首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of the thermal stability of rat liver glucose-6-phosphatase (EC 3.1.3.9) were carried out to further elevate the proposal that the enzymic activity is the result of the coupling of a glucose-6-P-specific translocase and a nonspecific phosphohydrolase-phosphotransferase. Inactivation was observed when micorsomes were incubated at mild temperatures between pH 6.2 and 5.6. The rate of inactivation increased either with increasing hydrogen ion concentration or temperature. However, no inactivation was seen below 15 degrees in media as low as pH 5 or at neutral pH up to 37 degrees. The thermal stability of the enzyme may be controlled by the physical state of the membrane lipids and the degree of protonation of specific residues in the enzyme protein. Microsomes were exposed to inactivating conditions, and kinetic analyses were made of the glucose-6-P phosphohydrolase activities before and after supplementation to 0.4% sodium taurocholate. The results support the postulate and the kinetic characteristics of a given preparation of intact microsomes are determined by the relative capacities of the transport and catalytic components. Before detergent treatment, inactivation (i.e. a decrease in Vmax) was accompanied by a decrease in Km and a reduction in the fraction of latent activity, whereas only Vmax was depressed in disrupted preparations. The possibility that the inactivating treatments caused concurrent disruption of the microsomal membrane was ruled out. It is concluded that exposures to mild heat in acidic media selectively inactivate the catalytic component of the glucose-6-phosphatase system while preserving an intact permeability barrier and a functional glucose-6-P transport system. Analyses of kinetic data obtained in the present and earlier studies revealed several fundamental mathematical relationships among the kinetic constants describing the glucose-6-P phosphohydrolase activities of intact (i.e. the "system") and disrupted microsomes (i.e. the catalytic component). The quantitative relationships appear to provide a means to calculate a velocity constant (VT) and a half-saturation constant (KT) for glucose-6-P influx. The well documented, differential responses of the rat liver glucose-6-phosphatase system induced by starvation, experimental diabetes, or cortisol administration were analyzed in terms of these relationships. The possible influences of cisternal inorganic phosphate on the apparent kinetic constants of the intact system are discussed.  相似文献   

2.
Arion et al; (Arion, W. J., Wallin, B. K., Lange A. J., and Ballas, L. M. (1975) Mol. Cell. Biochem. 6, 75-83) propsed a model for glucose-6-phosphatase in which the substrate was transported across the microsomal membrane by a carrier before hydrolysis on the cisternal side. Evidence to support this model has been obtained by studying the inhibition of the enzyme by pyridoxal-P. Pyridoxal-P was a linear noncompetitive inhibitor of glucose-6-phosphatase (EC 3.1.3.9) in freshly isolated ("intact") microsomes from rat liver. Pyridoxol-P was a much less effective inhibitor and no inhibition was observed with pyridoxamine-P. When microsomes were subjected to nitrogen cavitation, treatment with solium deoxycholate, or glutaraldehyde fixation, the Km of glucose-6-phosphatase for glucose-6 P decreased from approximately 6 mM to approximately 2.5 mM; the corresponding change in the Vmax ranged from-10% to +40%. The same procedures decreased the inhibition of glucose-6-phosphatase by pyridoxal-P several-fold. No inhibition by pyridoxal-P was observed in a preparation of glucose-6-phosphatase purified approximately 20 fold (on the basis of Vmax) from micoromes. A nondialyzable inhibitor was apparently formed when intact microsomes were reacted with pyridoxal-P and NaBH4; this inhibition was also reversed by procedures which changed the kinetic properties of glucose-6-phosphatase.  相似文献   

