首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Thiobacillus ferrooxidans was immobilized by entrapment into calcium alginate matrix. The immobilized bacteria were used in packed-bed column reactors for the continuous oxidation of ferrous ion at pH 1.5. The presence of mineral salts resulted in a shorter lag period before a steady-state of about 95% iron oxidation was achieved. Parallel shake flask experiments were used to evaluate pH, mineral salts, and alginate toxicity as factors influencing biological iron oxidation. Manometric experiments indicated that the previous growth history of T. ferrooxidans was important in determining the rate of iron oxidation. Scanning electron microscopy and energy dispersive analysis of X-rays were used to characterize bacteria entrapped in calcium alginate and the enrichment of iron in the matrix.  相似文献   

2.
Many members of the familyVibrionaceae have been implicated as causative agents of diarrhea. Most of these organisms are non-lactose fermenters, and all are oxidase-positive. If the oxidase test could be reliably performed on growth from the surface of Kligler's iron agar and/or triple sugar iron agar slants, it would aid in the screening of potential stool pathogens. Forty-six isolates from the generaAeromonas, Plesiomonas, andVibrio were inoculated onto Kligler's iron agar and triple sugar iron agar slants, incubated overnight, and tested for oxidase activity. All 46 isolates produced alkaline over acid, with or without gas, Kligler's iron agar slants and were oxidase-positive. On triple sugar iron agar slants, 13 isolates produced these same patterns, and all were oxidase-positive. Acid over acid, with gas, triple sugar iron agar slants were produced by 18 isolates, and all were oxidase-positive. Acid over acid, without gas, triple sugar iron agar slants were produced by 15 isolates, and all were oxidase-negative. These negative oxidase tests were due to low pH. Oxidase tests performed from the surface of Kligler's iron agar and triple sugar iron agar slants used to screen stool isolates were reliable, provided the slants were acid over acid with gas, or alkaline over acid with or without gas. Kligler's iron agar is recommended with this procedure, since most potential stool pathogens of both theEnterobacteriaceae and theVibrionaceae will produce an alkaline over acid, with or without gas, slant, and false negative oxidase tests will be minimized.  相似文献   

3.
The effect of pH, oxygen and ferrous iron on growth and oxidation rates of iron-oxidizing bacteria (Gallionella spp and Leptothrix spp) as well as indirect effects, the most prominent being catalytic activity of the produced ferric iron deposits, were investigated. Deposits of biotic origin exhibit slightly lower surface oxidation rates compared to abiotically produced ferric iron. It was shown that the required habitat conditions of the studied species hardly overlap, but increase the pH/oxygen range of potential Fe(II) oxidation conditions. The study highlights the combined effect of microbial iron oxidation and catalytic properties of the Mn and Fe oxidation products.  相似文献   

4.
Low-density seedings of yeast cells ofParacoccidioides brasiliensis give poor growth (as assessed by plating efficiency test) on conventional mycological agar media, and therefore growth-promoting factors for this fungus were sought. Water-extracts of yeast cells of sixP. brasiliensis isolates were all considerably effective in promoting the growth of low-density seedings ofP. brasiliensis isolates Pb-18 and Hachisuga, but had little effect on isolate Bt-4. Horse serum, at a concentration range of 2–4%, moderately or considerably promoted the growth of theseP. brasiliensis isolates. Combinations of the fungus cell extracts with horse serum were highly effective in promoting the growth of all of the fungal isolates. The fungus cell extracts showed siderophore (microbial iron carrier) activity. An iron-chelator, ethylenediaminetetraacetic acid, at a concentration of 100 μM also highly promoted the growth of the fungal isolates in the presence of horse serum, and ferric ion added to culture medium was considerably effective in the growth promotion. These results suggest that deficient utilization of external iron by the fungus cell is one of the growth-limiting processes for low-density seedings of yeast cells ofP. brasiliensis on conventional mycological agar media.  相似文献   

