首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies based on treatment with antibodies to thyrotropic hormone, luteotropic hormone, growth hormone or adrenocorticotropic hormone have shown that although the unicellular Tetrahymena does not possesssui generis receptors to all polypeptide hormones, such binding structures may arise, or become established in the membrane of the unicellular Tetrahymena in the presence of exogenous hormone. The Tetrahymena subjected to hormonal imprinting still contained an increased amount of hormone after six generation changes, which suggested that either hormone production had been induced by treatment, or the internalized hormone had not been degraded intracellularly. Thus the role of hormonal imprinting in receptor formation has also been substantiated by the immunocytochemical approach used in the present study.  相似文献   

2.
The unicellular ciliate Tetrahymena, contains and binds hormones, characteristic of vertebrates. Earlier experiments demonstrated the effect of extremely low concentrations of hormones. In the present experiments, the effect of various hormones (endorphin, serotonin, histamine, insulin and epidermal growth factor [EGF]) in 10(-15) M, or oxytocin, gonadotropin at 0.001 IU concentrations) on the binding of FITC-insulin was studied by using flow cytometry and confocal microscopy, after 1, 5, 15, 30 and 60 min. Six of the seven hormones promptly decreased the cells' hormone binding capacity, the exception being EGF, and in four cases (endorphin, serotonin, insulin and oxytocin) the reduction was enormous. The decreased binding was durable. However, in the case of endorphin and oxytocin after 30 min, and in the case of serotonin after 60 min the binding returned to the control level. In the case of oxytocin after 60 min, binding significantly surpassed the control level. Histamine returned to the control level after 15 min, but after that the binding became even lower. EGF provoked special behaviour: it increased hormone binding after 30 and 60 min. The results call attention to the extreme sensitivity of Tetrahymena receptors to hormonal inductions and to its quick response ability.  相似文献   

3.
Using flow cytometry and confocal microscopy, the presence of endorphin, serotonin and chorionic gonadotropin (hCG) was demonstrated in rat white blood cells and peritoneal mast cells. After a single neonatal treatment with beta-endorphin (hormonal imprinting), the mast cells of female rats reaching adulthood contained significantly less endorphin and serotonin, as well as slightly less hCG, than control cells. There was no change in the hormone content of the mast cells of males. The lymphocytes, monocytes and granulocytes of both sexes also contained the three hormones, but endorphin imprinting had no effect on these cells.  相似文献   

4.
The effect of beta-endorphin on 2-, 4- and 8-cell embryo development in vitro was studied. It is shown, that hormone has no effect on 2-cell embryos development, but it has enhanced viability of 4- and 8-cell mouse embryos. The number ofblastocyst formation increases in presence of 0.1 microM beta-endorphin in embryo cultured medium but the number of blastocyst with abnormal structure decreases. The effect of hormone on the change of intracellular concentration of Ca2+ ion in 2-, 4- and 8-cell mouse embryo has been studied with the help of fluorescent microscopy. The effect of adenylate cyclase, and phospholipase activity blockers and opioid blocker naloxone on the change of intracellular concentration of Ca2+ ion in early mouse embryo in the presence of beta-endorphin have been also studied. It is shown that 2-cell embryo has opioid and nonopioid beta-endorphin receptors, whereas 4- and 8-cell mouse embryos have only nonopoioid beta-endorphin receptors. It is also shown that the effect of beta-endorphin in the early mouse embryo through a nonopioid receptors occurs with the participation of intracellular Ca2+ and adenylate cyclase signaling system.  相似文献   

5.
Increased hormone levels in Tetrahymena after long-lasting starvation   总被引:1,自引:0,他引:1  
Tetrahymena contains vertebrate hormone-like materials. The level of one of these, insulin increased during starvation in a previous experiment. We hypothesized that other hormones are also influenced by starvation. To prove the hypothesis Tetrahymena pyriformis cultures were (1) starved for 24h; (2) starved for 24h and re-fed for 30min or (3) starved for 30min. Amount and localization of vertebrate-like hormones, produced by Tetrahymena, beta-endorphin, adrenocorticotropin (ACTH), serotonin, histamine, insulin and triiodothyronine (T(3)) were studied by immunocytochemical methods using flow cytometry and confocal microscopy. Long starvation elevated with 50% the hormone levels, while short starvation moderately elevated only the serotonin level in the cells. After short re-feeding endorphin and histamine returned to the basal level, ACTH and serotonin approached the basal level, however, remained significantly higher, while insulin and T(3) stood at the starvation level. The results show that such a stress as long starvation provokes the enhanced production of hormones which likely needed for tolerating the life-threatening effect of stress.  相似文献   