3.
The kinetics of rat liver glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase, EC 3.1.3.9) were studied with intact and detergent-disrupted microsomes from normal and diabetic rats. Glucose-6-P concentrations employed (12 microM to 1.0 mM) spanned the physiologic range. With the enzyme of intact microsomes from both groups, plots of v versus [glucose-6-P] were sigmoid. Hanes plots (i.e. [glucose-6-P]/v versus [glucose-6-P]) were biphasic (concave upwards). A Hill coefficient of 1.45 was determined with substrate concentrations between 12 and 133 microM. Disruption of microsomal integrity abolished these departures from classic kinetic behavior, indicating that sigmoidicity may result from cooperative interaction of glucose-6-P with the glucose-6-phosphatase system at the substrate translocase specific for glucose-6-P. With the enzyme from normal rats the [glucose-6-P] at which the enzyme was maximally sensitive to variations in [glucose-6-P] (which we term "Smax"), determined from plots of dv/d [glucose-6-P] versus [glucose-6-P], was in the physiologic range. The Smax of 0.13 mM corresponded well with the normal steady-state hepatic [glucose-6-P] of 0.16 mM, consistent with glucose-6-phosphatase's function as a regulatory enzyme. With the diabetic enzyme, in contrast, values were 0.30 and 0.07 mM for the Smax and steady-state level, respectively. We suggest that the decreasing sensitivity of glucose-6-phosphatase activity to progressively diminishing glucose-6-P concentration, inherent in its sigmoid kinetics, constitutes a mechanism for the preservation of a residual pool of glucose-6-P for other hepatic metabolic functions in the presence of elevated concentrations of glucose-6-phosphatase such as in diabetes.  相似文献   

4.
The effect of varying concentrations of free Ca2+ on the formation of Pi from mannose-6-P or of Pi and [U-14C]glucose from [U-14C]glucose-6-P was investigated in isolated fasted rat hepatocytes made permeable by freezing and in liver microsomes. Free Ca2+ concentration was adjusted by the use of Ca-EGTA buffers. In permeabilized cells, glucose-6-phosphatase (EC 3.1.3.9) activity was inhibited up to 50% and in intact microsomes up to 70% by increasing free Ca2+ concentrations from 0.01 to 10 microM. The inhibition was reversible and competitive with respect to glucose-6-P. Treatment of microsomes with 0.4% deoxycholate exposed 90% of latent mannose-6-phosphatase activity which was insensitive to Ca2+. The results indicate that Ca2+ affects the glucose-6-P translocase rather than the phosphohydrolase component. It is concluded that the glucose-6-phosphatase system is modulated by changes in Ca2+ concentrations in the range of those occurring in the liver cell upon hormonal stimulation.  相似文献   

5.
The effects of added polyamines on carbamylphosphate (carbamyl-P):glucose phosphotransferase and glucose-6-phosphate (Glc-6-P) phosphohydrolase activities of rat hepatic D-Glc-6-P phosphohydrolase (EC 3.1.3.9) of intact and detergent-treated microsomes have been investigated. With the former preparation, in the presence of 1.4 mM phosphate substrate and 90 mM D-glucose (phosphotransferase), 1 mM spermine, spermidine, and putrescine activated Glc-6-P phosphohydrolase 67%, 57%, and 35%, respectively. Carbamyl-P:glucose phosphotransferase, under comparable conditions, was activated 57%, 34%, and 18%. NH+4 (0.25--5.0 mM) produced at best but a minor activation (0--14%), while poly(L-lysine) (Mr = 3400; degree of polymerization 16) equimolar relative to other polyamines with respect to ionized free amino groups activated the hydrolase 358% and the transferase 222%. Treatment of microsomes with the detergent deoxycholate reduced, but did not abolish, polyamine-induced activation. The stimulatory effects of polyamines persisted in the presence of excess catalase, indicating their independence from H2O2 formation; and were eliminated in the presence of Ca2+. Kinetic analysis revealed that all tested polyamines decreased the apparent Michaelis constant values for carbamyl-P and Glc-6-P, but had no effect on the Km for glucose. Poly(L-lysine) increased the V value for both Glc-6-P phosphohydrolase and apparent V values for phosphotransferase extrapolated to infinite concentrations of either carbamyl-P or glucose. The other tested polyamines elevated only this last velocity parameter. It is proposed that a major mechanism by which polyamines activate glucose-6-phosphatase-phosphotransferase is through their electrostatic interactions with phospholipids of the membrane of the endoplasmic reticulum of which this enzyme is a part. Conformational alterations thus induced may in turn affect catalytic behavior. It is suggested that polyamines, or similar positively charged peptides, might participate in the cellular regulation of synthetic and hydrolytic activities of glucose-6-phosphatase.  相似文献   