5.
With one of the largest iron ore deposits in the world, South Africa is recognised to be among the top ten biggest exporters of iron ore. Increasing demand and consumption of this mineral triggered search for processing technologies, which can be utilised to “purify” the low-grade iron ore minerals that contain high levels of unwanted potassium (K) and phosphorus (P). This study investigated a potential biological method that can be further developed for the full biobeneficiation of low-grade iron ore minerals. Twenty-three bacterial strains that belong to Proteobacteria, Firmicutes, Bacteroidetes and Actinobateria were isolated from the iron ore minerals and identified with sequence homology and phylogenetic methods. The abilities of these isolates to lower the pH of the growth medium and solubilisation of tricalcium phosphate were used to screen them as potential mineral solubilisers. Eight isolates were successfully screened with this method and utilised in shake flask experiments using iron ore minerals as sources of K and P. The shake flask experiments revealed that all eight isolates have potentials to produce organic acids that aided the solubilisation of the iron ore minerals. In addition, all eight isolates produced high concentrations of gluconic acid followed by relatively lower concentrations of acetic, citric and propanoic acid. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) analyses also indicated extracellular polymeric substances could play a role in mineral solubilisation.  相似文献   

6.
Acidiphilium cryptum was co-isolated with two Alicyclobacillus-like species from a terrestrial saline mine site. Co-cultivation of A. cryptum BV1 with the Alicyclobacillus-like species under saline conditions resulted in faster cell growth and increased iron oxidation compared with the pure mono-cultures. The rates of iron oxidation relative to cell numbers increased three fold.  相似文献   

7.
The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures was examined, using on-line off-gas analyses to measure the oxygen and carbon dioxide consumption rates continuously. A cell suspension from continuous cultures at steady state was used as the inoculum. It was observed that a dynamic phase occurred in the initial phase of the experiment. In this phase the bacterial ferrous iron oxidation and growth were uncoupled. After about 16 h the bacteria were adapted and achieved a pseudo-steady state, in which the specific growth rate and oxygen consumption rate were coupled and their relationship was described by the Pirt equation. In pseudo-steady state, the growth and oxidation kinetics were accurately described by the rate equation for competitive product inhibition. Bacterial substrate consumption is regarded as the primary process, which is described by the equation for competitive product inhibition. Subsequently the kinetic equation for the specific growth rate, μ, is derived by applying the Pirt equation for bacterial substrate consumption and growth. The maximum specific growth rate, μ max, measured in the batch culture agrees with the dilution rate at which washout occurs in continuous cultures. The maximum oxygen consumption rate, q O2,max, of the cell suspension in the batch culture was determined by respiration measurements in a biological oxygen monitor at excess ferrous iron, and showed changes of up to 20% during the course of the experiment. The kinetic constants determined in the batch culture slightly differ from those in continuous cultures, such that, at equal ferric to ferrous iron concentration ratios, biomass-specific rates are up to 1.3 times higher in continuous cultures. Received: 8 February 1999 / Accepted: 17 February 1999  相似文献   

8.
From an uranium mine three strains of rodshaped, mesophilic, chemolithoautotrophic bacteria were isolated. They grow by oxidation of H2S, galena (PbS) and H2. Anglesite (PbSO4) is formed from galena. No ferrous iron is oxidized by the isolates. They grow between pH 4 and 6.5 at temperatures of about 9 to 41°C (optimum around 27°C). The G+C content of the DNA is around 66 mol %. Based on their ability to oxidize sulfur compounds, the new organisms belong to the genus Thiobacillus. No significant homology with Thiobacillus ferrooxidans and Thiobacillus cuprinus was detected by DNA-DNA hybridization. Therefore the new isolates represent a new species within the genus Thiobacillus. Based on the unusual growth on galena, we name the new species Thiobacillus plumbophilus (type strain Gro 7; DSM 6690).  相似文献   

9.
Summary The isolation of bacteria producing siderophores under alkaline conditions is reported. Enrichment cultures initiated with samples from a number of alkaline environmental sources yielded 80 isolates. From this group selections were made on the basis of growth at high pH and the gallium-binding capacity of the siderophores. It was found that some isolates grew well and high concentrations of siderophore were detected whereas others grew well in the presence of much lower concentrations of siderophore. The effect of iron, gallium and aluminium on growth and siderophore production in batch culture was investigated for six isolates. The presence of iron greatly decreased the siderophore concentration in these cultures, whereas the response to added gallium or aluminium was dependent upon the isolate. Offsprint requests to: D. J. Gascoyne  相似文献   

10.
When ferrous iron and sulfur were supplied, cells of T. ferrooxidans in a well-aerated medium started growth by oxidizing ferrous iron. After ferrous iron depletion a lagphase followed before sulfur oxidation started. During sulfur oxidation at pH-values below 1.3 (±0,2) the ferrous iron concentration increased again, although the oxygen saturation of the medium amounted to more than 95%. The number of viable cells did not increase. Thus resting cells of T. ferrooxidans, which are oxidizing sulfur to maintain their proton balance, reduce ferric to ferrous iron. The ferrous iron-oxidizing system seemed to be inhibited at pH-values below 1.3. At a pH-value of 1.8 the ferrous iron was reoxidized at once. A scheme for the linkage of iron- and sulfur metabolism is discussed.  相似文献   

