report an analysis of the IRE structure in solution studied in natural ferritin mRNAs [H and H'(M) subunits] by primer extension, after modification or cleavage by dimethyl sulfate, RNAases T1 and V1, and the chemical nuclease 1, 10-phenanthroline-copper (OPCu) which cleaves single-stranded and bulged regions of RNA. Overall, the structure in solution of the ferritin mRNA regulatory region is a hairpin loop, with magnesium-sensitive features, in which half the stem is provided by the IRE and half by flanking regions; only secondary structure is conserved in the flanking regions. Predicted bulges or internal loops along the stem were clearly detected by OPCu but were missed by the more bulky probe RNAase T1, indicating the efficacy of OPCu in probing subtle features of RNA structure. Magnesium-dependent deviations from the predicted structure were observed in the stem between the hairpin loop and the bulge at C6. The location of the IRE in relation to the initiator AUG or the cap is variable in different ferritin mRNAs. However, the number of nucleotides in the base-paired flanking regions of known ferritin mRNAs is proportional to the distance of the IRE from the cap and places the secondary/tertiary structure 8-10 nucleotides from the cap where interference with initiation is likely. 相似文献
17.
Zein genes, the genes coding for the zein storage proteins of maize, have a unique gene structure where at least two promoters lie upstream of the coding region. Between the P1 promoter (900 base pairs upstream of the coding region) and the translation initiation AUG codon are 18 short reading frames. A discrepancy between the signals obtained by S1-mapping and primer extension and the DNA sequence in the region of one of these signals suggests the presence of a 3' splice site lying 40 nucleotides upstream of the coding region. A splicing event removing all of the short reading frames from the mRNA transcribed from the P1 promoter would bring this mRNA into a translatable form. Further evidence for a functional 3' splice site has been obtained from sequencing of primer extension products and in vitro splicing of a hybrid intron in the HeLa cell in vitro splicing system. 相似文献
18.
19.