6.
1. Glucokinase was absent from chicken liver and only the low Km hexokinases, inhibited by AMP, ADP but not ATP, were present. 2. The Km of chicken liver glucose-6-phosphatase for glucose-6-phosphate was reduced from 5.65 to 3.75 mM following starvation, and the enzyme was inhibited by glucose. 3. Starvation of chickens for 24 hr slightly lowered the hexokinase activity and doubled glucose-6-phosphatase activity; it did not change subcellular distribution of the enzymes. Oral glucose rapidly restored the activities to fed values. 4. It was concluded that glucose uptake into, and efflux from, chicken hepatocytes, was regulated by the activity and kinetic characteristics of glucose-6-phosphatase and by the glucose-6-phosphate concentration, and that the hexokinases had little regulatory function.  相似文献   

7.
To obtain insight regarding the mechanism(s) of response of the catalytic unit of glucose-6-phosphatase (D-glucose-6-P phosphohydrolase; EC 3.1.3.9) to glucocorticoid administration and insulin deprivation, the functional enzyme concentration E0 was estimated from presteady-state kinetics by the stopped-flow technique. The E0 values were compared with Vmax values determined by the steady-state kinetic approach. Studies were carried out with detergent-disrupted microsomes from livers of normal fed, 48-h fasted, streptozotocin-diabetic, and triamcinolone-treated rats. All of the treatments caused an increase in E0, but Vmax values were increased only in fasting and diabetes. Km values were unaffected by all the treatments. The increase in Vmax observed with fasted and diabetic rats was explained by an increase in E0 alone. These results showed that insulin deprivation resulted in an increased formation of fully active glucose-6-phosphatase catalytic unit. In contrast, administration of triamcinolone caused an increase in E0 but not in Vmax. It was concluded that glucocorticoid administration may promote formation of catalytic units of glucose-6-phosphatase which are less active than the enzyme normally present or formed in response to insulin deprivation.  相似文献   

8.
The ability of glucose 6-phosphate and carbamyl phosphate to serve as substrates for glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase; EC 3.1.3.9) of intact and disrupted microsomes from rat liver was compared at pH 7.0. Results support carbamyl phosphate and glucose 6-phosphate as effective substrates with both. Km values for carbamyl phosphate and glucose 6-phosphate were greater with intact than with disrupted microsomes, but Vmax values were higher with the latter. The substrate translocase-catalytic unit concept of glucose-6-phosphatase function is thus confirmed. The Km values for 3-O-methyl-D-glucose and D-glucose were larger when determined with intact than with disrupted microsomes. This observation is consistent with the involvement of a translocase specific for hexose substrate as a rate-influencing determinant in phosphotransferase activity of glucose-6-phosphatase.  相似文献   