6.
Tetrahymena populations were treated with 10(-15) g ml(-1) or 10(-6) g ml(-1) concanavalin-A (Con-A) in tryptone-yeast medium for 1 h. Rat peritoneal immune cells (mast cells, lymphocytes, monocyte-granulocyte group) were also treated with 10(-6) g ml(-1) Con-A, for 1 h. The cells' hormone (ACTH, histamine, serotonin, endorphin, triiodothyronine (T(3))) content was measured by using immunocytochemistry and flow cytometry. The extremely low dose of Con-A universally and significantly elevated the hormone contents, while the result of higher dose was uncertain. In the immune cells, Con-A significantly decreased the ACTH level in each cell type and histamine level in mast cells. The results demonstrate the very high sensitivity of Tetrahymena receptors for a non-hormone (lectin) molecule, which can bind to the insulin receptors and mimics the effect of insulin. The results also show that Tetrahymena receptors are more sensitive to lower concentrations of molecules than to higher ones. The universal hormone-production stimulating effect of Con-A-which is observed in Tetrahymena-is specified in rat.  相似文献   

7.
It is well established that beta-endorphin has a regulatory influence on the reproductive function at the level of the hypothalamic-pituitary axis. However, recent immunohistochemical evidence demonstrated that beta-endorphin is also present in the Leydig cells of fetal, neonatal and adult mice and hamsters. In addition, beta-endorphin synthesis was localized in the Leydig cells of adult rats, leading to the hypothesis of a direct function of the peptide in the reproductive organs. Our interest was to investigate the role of beta-endorphin at testicular level. We have demonstrated the presence of high-affinity opioid binding sites (Kd in the nanomolar range) in tubular homogenates and Sertoli cells in culture of adult (50 days) and immature (18 days post-natal) rat testes. Also, chronic beta-endorphin treatment of the Sertoli cells significantly inhibited basal and FSH-stimulated androgen-binding protein production, this effect being prevented by the universal opiate antagonist naloxone. No opiate binding was observed on Leydig cell cultures. Furthermore, we have demonstrated that acute or chronic beta-endorphin treatment does not affect testosterone production by Leydig cells in vitro, consistent with the absence of receptors on these cells. On the other hand, fetal Leydig cells (21 days fetal life) in culture produced considerable amounts of beta-endorphin. Also, fetal Leydig cells represented a preferred in vitro system to study beta-endorphin release since in adult cell culture a marked degradation of the peptide was detected (greater than 50%). beta-endorphin accumulation for 3 and 5 days was markedly increased by inhibitors of steroid biosynthesis (1.5-fold); a significant reduction by GnRH at both days (by 50-30%) was observed, while by dexamethasone the reduction was only noted after 5 days of treatment (by 50%). Acute stimulation (3 h) of control cells with hCG enhanced by 10-12-fold the beta-endorphin secretion. The hormone stimulation of beta-endorphin production was not mediated by testosterone. On the contrary, inhibition of Leydig cells steroid biosynthesis markedly increased basal and hCG-stimulated beta-endorphin production (150-200%), suggesting autocrine negative modulation of Leydig cell beta-endorphin by androgen and/or its metabolites. In contrast, dexamethasone reduced basal and hCG-stimulated beta-endorphin production (by 50%). Altogether these findings indicate that beta-endorphin produced within the Leydig cells may behave as a paracrine inhibitor of the Sertoli cell function and demonstrate that the peptide production is under direct control by gonadotropins and is modulated by steroids.  相似文献   

