首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 537 毫秒
1.
The mouse gene encoding the mu opioid receptor, Oprm, undergoes extensive alternatively splicing, with 14 variants having been identified. However, only one variant of human mu opioid receptor gene (Oprm), MOR-1A, has been described. We now report two novel splice variants of the human Oprm gene, hMOR-1O and hMOR-1X. The full-length cDNAs of hMOR-1O and hMO-1X contained the same exons 1, 2, and 3 as the original hMOR-1, but with exon O or exon X as the alternative fourth exon, respectively. Northern blots revealed several bands with the exon O probe in both human neuroblastoma BE(2)C cells and human brain and a single band (5.5kb) with the exon X probe in selected human brain regions. When transfected into CHO cells, both variants showed high selectivity for mu opioids in binding assays. These two new human mu opioid receptors are the first human MOR-1 variants containing new exons and suggest that the complex splicing present in mice may extend to humans.  相似文献   

2.
3.
Pasternak GW 《Life sciences》2001,68(19-20):2213-2219
Although mu opioids share many pharmacological characteristics, they also reveal many differences. Many approaches over the years have suggested the existence of multiple mu opioid receptors. The unique selectivities of naloxonazine, for example, provided a way of distinguishing mu, from mu2 actions. Studies of morphine-6beta-gluruconide suggested that its actions involved yet another mu opioid receptor subtype. The cloning of a mu opioid receptor, MOR-1, provided a way of exploring this possibility at the molecular level. Recent studies have now identified a number of splice variants of this gene that appear to be important in the production of mu opioid analgesia.  相似文献   

4.

Mu opioid receptors (MOR-1) mediate the biological actions of clinically used opioids such as morphine, oxycodone, and fentanyl. The mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, generating multiple splice variants. One type of splice variants are truncated variants containing only six transmembrane domains (6TM) that mediate the analgesic action of novel opioid drugs such as 3′-iodobenzoylnaltrexamide (IBNtxA). Previously, we have shown that IBNtxA is a potent analgesic effective in a spectrum of pain models but lacks many side-effects associated with traditional opiates. In order to investigate the targets labeled by IBNtxA, we synthesized two arylazido analogs of IBNtxA that allow photolabeling of mouse mu opioid receptors (mMOR-1) in transfected cell lines and mMOR-1 protein complexes that may comprise the 6TM sites in mouse brain. We demonstrate that both allyl and alkyne arylazido derivatives of IBNtxA efficiently radio-photolabeled mMOR-1 in cell lines and MOR-1 protein complexes expressed either exogenously or endogenously, as well as found in mouse brain. In future, design and application of such radio-photolabeling ligands with a conjugated handle will provide useful tools for further isolating or purifying MOR-1 to investigate site specific ligand–protein contacts and its signaling complexes.

  相似文献   

5.
Alternative splicing of the mu opioid receptor genes to create multiple mu receptor subtypes has been demonstrated in animals and humans. Previously, we identified a number of C-terminal variants in mice, rats and human, followed by several N-terminal variants associated with a new upstream exon in mice (exon 11). Behavioral studies in exon 11 knockout mice suggest an important role for the exon 11 variants in the analgesic actions of heroin and morphine-6β-glucuronide, but not morphine or methadone. We now have identified a homologous human exon 11 and three similar human exon 11-associated variants, suggesting conservation of exon 11 and its associated variants across species. hMOR-1i has an additional 93 amino acids at the tip of the N-terminus but is otherwise identical to hMOR-1. When expressed in Chinese hamster ovary cells, the additional 93 amino acids in hMOR-1i had little effect on opioid binding, but significantly altered agonist-induced G-protein activation. hMOR-1G1 and hMOR-1G2 predicted six transmembrane domain variants, similar to those seen in mice. The regional expression of these exon 11-associated variants, as determined by RT-PCR, varied markedly, implying region-specific alternative splicing. The presence of exon 11-associated variants in humans raises questions regarding their potential role in heroin and morphine-6β-glucuronide actions in people as they do in mice.  相似文献   