9.
The interactions of Pi, PPi, and carbamyl-P with the hepatic glucose-6-phosphatase system were studied in intact and detergent-disrupted microsomes. Penetration of PPi and carbamyl-P into intact microsomes was evidenced by their reactions with the enzyme located exclusively on the luminal surface. Lack of effects of carbonyl cyanide m-chlorophenylhydrazone and valinomycin + KCl indicated that pH gradients and/or membrane potentials that could influence the kinetics of the system are not generated during metabolism of PPi and glucose-6-P by intact microsomes. With disrupted microsomes, only competitive interactions were seen among glucose-6-P, Pi, PPi, and carbamyl-P. With intact microsomes, Pi, PPi, and carbamyl-P were relatively weak, noncompetitive inhibitors of glucose-6-phosphatase, and PPi hydrolysis was inhibited competitively by Pi and carbamyl-P but noncompetitively by glucose-6-P. Analysis of the kinetic data in combination with findings from other studies that a variety of inhibitors of the glucose-6-P translocase (T1) does not affect PPi hydrolysis provide compelling evidence that permeability of microsomes to Pi, PPi, and carbamyl-P is mediated by a second translocase (T2). Some properties of the microsomal anion transporters are described. If the characteristics of the glucose-6-phosphatase system as presently defined in intact microsomes apply in vivo, glucose-6-P hydrolysis appears to be the predominant, if not the exclusive, physiologic function of the system. Both the "noncompetitive character" and the relative ineffectiveness of Pi as an inhibitor of glucose-6-phosphatase of intact microsomes result from the rate limitation imposed by T1 that prevents equilibration of glucose-6-P across the membrane. In microsomes from fed rats, where T1 is less rate restricting, about one-half as much Pi was required to give 50% inhibition compared with microsomes from fasted or diabetic rats. Thus, any treatment or agent that alters the kinetic relationship between transport and hydrolysis of glucose-6-P (e.g. endocrine or nutritional status) is an essential consideration in analyses of kinetic data for the glucose-6-phosphatase system.  相似文献   

10.
J P Benedetto  M B Martel  R Got 《Biochimie》1979,61(10):1125-1132
Kinetic studies indicate that glucose-6-phosphatase is a multifunctional enzyme. a) Phosphohydrolase activities. The mannose-6-phosphatase activity is low (Km = 8 mM, VM = 90 nmoles. min-1mg-1). The enzyme shows a strong affinity for glucose-6-phosphate (Km = 2.5 mM, VM = 220 nmoles.min-1mg-1). beta-glycerophosphate (K1 = 30 mM), D-glucose (Ki = 120 mM) are mixed type inhibitors; pyrophosphate (Ki = 2 mM) is a non competitive one. b) Phosphotransferase activities. Di and triphosphate adenylic nucleosides or phosphoenol pyruvate are not substrates. Carbamylphosphate serves as a phosphoryl donor with D-glucose as acceptor. The phosphate transfer is consisstent with a random mechanism in which the binding of one substrate increases the enzymes affinity for the second substrate. Apparent Km values for carbamyl-phosphate range from 5.2 mM (D-glucose concentration leads to infinity) to 8 mM (D-glucose concentration leads to 0). The corresponding apparent Km values for D-glucose are 59 mM (carbamyl-phosphate concentration leads to infinity) to 119 mM (carbamyl-phosphate concentration leads to 0). Maximal reaction velocity with infinite levels of both substrates is 270 nmoles.min-1.mg-1. Pyrophosphate is a poor phosphoryl donnor (Km = 55 mM with D-glucose concentration 250 mM). In addition we do not find any latency; detergents, namely sodium deoxycholate, Triton X 100 do not affect or inhibit glucose-6-phosphatase activity.  相似文献   

11.
The change in the activity of several hepatic enzymes during hepatocarcinogenesis suggests a pattern of dedifferentiation. This category of enzymes includes glucose-6-phosphatase and gamma-glutamyltranspeptidase (GGT). A detailed kinetic analysis of microsomal glucose-6-phosphatase activity revealed that both the translocase and phosphohydrolase activities were markedly reduced in Morris 7777 hepatoma transplanted in male Buffalo rats. In addition, the activity of the translocase component increased 2.4-fold, while the phosphohydrolase activity decreased 1.6-fold in the liver of tumor-bearing animals. GGT activity in the host liver was not effected by the presence of the tumor. These results suggest differences in the effect of Morris 7777 hepatoma on: the phosphohydrolase and translocase activities of microsomal glucose-6-phosphatase and the sensitivity of glucose-6-phosphatase and GGT activities in the host liver.  相似文献   