8.
Neurointermediate lobes from amphibians (Rana pipiens) were incubated in Medium 199 containing dopamine, beta-endorphin or dopamine plus beta-endorphin. Dopamine inhibited melanocyte-stimulating hormone (MSH) secretion as measured by bioassay in hypophysectomized frogs, an effect which was transiently reversed by beta-endorphin. The effects of endorphin were in turn partially suppressed by the opiate antagonist, naloxone hydrochloride. Cells treated with all three agents exhibited expanded rough endoplasmic reticulum and decreased secretory granule content, indicative of peptide release and new synthesis. Beta-Endorphin alone did not stimulate MSH secretion above control levels, and at one time period was seen to reduce MSH secretion. The findings indicate a complex interaction between beta-endorphin and dopamine directly upon MSH secretion at the level of the neurointermediate lobe.  相似文献   

9.
The effects of gonadotropin-releasing hormone (GnRH), beta-endorphin and its antagonist naloxone on the expression of luteinizing hormone (LH) subunit genes and LH secretion were examined in ovariectomized and/or cycling female rats through their direct microinjection into the third cerebral ventricle, in the proximity of the hypothalamus-pituitary complex. GnRH (1 nM) induced a significant augmentation of the pituitary content of alpha mRNA when administered 15, 30 or 60 min intervals over 5 h to ovariectomized rats whereas only the 30 and 60 min intervals were effective in increasing LHbeta mRNA, and the 60 min intervals for LH release. This was in agreement with the established concept of a pulse-dependent regulation of gonadotropin synthesis and release. Hourly pulses of GnRH also increased alpha and LHbeta mRNA levels when microinjected in female cycling rats during proestrus or diestrus II. Using this model we observed a marked negative influence of hourly intracerebral microinjections of beta-endorphin on LH mRNA content and LH release in ovariectomized rats while naloxone had no effect. This suggests that endogenous beta-endorphin was unable to exert its negative action on beta-endorphin receptors that were present and responded to the ligand. The present approach would be valuable for the exploration of the mechanisms of action of beta-endorphin or other substances on the functions of the gonadotrophs.  相似文献   

10.
Humural endorphin, a recently discovered endogenous opioid factor stimulates the release of growth hormone and, to some extent of prolactin, similarly to other endogenous (enkephalin, β-endorphin) and exogenous (morphine) opiates. This stimulatory effect is dose-dependent with peak values at 30 minutes following intraventricular injection to newborn rats. However, in contrast to the other opioid ligands, the effect of humoral endorphin is not blocked in a dose-dependent fashion by naloxone, the potent opiate antagonist. Thus, while moderate doses of naloxone partially inhibit the stimulatory effect, higher doses which completely block morphine, enkephalin and β-endorphin, are ineffective in antagonizing humoral endorphin. This peculiar interaction between naloxone and humoral endorphin resembles the effect of the opiate antagonist on spontaneous release of growth hormone and prolactin, suggesting the involvement of humoral endorphin in the physiological regulation of hypophysial secretion.  相似文献   

11.
采用无血清培养的方法,分析了促肾上腺激素皮质激素(adrenocorticotropic hormone,ACTH)、黄体生成素(luteinizing hormone,LH)、cAMP、内啡肽(endorphin)和纳络酮(naloxone)对原代共培养的恒河猴(Macaca mulatta)睾丸间质细胞与支持细胞雌二醇分泌水平的影响。结果显示:ACTH、LH、cAMP和纳络酮对原代共培养恒河猴睾丸间质细胞与支持细胞的雌二醇分泌水平具有促进作用,并且这种影响与共培养的间质细胞数量呈线性关系,即共培养的间质细胞数量增加,雌二醇分泌水平亦明显上升;而内啡肽对原代共培养恒河猴睾丸间质细胞与支持细胞的雌二醇分泌水平有明显的抑制作用。研究表明,恒河猴睾丸的间质细胞对支持细胞分泌雌二醇具有调节作用。  相似文献   