11.
利用构建的烟曲霉金属还原酶基因(AFUA-1G00350,Fre B2)缺失突变株,对烟曲霉金属还原酶基因Fre B2功能进行初步研究,为揭示该基因与烟曲霉的致病关系提供依据。比较野生株和基因缺失突变株在AMM和无铁AMM液体培养基中生长时高铁还原酶的活性,绘制不同时间野生株和基因缺失突变株在AMM和无铁AMM液体培养基中生长时高铁还原酶活性曲线。利用Real-Time PCR方法分析Sre A、Sid A、Fet C、Ftr A和Fre B这些与铁的吸收相关基因的mRNA的表达量变化。测定野生株和基因缺失突变株对氧化压力的敏感性及胞内活性氧物质含量。不论在AMM液体培养基中还是在无铁AMM液体培养基中培养时,突变株高铁还原酶的活性都明显高于野生株高铁还原酶活性。与野生株相比培养60 h时,突变株Sre A、Sid A、Fet C、Ftr A和Fre B这些与铁的吸收相关基因的表达量出现明显上调。氧化压力敏感性实验显示,基因缺失突变株对H2O2的敏感性显著增强,同时胞内活性氧物质含量明显增多。金属还原酶基因Fre B2在烟曲霉铁吸收及氧化压力应答过程中发挥作用;烟曲霉与铁吸收相关基因之间存在功能互补效应。  相似文献   

12.
Since the ability of bacteria to compete with lactoferrin for iron contributes to the pathogenesis of mucosal infections, the presence of lactoferrin receptor activity in non-encapsulated Haemophilus influenzae was investigated. The growth of 18 H. influenzae isolates from the sputum samples of chronic bronchitis patients and of six of seven H. influenzae throat isolates from healthy adults was stimulated by iron saturated human lactoferrin. Apo-lactoferrin did not stimulate the growth of H. influenzae. Human lactoferrin binding to iron limited bacteria was detected for 16 H. influenzae strains from chronic bronchitis patients and for five of seven isolates from healthy adults. We conclude that the majority of H. influenzae isolates tested bind human lactoferrin and that the iron from lactoferrin is used for growth.  相似文献   

13.
Trichoderma species are commonly used as biological control agents against phytopathogenic fungi and some strains are able to produce metabolites that enhance plant growth. In the current study we evaluated the production of potential growth-promoting metabolites, rhizosphere competence and endophytism for 101 isolates of Trichoderma from Colombia, and assessed the relationship of these factors to the enhancement of early stages of growth on bean seedlings. Twenty percent of these Trichoderma strains were able to produce soluble forms of phosphate from phosphoric rock. Only 8% of the assessed strains showed consistent ability to produce siderophores to convert ferric iron to soluble forms by chelation. Sixty percent of isolates produced indole-3-acetic acid (IAA) or auxin analogues. The production of any of these metabolites was a characteristic of specific strains, as the ability to produce these metabolites varied greatly within species. Moreover, the production of these substances did not correlate with enhanced growth on bean seedlings, measured as the combined increase in length of roots and aerial parts in the V3 stage of growth. Seven Trichoderma isolates significantly improved the growth of bean seedlings. However, metabolite production varied widely in these seven strains, and some isolates did not produce any of the assessed growth-promoting metabolites. Results indicated that growth was enhanced in the presence of rhizosphere competent and endophytic strains of Trichoderma, and these characteristics were strain-specific and not characteristic for species.  相似文献   