12.
The effect of natural "activation factor" and synthetic fructose-2,6-P2 on the allosteric kinetic properties of liver and muscle phosphofructokinases was investigated. Both synthetic and natural fructose-2,6-P2 show identical effects on the allosteric kinetic properties of both enzymes. Fructose-2,6-P2 counteracts inhibition by ATP and citrate and decreases the Km for fructose-6-P. This fructose ester also acts synergistically with AMP in releasing ATP inhibition. The Km values of liver and muscle phosphofructokinase for fructose-2,6-P2 in the presence of 1.25 mM ATP are 12 milliunits/ml (or 24 nM) and 5 milliunits/ml (or 10 nM), respectively. At near physiological concentrations of ATP (3 mM) and fructose-6-P (0.2 mM), however, the Km values for fructose-2,6-P2 are increased to 12 microM and 0.8 microM for liver and muscle enzymes, respectively. Thus, fructose-2,6-P2 is the most potent activator of the enzyme compared to other known activators such as fructose-1,6-P2. The rates of the reaction catalyzed by the enzymes under the above conditions are nonlinear: the rates decelerate in the absence or in the presence of lower concentrations of fructose-2,6-P2, but the rates become linear in the presence of higher concentrations of fructose-2,6-P2. Fructose-2,6-P2 also protects phosphofructokinase against inactivation by heat. Fructose-2,6-P2, therefore, may be the most important allosteric effector in regulation of phosphofructokinase in liver as well as in other tissues.  相似文献   

13.
Copper deficiency has been reported to cause glucose intolerance in rats by interfering with normal glucose utilization. Accordingly, copper deficiency was produced in rats to study its effects on glucose-6-P phosphohydrolase and carbamyl-P: glucose phosphotransferase activities of hepatic glucose-6-phosphatase (EC 3.1.3.9), a major enzyme involved in maintaining glucose homeostasis. When measured in homogenates treated with deoxycholate, total glucose-6-P phosphohydrolase was 23% lower and total carbamyl-P:glucose phosphotransferase was 17% lower in copper-deficient rats compared to controls. Latency, or that portion of total activity that is not manifest unless the intact membranous components are disrupted with deoxycholate also was lower in copper-deficient rats. Glucose-6-P phosphohydrolase was 5% latent in copper-deficient rats compared to 24% in controls and carbamyl-P : glucose phosphotransferase was 55% latent in copper-deficient rats compared to 65% in controls. The decrease in latency appears to compensate for the lower total enzyme activities in such a manner as to allow the net expression of these activities in the intact membranous components of the homogenate to remain unaltered by copper deficiency. It thus appears unlikely that copper deficiency affects glucose homeostasis in vivo by altering the net rate of glucose-6-P hydrolysis or synthesis by glucose-6-phosphatase. These observations are interpreted on the basis of a multicomponent glucose-6-phosphatase system in which the total enzyme activity expressed in intact membranous preparation is limited by substrate specific translocases that transport substrate to the membrane-bound catalytic unit. A decrease in latency can then be interpreted as a functional increase in translocase activity and may constitute a compensating mechanism for maintaining constant glucose homeostasis when glucose-6-phosphatase catalytic activity is depressed as it is in copper deficiency.  相似文献   

14.
The mechanism of activation of hepatic microsomal glucose-6-phosphatase (EC 3.1.3.9) in vitro by amiloride has been investigated in both intact and fully disrupted microsomes. The major effect of amiloride is a 4.5-fold reduction in the Km of glucose-6-phosphatase activity in intact diabetic rat liver microsomes. Amiloride also decreased the Km of glucose-6-phosphatase activity in intact liver microsomes isolated from starved rats 2.5-fold. Kinetic calculations, direct enzyme assays and direct transport assays all demonstrated that the site of amiloride action was T1, the hepatic microsomal glucose 6-phosphate transport protein. This is, to our knowledge, the first report of an activation of any of the proteins of the multimeric hepatic microsomal glucose-6-phosphatase complex.  相似文献   