12.
The interaction of beta-endorphin with opiate receptors was studied by using the radioiodinated, metabolically stable D-Ala2 derivative of human beta-endorphin. This analog binds specifically to rat brain membrane preparations with an apparent Kd of about 2.5 x 10-9 M. The ability of various enkephalin analogs, as well as opiate agonists and antagonists, to inhibit the binding of beta-endorphin clearly demonstrates that this peptide can bind to opiate receptors. However, the effects of various cations on the binding of 125I-[D-Ala2]beta-endorphin are markedly different from those found for enkephalin binding. Sodium ion at physiological concentrations decreases substantially the binding of enkephalins but only slightly decreases endorphin binding, whereas manganese enhances enkephalin binding but has no effect on endorphin binding. Moreover, potassium (100 mM) decreases the binding of beta-endorphin but does not affect enkephalin binding. These results suggest that beta-endorphin and enkephalin bind differently to the same receptor or bind to different receptors with overlapping specificity.  相似文献   

13.
Though administration of opioid peptides depresses ventilation and ventilatory responsiveness, the role of endogenous opioid peptides in modulating ventilatory responsiveness is not clear. We studied the interaction of endogenous opioids and ventilatory responses in 12 adult male volunteers by relating hypercapnic responsiveness to plasma levels of immunoactive beta-endorphin and by administering the opiate antagonist naloxone. Ventilatory responsiveness to hypercapnia was not altered by pretreatment with naloxone, and this by itself suggests that endogenous opioids have no role in modulating this response. However, there was an inverse relationship between basal levels of immunoactive beta-endorphin in plasma and ventilatory responsiveness to CO2. Furthermore, plasma beta-endorphin levels rose after short-term hypercapnia but only when subjects had been pretreated with naloxone. We conclude that measurement of plasma endorphin levels suggests relationships between endogenous opioid peptides and ventilatory responses to CO2 that are not apparent in studies limited to assessing the effect of naloxone.  相似文献   

14.
In the unicellular organism, Tetrahymena, the first encounter with an exogeneously given hormone results in hormonal imprinting. This causes an increase of the binding capacity of receptors and the production of the appropriate hormone in the progeny generations of the treated cell. In the present experiments the quantity (using radioimmunoassay) and localization (using confocal laser scanning microscopy) of the immunologically insulin‐like material (hereafter insulin) were studied for 10 days after 4 h or 24 h 10−6 m insulin treatment (hormonal imprinting). Forty‐eight hours after both insulin treatments a high quantity of insulin was present in the cells. This value was also significantly increased after 96 h. After 8 days the difference to the control was significant only in the 24 h treated group. Confocal microscopy (using antibody to pig insulin) localized insulin in the cell body. The oral field contained extremely high quantities of the endogeneous hormone. Insulin treatment (after 48 and 96 h) caused an elevation of insulin content in general, and specific accumulation in the posterior sections of the cell, around the nucleus and in the periphery were observed. Ten days after both treatments only the peripheral region of the cell body and the ciliary row contained more insulin than the control. This means that after insulin treatment the quantity of insulin increases for a lengthy time period which is followed by the expression of insulin in the peripheral region. Insulin contained by Tetrahymena 48 h after imprinting stimulated glucose uptake of rat diaphragm. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
The beta-endorphin 10(-7-)-10(-11) M in LPS (lypopolisaccharide) presence and in spontaneous cultures promoted the IL-1beta production in mixed leukocyte fraction. LPS-induced IL-8 production in leukocyte fraction was inhibited by beta-endorphin 10(-7), 10(-11) M. The enchasing effect of beta-endorphin on IL-1beta production was not blocked by naloxone and naltrindole. The inhibitory effect of beta-endorphin on IL-8 production was blocked by naloxone and naltrindole. In mononuclear and neutrophile fractions beta-endorphin and delta-agonist DADLE enchased IL-1beta production in spontaneous and LPS-stimulating cultures, when IL-8 production inhibited beta-endorphin and delta-agonist DADLE only in LPS presence. No effect of mu-agonist DAGO were observed on IL-1beta production, whereas LPS-induced IL-8 secretion in neutrophile fraction inhibited by DAGO.  相似文献   

