首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Residue determinants and sequence analysis of cold-adapted trypsins   总被引:3,自引:0,他引:3  
The digestive enzyme trypsin is among the most extensively studied proteins, and its structure has been reported from a large number of organisms. This article focuses on the trypsins from vertebrates adapted to life at low temperatures. Cold-adapted organisms seem to have compensated for the reduced reaction rates at low temperatures by evolving more active and less temperature-stable enzymes. We have analyzed 27 trypsin sequences from a variety of organisms to find unique attributes for the cold-adapted trypsins, comparing trypsins from salmon, Antarctic fish, cod, and pufferfish to other vertebrate trypsins. Both the "cold" and the "warm" active trypsins have about 50 amino acids that are unique and conserved within each class. The main unique features of the cold-adapted trypsins attributable to low-temperature adaptation seem to be (1) reduced hydrophobicity and packing density of the core, mainly because of a lower (Ile + Leu)/(Ile + Leu + Val) ratio, (2) reduced stability of the C-terminal, (3) lack of one warm trypsin conserved proline residue and one proline tyrosine stacking, (4) difference in charge and flexibility of loops extending the binding pocket, and (5) different conformation of the "autolysis" loop that is likely to be involved in substrate binding. Received: January 14, 1999 / Accepted: March 31, 1999  相似文献   

2.
The crystal structure of an anionic form of salmon trypsin has been determined at 1.82 Å resolution. We report the first structure of a trypsin from a phoikilothermic organism in a detailed comparison to mammalian trypsins in order to look for structural rationalizations for the cold-adaption features of salmon trypsin. This form of salmon trypsin (T II) comprises 222 residues, and is homologous to bovine trypsin (BT) in about 65% of the primary structure. The tertiary structures are similar, with an overall displacement in main chain atomic positions between salmon trypsin and various crystal structures of bovine trypsin of about 0.8 Å. Intramolecular hydrogen bonds and hydrophobic interactions are compared and discussed in order to estimate possible differences in molecular flexibility which might explain the higher catalytic efficiency and lower thermostability of salmon trypsin compared to bovine trypsin. No overall differences in intramolecular interactions are detected between the two structures, but there are differences in certain regions of the structures which may explain some of the observed differences in physical properties. The distribution of charged residues is different in the two trypsins, and the impact this might have on substrate affinity has been discussed. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Psychrophiles, host of permanently cold habitats, display metabolic fluxes comparable to those exhibited by mesophilic organisms at moderate temperatures. These organisms have evolved by producing, among other peculiarities, cold-active enzymes that have the properties to cope with the reduction of chemical reaction rates induced by low temperatures. The emerging picture suggests that these enzymes display a high catalytic efficiency at low temperatures through an improved flexibility of the structural components involved in the catalytic cycle, whereas other protein regions, if not implicated in catalysis, may be even more rigid than their mesophilic counterparts. In return, the increased flexibility leads to a decreased stability of psychrophilic enzymes. In order to gain further advances in the analysis of the activity/flexibility/stability concept, psychrophilic, mesophilic, and thermophilic DNA ligases have been compared by three-dimensional-modeling studies, as well as regards their activity, surface hydrophobicity, structural permeability, conformational stabilities, and irreversible thermal unfolding. These data show that the cold-adapted DNA ligase is characterized by an increased activity at low and moderate temperatures, an overall destabilization of the molecular edifice, especially at the active site, and a high conformational flexibility. The opposite trend is observed in the mesophilic and thermophilic counterparts, the latter being characterized by a reduced low temperature activity, high stability and reduced flexibility. These results strongly suggest a complex relationship between activity, flexibility and stability. In addition, they also indicate that in cold-adapted enzymes, the driving force for denaturation is a large entropy change.  相似文献   