15.
We have examined the influence of the phenobarbital-induced proliferation of the hepatic endoplasmic reticulum (ER) on the activities of the components of the glucose-6-phosphatase system, i.e., the enzyme, the glucose-6-P translocase (T1), and the phosphate translocase (T2). Young male rats were injected ip twice daily for 4 days with 4 mg/100 g body wt of phenobarbital (PB) or an equivalent volume of saline solution. On the fifth day, the rats were killed and smooth (SER) and rough (RER) fractions of the ER were isolated from liver homogenates. Kinetic constants for glucose-6-P hydrolysis by the system and enzyme were determined and used to calculate the kinetic constants for glucose-6-P transport. T2 activity was approximated by assaying the pyrophosphatase activity at pH 6.0 in intact microsomes. Three times more SER protein was recovered from livers of PB-treated rats. PB-treatment did not alter total liver enzyme activity, but total liver T1 activity was decreased to 59% of the control value. Maximal specific activities of the system, enzyme and T1 were all reduced by PB treatment to 44% of control values in the RER and to 68% of control values in the SER. PB treatment reduced the apparent activity of T2 in RER and SER to 35 and 49% of the respective control values. In the SER from both groups of rats, T1 activity or apparent T2 activity divided by enzyme activity was about 55% of the corresponding ratio in the RER. Our analysis of these data suggests that the lower activities of T1 and T2 in the smooth ER are the results of suppression by some intrinsic component localized in the smooth membrane. Accordingly, the reduction in total liver T1 activity and, therefore, system activity in PB-treated rats reflects the redistribution of the glucose-6-P translocase from the RER to the more abundant SER membrane where it is less active. The possibility is discussed that a higher cholesterol content within the SER membrane is responsible for the lower transport activities.  相似文献   

16.
Phosphorylase ab was prepared in vitro by partial phosphorylation of rabbit skeletal muscle phosphorylase b and was isolated by DEAE-Sephacel chromatography. Its phosphorylated and non-phosphorylated subunits could not be distinguished by different affinity to substrates, activators or inhibitors, indicating their coordinated function. In the absence of nucleotide activators, the Km values for Pi and glucose-1-P were 28 mM and 18 mM, respectively. Activity in the presence of 16 mM glucose-1-P was doubled by 10(-4) M AMP or 10(-3) M IMP, mainly by lowering the Km for glucose-1-P. Half-maximum activation was exerted by 2 microM AMP or 0.1 mM IMP. Activation by these nucleotides showed no cooperativity. Glucose exerted competitive inhibition with respect to glucose-1-P, while for the inhibition by glucose-6-P an allosteric mechanism is suggested; the appropriate Ki values were 4.5 mM and 1.5 mM, respectively. The Hill coefficient for glucose-1-P binding was about 1.0, even in the presence of glucose (up to 10 mM), but 10 mM glucose-6-P lowered it to 0.47, indicating a negative heterotropic cooperativity. Effective regulation of the activity of phosphorylase ab by physiological concentrations of Pi, AMP, IMP and glucose-6-P suggests its metabolic control under in vivo condition.  相似文献   

17.
The anomeric form of glucose produced by glucose-6-phosphatase was studied using an apparatus that specifically measures beta-D-glucose. The time course of beta-D-glucose formation from glucose-6-P by glucose-6-phosphatase is essentially linear. In the presence of mutarotase, this rate is reduced to 70% of that obtained in the absence of mutarotase. When detergent treated microsomes were used, the rate of beta-D-glucose formation is unaffected by mutarotase. These results suggest that only beta-anomer of glucose is produced by microsomal glucose-6-phosphatase and this specificity is determined by translocase for glucose-6-P or glucose. It was also demonstrated that alpha-D-glucose is the substrate for glucokinase.  相似文献   