16.
Hormone receptors, hormones and signal transduction pathways characteristic of higher vertebrates can be observed also in the unicellular Tetrahymena. Previous work showed that stress conditions (starvation, high temperature, high salt concentration, formaldehyde or alcohol treatment) elevated the intracellular level of four hormones (ACTH, endorphin, serotonin and T3). Here, the effect of other stressors (CuSO4 poisoning, tryptophan hydroxylase inhibitor parachlorphenylalanine (PCPA) treatment) on the same and other hormones (epinephrine, insulin, histamine) was studied, using immunocytochemistry and flow cytometric analysis. It was found, that each effect increased the intracellular hormone contents, but some hormones (histamine, T3) were less reactive. Insulin—which is a life‐saving factor for Tetrahymena—itself provoked elevation of hormone amounts in association with a stressor, further increased the level of hormones. It was concluded that the ancestor of Selye's General Adaptation Syndrome (GAS) can be found already at unicellular level, and this possibly has a life saving function. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Exposure of C6 glial cell cultures to desipramine induced the appearance of opioid receptors and up-regulated sigma receptors. Opioid binding was demonstrated with 3H-etorphine and 3H-dihydromorphine (DHM), but was not observed with the mu, delta and kappa ligands 3H-DAMGE, 3H-DADLE or 3H-(-)ethylketocyclazocine in the presence of specific blockers, respectively. Competition experiments with 3H-DHM and either (-)naloxone or (+)naloxone indicated the presence of authentic opioid receptors. In similar studies with beta-endorphin, its truncated form (1-27) or their N-acetyl derivatives, beta-endorphin proved to have the highest affinity. Opioid receptors in glial cell aggregates were primarily kappa, with few mu and delta sites. Desipramine increased Bmax values for kappa but not mu and delta.  相似文献   

18.
FITC-insulin binding to previously hormone-treated Tetrahymena was studied by flow cytometry and confocal microscopy. Hormones produced by Tetrahymena were chosen for study and the hormone concentrations were administered between 10(-6) and 10(-21)M for 30 min. Endorphin, serotonin and insulin significantly reduced the hormone binding however histamine did not influence it at all. Endorphin, serotonin and insulin were significantly effective down to 10(-18)M and the effect of insulin and endorphin suggest a similar mechanism. The results call attention to the efficacy of very low hormone concentrations, which can influence the hormone content (earlier experiments) and receptor binding capacity (present study) of a unicellular organism. This seems to be very important, as in wild (natural) conditions the dilution of signaling materials secreted by a water-living protozoan is very high. In addition, the results point to the selectivity of response, as not all of the hormones that deeply influence other physiological indices (e.g. histamine) have an effect on insulin content or insulin receptors.  相似文献   

19.
White blood cells of rats (lymphocytes, monocytes, macrophages, granulocytes and mast cells) contain beta-endorphin. Two months after a single neonatal benzpyrene treatment (imprinting) there is an elevated level of immunoreactive endorphin in the blood and peritoneal cells of female animals and blood cells of males. The endorphin content decreased in the peritoneal cells of males. In the blood, the granulocytes of female, and the lymphocytes of male rats contained the highest amount of endorphin. In the peritoneal fluid also the granulocytes of females contained the highest amount of endorphin, in contrast to males, where the endorphin content of cells decreased and the lowest level of it was present in the lymphocytes. The experiments justify that benzpyrene treatment can durably influence endorphin levels of white blood cells and gives new data to the already known lifelong health destroying effects of perinatal benzpyrene exposition (alterations of hormone receptor binding capacity and sexual behavior).  相似文献   

20.
Thin layer chromatographic, and laser-confocal microscopic analyses with a monoclonal antibody to digoxin also displaying high affinity to digoxigenin, were used to determine the presence and localization of cardioactive glycosides. Tetrahymena pyriformis was found to possess digitoxigenin-like material, but digoxin, digitoxin, digoxigenin, gitoxin and lanatoside C were not detected. Digitoxin treatment elicited the appearance of a digoxin-like material in the progeny generations. Digoxin was taken up by untreated Tetrahymena, especially strongly 24 h after digitoxin treatment. While the cardenolide was localized in vesicles of the cell body in untreated Tetrahymena, the engulfed digoxin appeared in the epiplasmic layer and also in the cilia after digitoxin pretreatment. Digoxin pretreatment did not increase digoxin uptake. These data indicate that Tetrahymena has: (1) the capacity to discriminate between closely related molecules; (2) the ability to induce digoxin-like material production; and/or (3) enzymes that can effect a digitoxin-digoxin transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号