14.
Ferrous iron bio‐oxidation by Acidithiobacillus ferrooxidans immobilized on polyurethane foam was investigated. Cells were immobilized on foams by placing them in a growth environment and fully bacterially activated polyurethane foams (BAPUFs) were prepared by serial subculturing in batches with partially bacterially activated foam (pBAPUFs). The dependence of foam density on cell immobilization process, the effect of pH and BAPUF loading on ferrous oxidation were studied to choose operating parameters for continuous operations. With an objective to have high cell densities both in foam and the liquid phase, pretreated foams of density 50 kg/m3 as cell support and ferrous oxidation at pH 1.5 to moderate the ferric precipitation were preferred. A novel basket‐type bioreactor for continuous ferrous iron oxidation, which features a multiple effect of stirred tank in combination with recirculation, was designed and operated. The results were compared with that of a free cell and a sheet‐type foam immobilized reactors. A fivefold increase in ferric iron productivity at 33.02 g/h/L of free volume in foam was achieved using basket‐type bioreactor when compared to a free cell continuous system. A mathematical model for ferrous iron oxidation by Acidithiobacillus ferrooxidans cells immobilized on polyurethane foam was developed with cell growth in foam accounted by an effectiveness factor. The basic parameters of simulation were estimated using the experimental data on free cell growth as well as from cell attachment to foam under nongrowing conditions. The model predicted the phase of both oxidation of ferrous in shake flasks by pBAPUFs as well as by fully activated BAPUFs for different cell loadings in foam. Model for stirred tank basket bioreactor predicted within 5% both transient and steady state of the experiments closely for the simulated dilution rates. Bio‐oxidation at high Fe2+ concentrations were simulated with experiments when substrate and product inhibition coefficients were factored into cell growth kinetics. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

15.
Factors that regulate and induce stalk formation by the iron-oxidizing and stalk-forming bacterium Gallionella ferruginea were studied in laboratory cultures and in situ. A stalk-forming strain, Sta+, and a non-stalk-forming strain, Sta-, were used for comparative studies of the benefits associated with the stalk. Two different growth media were used: a ferrous sulfide medium (FS-medium), with slow oxidation of iron giving high concentrations of toxic oxygen radicals and a ferrous carbonate medium (FC-medium), with fast iron oxidation giving low concentration of the toxic oxygen radicals. It was found that Sta+ cells grown in the FS-medium survived 3 weeks longer than Sta- cells grown in the FS-medium. When each strain was grown in the FC-medium, the Sta- cells had an advantage and survived 8 weeks longer than the Sta+ cells. No difference in survival was found for Sta+ cells grown in FS-medium compared to growth in FC-medium. In laboratory cultures, the average stalk length per cell values were 7–2.5 times higher (92 h and 150–300 h growth, respectively) in a medium with 620 m iron than in a medium with 290 m iron. Gallionella ferruginea Sta+ outcompeted Sta- cells when inoculated as mixed populations in FC-medium. It has previously been suggested that stalk formation in vitro is induced by oxygen. To confirm this observation, biofilm development in natural waters was studied in two wells, one with trace amounts of oxygen (LH) and one without (TH). A dense biofilm developed on surfaces exposed to flowing well LH water, but no biofilm developed in well TH. Stalks were formed in water samples from both wells when allowed to make contact with air. This work demonstrates for the first time that the stalk has a protecting function against the toxic oxygen radicals formed during the chemical iron oxidation. It also shows that it is the oxidation rate of the ferrous iron and not its concentration that is harmful to the cells. The stalk gives G. ferruginea a unique possibility to colonize and survive in habitats with high contents of iron, inaccessible for bacteria without a defense system against the oxidation of iron. Correspondence to: L. Hallbeck  相似文献   

16.
The extreme acid conditions required for scorodite (FeAsO4·2H2O) biomineralization (pH below 1.3) are suboptimal for growth of most thermoacidophilic Archaea. With the objective to develop a continuous process suitable for biomineral production, this research focuses on growth kinetics of thermoacidophilic Archaea at low pH conditions. Ferrous iron oxidation rates were determined in batch-cultures at pH 1.3 and a temperature of 75°C for Acidianus sulfidivorans, Metallosphaera prunea and a mixed Sulfolobus culture. Ferrous iron and CO2 in air were added as sole energy and carbon source. The highest growth rate (0.066 h−1) was found with the mixed Sulfolobus culture. Therefore, this culture was selected for further experiments. Growth was not stimulated by increase of the CO2 concentration or by addition of sulphur as an additional energy source. In a CSTR operated at the suboptimal pH of 1.1, the maximum specific growth rate of the mixed culture was 0.022 h−1, with ferrous iron oxidation rates of 1.5 g L−1 d−1. Compared to pH 1.3, growth rates were strongly reduced but the ferrous iron oxidation rate remained unaffected. Influent ferrous iron concentrations above 6 g L−1 caused instability of Fe2+ oxidation, probably due to product (Fe3+) inhibition. Ferric-containing, nano-sized precipitates of K-jarosite were found on the cell surface. Continuous cultivation stimulated the formation of an exopolysaccharide-like substance. This indicates that biofilm formation may provide a means of biomass retention. Our findings showed that stable continuous cultivation of a mixed iron-oxidizing culture is feasible at the extreme conditions required for continuous biomineral formation.  相似文献   