4.
A systematic analysis compared sequence and structural parameters distributions between 13 pairs of psychrophilic and mesophilic proteins for elucidating the cold adaptation parameters. The results of statistical test (t-test) revealed that helical content, tight turn content, disulfide bonds and hydrogen bonds do not show significant difference between psychrophilic and mesophilic proteins. However, it was demonstrated in this study that a larger proportion of open beta-turn in psychrophilic proteins is an effective parameter in specific activity at low temperature. In addition, substitution of amino acids of charged and aliphatic groups with amino acids of tiny and small groups in protein chains, tight turns and alpha-helices in the direction from mesophilic to psychrophilic proteins is one of the mechanisms of low temperature adaptation. Such sequence and structural parameter differences would help to develop a strategy for designing cold-adapted proteins.  相似文献   

5.
The relationships between structure, activity, stability and flexibility of a cold-adapted aminopeptidase produced by a psychrophilic marine bacterium have been investigated in comparison with a mesophilic structural and functional human homolog. Differential scanning calorimetry, fluorescence monitoring of thermal- and guanidine hydrochloride-induced unfolding and fluorescence quenching were used to show that the cold-adapted enzyme is characterized by a high activity at low temperatures, a low structural stability versus thermal and chemical denaturants and a greater structural permeability to a quenching agent relative to the mesophilic homolog. These findings support the hypothesis that cold-adapted enzymes maintain their activity at low temperatures as a result of increased global or local structural flexibility, which results in low stability. Analysis of the thermodynamic parameters of irreversible thermal unfolding suggests that entropy-driven factors are responsible for the fast unfolding rate of the cold-adapted aminopeptidase. A reduced number of proline residues, a lower degree of hydrophobic residue burial and a decreased surface accessibility of charged residues may be responsible for this effect. On the other hand, the reduction in enthalpy-driven interactions is the primary determinant of the weak conformational stability.  相似文献   

6.
Crystal structures of two engineered thiol trypsins   总被引:3,自引:0,他引:3  
We have determined the three-dimensional structures of engineered rat trypsins which mimic the active sites of two classes of cysteine proteases. The catalytic serine was replaced with cysteine (S195C) to test the ability of sulfur to function as a nucleophile in a serine protease environment. This variant mimics the cysteine trypsin class of thiol proteases. An additional mutation of the active site aspartate to an asparagine (D102N) created the catalytic triad of the papain-type cysteine proteases. Rat trypsins S195C and D102N,S195C were solved to 2.5 and 2.0 A, respectively. The refined structures were analyzed to determine the structural basis for the 10(6)-fold loss of activity of trypsin S195C and the 10(8)-fold loss of activity of trypsin D102N,S195C, relative to rat trypsin. The active site thiols were found in a reduced state in contrast to the oxidized thiols found in previous thiol protease structures. These are the first reported structures of serine proteases with the catalytic centers of sulfhydryl proteases. Structure analysis revealed only subtle global changes in enzyme conformation. The substrate binding pocket is unaltered, and active site amino acid 102 forms hydrogen bonds to H57 and S214 as well as to the backbone amides of A56 and H57. In trypsin S195C, D102 is a hydrogen-bond acceptor for H57 which allows the other imidazole nitrogen to function as a base during catalysis. In trypsin D102N,S195C, the asparagine at position 102 is a hydrogen-bond donor to H57 which places a proton on the imidazole nitrogen proximal to the nucleophile. This tautomer of H57 is unable to act as a base in catalysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Enzymes from psychrophiles show higher catalytic efficiency in the 0-20 degrees C temperature range and often lower thermostability in comparison with meso/thermophilic homologs. Physical and chemical characterization of these enzymes is currently underway in order to understand the molecular basis of cold adaptation. Psychrophilic enzymes are often characterized by higher flexibility, which allows for better interaction with substrates, and by a lower activation energy requirement in comparison with meso/thermophilic counterparts. In their tertiary structure, psychrophilic enzymes present fewer stabilizing interactions, longer and more hydrophilic loops, higher glycine content, and lower proline and arginine content. In this study, a comparative analysis of the structural characteristics of the interfaces between oligomeric psychrophilic enzyme subunits was carried out. Crystallographic structures of oligomeric psychrophilic enzymes, and their meso/thermophilic homologs belonging to five different protein families, were retrieved from the Protein Data Bank. The following structural parameters were calculated: overall and core interface area, characterization of polar/apolar contributions to the interface, hydrophobic contact area, quantity of ion pairs and hydrogen bonds between monomers, internal area and total volume of non-solvent-exposed cavities at the interface, and average packing of interface residues. These properties were compared to those of meso/thermophilic enzymes. The results were analyzed using Student's t-test. The most significant differences between psychrophilic and mesophilic proteins were found in the number of ion pairs and hydrogen bonds, and in the apolarity of their subunit interface. Interestingly, the number of ion pairs at the interface shows an opposite adaptation to those occurring at the monomer core and surface.  相似文献   