18.
To investigate the sites of the free fatty acid (FFA) effects to increase basal hepatic glucose production and to impair hepatic insulin action, we performed 2-h and 7-h Intralipid + heparin (IH) and saline infusions in the basal fasting state and during hyperinsulinemic clamps in overnight-fasted rats. We measured endogenous glucose production (EGP), total glucose output (TGO, the flux through glucose-6-phosphatase), glucose cycling (GC, index of flux through glucokinase = TGO - EGP), hepatic glucose 6-phosphate (G-6-P) content, and hepatic glucose-6-phosphatase and glucokinase activities. Plasma FFA levels were elevated about threefold by IH. In the basal state, IH increased TGO, in vivo glucose-6-phosphatase activity (TGO/G-6-P), and EGP (P < 0.001). During the clamp compared with the basal experiments, 2-h insulin infusion increased GC and in vivo glucokinase activity (GC/TGO; P < 0.05) and suppressed EGP (P < 0.05) but failed to significantly affect TGO and in vivo glucose-6-phosphatase activity. IH decreased the ability of insulin to increase GC and in vivo glucokinase activity (P < 0.01), and at 7 h, it also decreased the ability of insulin to suppress EGP (P < 0.001). G-6-P content was comparable in all groups. In vivo glucose-6-phosphatase and glucokinase activities did not correspond to their in vitro activities as determined in liver tissue, suggesting that stable changes in enzyme activity were not responsible for the FFA effects. The data suggest that, in overnight-fasted rats, FFA increased basal EGP and induced hepatic insulin resistance at different sites. 1) FFA increased basal EGP through an increase in TGO and in vivo glucose-6-phosphatase activity, presumably due to a stimulatory allosteric effect of fatty acyl-CoA on glucose-6-phosphatase. 2) FFA induced hepatic insulin resistance (decreased the ability of insulin to suppress EGP) through an impairment of insulin's ability to increase GC and in vivo glucokinase activity, presumably due to an inhibitory allosteric effect of fatty acyl-CoA on glucokinase and/or an impairment in glucokinase translocation.  相似文献   

19.
Summary Using a mathematical model of carbohydrate metabolism in Dictyostelium discoideum, the kinetic expressions describing the activities of glucokinase and glucose-6-P phosphatase have been analyzed. The constraints on the kinetic mechanisms and relative activities of these two enzymes were investigated by comparing computer simulations to experimental data. The results indicated that, (1) glucose-6-P is compartmentalized with respect to the enzymes involved in glucose-6-P, trehalose and glycogen metabolism, (2) a differences of approximately 0.6 mm/min in maximum specific activity of glucokinase compared to glucose-6-P phosphatase is required in order for the model to produce end product carbohydrate levels consistent with those observed experimentally, (3) the Km of glucokinase for glucose strongly influences the steady state levels of glucose in the absence of external glucose, and (4) changing the order of product removal in the reaction catalyzed by glucose-6-P phosphatase influences the level of glycogen and trehalose.  相似文献   

20.
The kinetics of rat liver glucose-6-phosphatase (EC 3.1.3.9) were studied in intact and detergent-disrupted microsomes from normal and diabetic rats at pH 7.0 using two buffer systems (50 mM Tris-cacodylate and 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) and glucose-6-P varied from 20 microM to 10 mM. Identical data were obtained when the phosphohydrolase activity was quantified by a colorimetric determination of Pi or by measuring 32Pi formed during incubations with [32P]glucose-6-P. In every instance the initial rate data displayed excellent concordance with that expected for a reaction obeying Michaelis-Menten kinetics. The present findings agree with recently reported results of Traxinger and Nordlie (Traxinger, R. R., and Nordlie, R. C. 1987) J. Biol. Chem. 262, 10015-10019) that glucose-6-phosphatase activity in intact microsomes exhibits hyperbolic kinetics at concentrations of glucose-6-P above 133 microM, but fail to confirm their finding of sigmoid kinetics at substrate concentrations below 133 microM. We conclude that glucose-6-P hydrolysis conforms to a hyperbolic function at concentrations of glucose-6-P existing in livers of normal and diabetic rats in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号