17.
Kinetic data of ferrous iron oxidation by Thionacillus ferrooxidans were determined. The aim was to remove H2S (<0.5 ppm) from waste gas by a process proposed earlier. Kinetic data necessary for industrial scale-up were investigated in a chemostat airlift reactor (dilution rate 0.02–0.12 h–1; pH 1.3). Due to the low pH, ferric iron precipitation and wall growth could be avoided. The maximum ferrous iron oxidation rate of submersed bacteria was 0.77 g 1–1 h–1, the maximum specific growth rate about 0.12 h–1 and the yield coefficient was found to be 0.007 g g–1 Fe2+. The specific O2 demand of an exponentially growing, ironoxidizing batch culture was 1.33 mg O2 mg–1 biomass h–1. The results indicate that a pH of 1.3 has no negative influence on the kinetics of iron oxidation and growth. Correspondence to: W. Schäfer-Treffenfeldt  相似文献   

18.
A novel iron-oxidizing, moderately thermophilic, acidophilic bacterium (strain “GSM”) was isolated from mineral spoil taken from a gold mine in Montana. Biomolecular analysis showed that it was most closely related to Alicyclobacillus tolerans, although the two bacteria differed in some key respects, including the absence (in strain GSM) of ϖ-alicyclic fatty acids and in their chromosomal base compositions. Isolate GSM was able to grow in oxygen-free media using ferric iron as terminal electron acceptor confirming that it was a facultative anaerobe, a trait not previously described in Alicyclobacillus spp.. The acidophile used both organic and inorganic sources of energy and carbon, although growth and iron oxidation by isolate GSM was uncoupled in media that contained both fructose and ferrous iron. Fructose utilization suppressed iron oxidation, and oxidation of ferrous iron occurred only when fructose was depleted. In contrast, fructose catabolism was suppressed when bacteria were harvested while actively oxidizing iron, suggesting that both ferrous iron- and fructose-oxidation are inducible in this acidophile. Isolate GSM accelerated the oxidative dissolution of pyrite in liquid media either free of, or amended with, organic carbon, although redox potentials were significantly different in these media. The potential of this isolate for commercial mineral processing is discussed.  相似文献   

19.
Abstract Three strains of moderately thermophilic and acidophilic bacteria capable of oxidising ferrous iron, isolated from different sources, were compared with each other and with an earlier isolate, TH1. The isolates displayed different rates of carbon dioxide fixation and incorporation of glucose and glycine; only one could be subcultured continuously in organic-free ferrous sulfate medium. Two of the isolates readily oxidised elemental sulfur, and all were capable of solubilising pyrite and chalcopyrite, though at different rates; there was no correlation between rates of ferrous iron and pyrite oxidation. Reduction of ferric iron by two of the isolates was observed in unshaken cultures containing 10 mM glucose. The DNA base composition of the isolates varied from 43–68 mol% G + C.  相似文献   

20.
The majority of bacteria isolated from rhizospheres of Arachis hypogea (Groundnut) and Vigna radiata (Mung bean) predominantly produced catechol-type siderophores except for a few fluorescent pseudomonads that produced hydroxamates in addition to catecholates. The rhizospheric isolates differed in their ability to cross-utilize siderophores produced by other rhizospheric isolates (heterologous); some were highly proficient at utilizing heterologous siderophores, while others were poor cross-utilizers. Isolate G9, which utilized hydroxamate as well as catecholate siderophores, was found to be an efficient siderophore cross-utilizer, while isolates G2 and G6 were poor-utilizers of catecholate and non-utilizers of hydroxamate siderophores. Growth stimulation of two isolates G9 and G6 was seen when grown in the presence of externally supplied heterologous siderophores, which they cross-utilized. The iron-regulated outer membrane protein (IROMP) profiles differed for the most cross-utilizer and the least cross-utilizer strains, but in both the cases no new outer membrane proteins (OMP) were induced in response to the exogenous siderophores supplied. The growth of the organisms in the presence of heterologous siderophores that they failed to cross-utilize led to growth inhibition in the case of isolate G9. This appears to be due to a lower affinity of the siderophore of G9 as compared to the exogenously supplied G6 siderophore. A simple method was devised to measure relative affinities of respective siderophores for iron based on CAS solution decolorization by the siderophore preparations. The effect on the growth of the differential affinities of the siderophores for iron and the interactions of the organisms through cross-utilization is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号