8.
A qualitative evaluation of electrostatic features of the substrate binding region of seven isoenzymes of trypsin has been performed by using the continuum electrostatic model for the solution of the Poisson-Boltzmann equation. The sources of the electrostatic differences among the trypsins have been sought by comparative calculations on selective charges: all charges, conserved charges, partial charges, unique cold trypsin charges, and a number of charge mutations. As expected, most of the negative potential at the S(1) region of all trypsins is generated from Asp(189), but the potential varies significantly among the seven trypsin isoenzymes. The three cold active enzymes included in this study possess a notably lower potential at and around the S(1)-pocket compared with the warm active counterparts; this finding may be the main contribution to the increased binding affinity. The source of the differences are nonconserved charged residues outside the specificity pocket, producing electric fields at the S(1)-pocket that are different in both sign and magnitude. The surface charges of the mesophilic trypsins generally induce the S(1) pocket positively, whereas surface charges of the cold trypsins produce a negative electric field of this region. Calculations on mutants, where charged amino acids were substituted between the trypsins, showed that mutations in Loop2 (residues 221B and 224) and residue 175, in particular, were responsible for the low potential of the cold enzymes.  相似文献   

9.
Pig trypsin is routinely used as a biotechnological tool, due to its high specificity and ability to be stored as an inactive stable zymogen. However, it is not an optimum enzyme for conditions found in wound debriding for medical uses and trypsinization processes for protein analysis and animal cell culturing, where low Ca2+ dependency, high activity in mild conditions and easy inactivation are crucial. We isolated and thermodynamically characterized a highly active cold-adapted trypsin for medical and laboratory use that is four times more active than pig trypsin at 10° C and at least 50% more active than pig trypsin up to 50° C. Contrary to pig trypsin, this enzyme has a broad optimum pH between 7 and 10 and is very insensitive to Ca2+ concentration. The enzyme is only distantly related to previously described cryophilic trypsins. We built and studied molecular structure models of this trypsin and performed molecular dynamic calculations. Key residues and structures associated with calcium dependency and cryophilicity were identified. Experiments indicated that the protein is unstable and susceptible to autoproteolysis. Correlating experimental results and structural predictions, we designed mutations to improve the resistance to autoproteolysis and conserve activity for longer periods after activation. One single mutation provided around 25 times more proteolytic stability. Due to its cryophilic nature, this trypsin is easily inactivated by mild denaturation conditions, which is ideal for controlled proteolysis processes without requiring inhibitors or dilution. We clearly show that cold adaptation, Ca2+ dependency and autolytic stability in trypsins are related phenomena that are linked to shared structural features and evolve in a concerted fashion. Hence, both structurally and evolutionarily they cannot be interpreted and studied separately as previously done.  相似文献   

10.
The nucleotide sequence and crystal structure of chum salmon trypsin (CST) are now reported. The cDNA isolated from the pyloric caeca of chum salmon encodes 222 amino acid residues, the same number of residues as the anionic Atlantic salmon trypsin (AST), but one residue less than bovine beta-trypsin (BT). The net charge on CST determined from the sum of all charged amino acid side-chains is -3. There are 79 sequence differences between CST and BT, but only seven sequence differences between CST and AST. Anionic CST isolated from pyloric caeca has also been purified and crystallized; the structure of the CST-benzamidine complex has been determined to 1.8A resolution. The overall tertiary structure of CST is similar to that of AST and BT, but some differences are observed among the three trypsins. The most striking difference is at the C terminus of CST, where the expected last two residues are absent. The absence of these residues likely increases the flexibility of CST by the loss of important interactions between the N and C-terminal domains. Similarly, the lack of Tyr151 in CST (when compared with BT) allows more space for Gln192 in the active site thereby increasing substrate accessibility to the binding pocket. Lys152 in CST also adopts the important role of stabilizing the loop from residue 142 to 153. These observations on CST provide a complementary view of a second cold-adapted trypsin, which in comparison with the structures of AST and BT, suggest a structural basis for differences in enzymatic activity between enzymes from cold-adapted species and mammals.  相似文献   

11.
Atlantic cod trypsin I is an appropriate representative of the traditionally classified cold-adapted group I trypsins, and the recombinant form of cod trypsin Y is the only biochemically characterized member of the novel group III trypsins. Trypsin Y is adapted to lower temperatures than all other presently known trypsins. This review describes the basic characteristics of and practical uses for trypsins of Atlantic cod, as well as those of other organisms. Overexpression of the recombinant forms of cod trypsins I and Y in microorganisms is explained as well as the advantages of using site-directed mutagenesis to increase their stability toward autolysis and thermal inactivation. Trypsins appear to play a key role in the nutrition and development of marine fish. We discuss the potential use of cod trypsins as biomarkers to evaluate the nutritional status of cod larvae and describe the industrial applications of cod trypsin I and other trypsins.  相似文献   

12.

Background  

A wide variety of stabilizing factors have been invoked so far to elucidate the structural basis of protein thermostability. These include, amongst the others, a higher number of ion-pairs interactions and hydrogen bonds, together with a better packing of hydrophobic residues. It has been frequently observed that packing of hydrophobic side chains is improved in hyperthermophilic proteins, when compared to their mesophilic counterparts. In this work, protein crystal structures from hyper/thermophilic organisms and their mesophilic homologs have been compared, in order to quantify the difference of apolar contact area and to assess the role played by the hydrophobic contacts in the stabilization of the protein core, at high temperatures.  相似文献   

13.
Principles of protein thermostability have been studied by comparing structures of thermostable proteins with mesophilic counterparts that have a high degree of sequence identity. Two tetrameric NADP(H)-dependent alcohol dehydrogenases, one from Clostridium beijerinckii (CBADH) and the other from Thermoanaerobacter brockii (TBADH), having exceptionally high (75%) sequence identity, differ by 30 degrees in their melting temperatures. The crystal structures of CBADH and TBADH in their holo-enzyme form have been determined at a resolution of 2.05 and 2.5 A, respectively. Comparison of these two very similar structures (RMS difference in Calpha = 0.8 A) revealed several features that can account for the higher thermal stability of TBADH. These include additional ion pairs, "charged-neutral" hydrogen bonds, and prolines as well as improved stability of alpha-helices and tighter molecular packing. However, a deeper structural insight, based on the location of stabilizing elements, suggests that enhanced thermal stability of TBADH is due mainly to the strategic placement of structural determinants at positions that strengthen the interface between its subunits. This is also supported by mutational analysis of structural elements at critical locations. Thus, it is the reinforcement of the quaternary structure that is most likely to be a primary factor in preserving enzymatic activity of this oligomeric bacterial ADH at elevated temperatures.  相似文献   

14.
Bjelic S  Brandsdal BO  Aqvist J 《Biochemistry》2008,47(38):10049-10057
A major issue for organisms living at extreme temperatures is to preserve both stability and activity of their enzymes. Cold-adapted enzymes generally have a reduced thermal stability, to counteract freezing, and show a lower enthalpy and a more negative entropy of activation compared to mesophilic and thermophilic homologues. Such a balance of thermodynamic activation parameters can make the reaction rate decrease more linearly, rather than exponentially, as the temperature is lowered, but the structural basis for rate optimization toward low working temperatures remains unclear. In order to computationally address this problem, it is clear that reaction simulations rather than standard molecular dynamics calculations are needed. We have thus carried out extensive computer simulations of the keto-enol(ate) isomerization steps in differently adapted citrate synthases to explore the structure-function relationships behind catalytic rate adaptation to different temperatures. The calculations reproduce the absolute rates of the psychrophilic and mesophilic enzymes at 300 K, as well as the lower enthalpy and more negative entropy of activation of the cold-adapted enzyme, where the latter simulation result is obtained from high-precision Arrhenius plots. The overall catalytic effect originates from electrostatic stabilization of the transition state and enolate and the reduction of reorganization free energy. The simulations, however, show psychrophilic, mesophilic, and hyperthermophilic citrate synthases to have increasingly stronger electrostatic stabilization of the transition state, while the energetic penalty in terms of internal protein interactions follows the reverse order with the cold-adapted enzyme having the most favorable energy term. The lower activation enthalpy and more negative activation entropy observed for cold-adapted enzymes are found to be associated with a decreased protein stiffness. The origin of this effect is, however, not localized to the active site but to other regions of the protein structure.  相似文献   

15.
Cold-adapted enzymes are characterised by an increased catalytic efficiency and reduced temperature stability compared to their mesophilic counterparts. Lately, it has been suggested that an optimisation of the electrostatic surface potential is a strategy for cold adaptation for some enzymes. A visualisation of the electrostatic surface potential of cold-adapted uracil-DNA N-glycosylase (cUNG) from Atlantic cod indicates a more positively charged surface near the active site compared to human UNG (hUNG). In order to investigate the importance of the altered surface potential for the cold-adapted features of cod UNG, six mutants have been characterised and compared to cUNG and hUNG. The cUNG quadruple mutant (V171E, K185V, H250Q and H275Y) and four corresponding single mutants all comprise substitutions of residues present in the human enzyme. A human UNG mutant, E171V, comprises the equivalent residue found in cod UNG. In addition, crystal structures of the single mutants V171E and E171V have been determined. Results from the study show that a more negative electrostatic surface potential reduces the activity and increases the stability of cod UNG, and suggest an optimisation of the surface potential as a strategy for cold-adaptation of this enzyme. Val171 in cod UNG is especially important in this respect.  相似文献   

16.
Two shrimp trypsins have been purified from the midguts of Penaeid shrimps by various chromatographies and HPLC. The molecular masses of them are 27 and 29 kDa, respectively. They show the typical specificity of trypsin for substrates and inhibitors, and their N-terminal amino-acid sequences are homologous to those of other trypsins. The shrimp enzymes are very acidic (pI less than or equal to 2.4), and show distinctively low Km for the synthetic amide substrates. They also hydrolyse various native proteins more efficiently than bovine trypsin in vitro. However, the anionic shrimp trypsins do not have special preference for basic protein substrates over the acidic one. Collagenolytic activity of the midgut extract was mainly due to serine proteases. The collagenolytic activity of the purified shrimp trypsin was confirmed by assays with either soluble or insoluble native type I collagens. In comparison with the other trypsins from the Crustacean decapods, the shrimp enzymes have four pairs of disulfide bonds, intermediary between the crayfish trypsin (three pairs) and the crab trypsin (five pairs), and are immunochemically different from them.  相似文献   

17.
Crystal structures of cold-adapted β-d-galactosidase (EC 3.2.1.23) from the Antarctic bacterium Arthrobacter sp. 32cB (ArthβDG) have been determined in an unliganded form resulting from diffraction experiments conducted at 100 K (at resolution 1.8 Å) and at room temperature (at resolution 3.0 Å). A detailed comparison of those two structures of the same enzyme was performed in order to estimate differences in their molecular flexibility and rigidity and to study structural rationalization for the cold-adaptation of the investigated enzyme. Furthermore, a comparative analysis with structures of homologous enzymes from psychrophilic, mesophilic, and thermophilic sources has been discussed to elucidate the relationship between structure and cold-adaptation in a wider context. The performed studies confirm that the structure of cold-adapted ArthβDG maintains balance between molecular stability and structural flexibility, which can be observed independently on the temperature of conducted X-ray diffraction experiments. Obtained information about proper protein function under given conditions provide a guideline for rational engineering of proteins in terms of their temperature optimum and thermal stability.  相似文献   

18.
Some like it cold: biocatalysis at low temperatures   总被引:15,自引:0,他引:15  
In the last few years, increased attention has been focused on a class of organisms called psychrophiles. These organisms, hosts of permanently cold habitats, often display metabolic fluxes more or less comparable to those exhibited by mesophilic organisms at moderate temperatures. Psychrophiles have evolved by producing, among other peculiarities, "cold-adapted" enzymes which have the properties to cope with the reduction of chemical reaction rates induced by low temperatures. Thermal compensation in these enzymes is reached, in most cases, through a high catalytic efficiency associated, however, with a low thermal stability. Thanks to recent advances provided by X-ray crystallography, structure modelling, protein engineering and biophysical studies, the adaptation strategies are beginning to be understood. The emerging picture suggests that psychrophilic enzymes are characterized by an improved flexibility of the structural components involved in the catalytic cycle, whereas other protein regions, if not implicated in catalysis, may be even more rigid than their mesophilic counterparts. Due to their attractive properties, i.e., a high specific activity and a low thermal stability, these enzymes constitute a tremendous potential for fundamental research and biotechnological applications.  相似文献   

19.
Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate with concomitant oxidation of NADH during the last step in anaerobic glycolysis. In the present study, we present a comparative biochemical and structural analysis of various LDHs adapted to function over a large temperature range. The enzymes were from Champsocephalus gunnari (an Antarctic fish), Deinococcus radiodurans (a mesophilic bacterium) and Thermus thermophilus (a hyperthermophilic bacterium). The thermodynamic activation parameters of these LDHs indicated that temperature adaptation from hot to cold conditions was due to a decrease in the activation enthalpy and an increase in activation entropy. The crystal structures of these LDHs have been solved. Pairwise comparisons at the structural level, between hyperthermophilic versus mesophilic LDHs and mesophilic versus psychrophilic LDHs, have revealed that temperature adaptation is due to a few amino acid substitutions that are localized in critical regions of the enzyme. These substitutions, each having accumulating effects, play a role in either the conformational stability or the local flexibility or in both. Going from hot- to cold-adapted LDHs, the various substitutions have decreased the number of ion pairs, reduced the size of ionic networks, created unfavorable interactions involving charged residues and induced strong local disorder. The analysis of the LDHs adapted to extreme temperatures shed light on how evolutionary processes shift the subtle balance between overall stability and flexibility of an enzyme.  相似文献   

20.
Many analyses published in the last decade suggest that enzymes isolated from cold-adapted organisms are characterized by a higher flexibility of their molecular structure. Recently, it has been argued that all cold-adapted enzymes with catalytic efficiency greater than that of their mesophilic counterparts display local flexibility or rigidity that are likely to cooperate, each acting on specific areas of the enzyme structure. Here we report an analysis of the normalized thermal B-factor distributions in psychrophilic proteins compared with those of their mesophilic and thermophilic counterparts with the aim to detect statistically significant local variations of relative backbone flexibility possibly linked to cold adaptation. We utilized a strategy based mainly on intra-family comparison of local distribution of normalized B-factors. After careful statistical treatment of data, the picture emerging from our results suggests that the distribution of the flexibility in psychrophilic enzymes is locally more heterogeneous than in their respective mesophilic homologues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号