6.
7.
8.
9.
10.
11.
12.
The ability of neuropeptide Y to potently stimulate food intake is dependent in part upon the functioning of mu and kappa opioid receptors. The combined use of selective opioid antagonists directed against mu, delta or kappa receptors and antisense probes directed against specific exons of the MOR-1, DOR-1, KOR-1 and KOR-3/ORL-1 opioid receptor genes has been successful in characterizing the precise receptor subpopulations mediating feeding elicited by opioid peptides and agonists as well as homeostatic challenges. The present study examined the dose-dependent (5-80 nmol) cerebroventricular actions of general and selective mu, delta, and kappa1 opioid receptor antagonists together with antisense probes directed against each of the four exons of the MOR-1 opioid receptor gene and each of the three exons of the DOR-1, KOR-1, and KOR-3/ORL-1 opioid receptor genes upon feeding elicited by cerebroventricular NPY (0.47 nmol, 2 ug). NPY-induced feeding was dose-dependently decreased and sometimes eliminated following pretreatment with general, mu, delta, and kappa1 opioid receptor antagonists. Moreover, NPY-induced feeding was significantly and markedly reduced by antisense probes directed against exons 1, 2, and 3 of the MOR-1 gene, exons 1 and 2 of the DOR-1 gene, exons 1, 2, and 3 of the KOR-1 gene, and exon 3 of the KOR-3/ORL-1 gene. Thus, whereas the opioid peptides, beta-endorphin and dynorphin A(1-17) elicit feeding responses that are respectively more dependent upon mu and kappa opioid receptors and their genes, the opioid mediation of NPY-induced feeding appears to involve all three major opioid receptor subtypes in a manner similar to that observed for feeding responses following glucoprivation or lipoprivation.  相似文献   

13.
Morphine upregulates mu opioid receptors of human and monkey lymphocytes   总被引:5,自引:0,他引:5  
Opioid receptors of subtypes delta, kappa, and mu similar to those found in brain cells have been identified in immune cells. The current study demonstrates by competitive polymerase chain reaction the treatment of human lymphocytic cells with morphine resulting in an increased amount of gene expression of mu opioid receptors. Antibodies against the MOR-1, the neuronal mu opioid receptor, were used in Western blot analysis of mu proteins and the results revealed a single band of approximately 50 kDa, the intensity of which was increased by morphine treatment. Similar results of mu opioid receptor activation were observed when monkey lymphocytes were treated with morphine. These studies suggest that in addition to causing an immune effect through communication with the neuroendocrine system, the psychoactive drug morphine may modulate immune functions by acting directly on the mu opioid receptors expressed on lymphocytes.  相似文献   

14.

Background  

The complexity of the mouse mu opioid receptor (Oprm) gene was demonstrated by the identification of multiple alternatively spliced variants and promoters. Our previous studies have identified a novel promoter, exon 11 (E11) promoter, in the mouse Oprm gene. The E11 promoter is located ~10 kb upstream of the exon 1 (E1) promoter. The E11 promoter controls the expression of nine splice variants in the mouse Oprm gene. Distinguished from the TATA-less E1 promoter, the E11 promoter resembles a typical TATA-containing eukaryote class II promoter. The aim of this study is to further characterize the E11 and E1 promoters in vivo using a transgenic mouse model.  相似文献   

15.
Human opioid receptors of the delta, mu and kappa subtypes were successfully expressed in Escherichia coli as fusions to the C-terminus of the periplasmic maltose-binding protein, MBP. Expression levels of correctly folded receptor molecules were comparable for the three subtypes and reached an average of 30 receptors.cell-1 or 0.5 pmol.mg-1 membrane protein. Binding of [3H]diprenorphine to intact cells or membrane preparations was saturatable, with a dissociation constant, KD, of 2.5 nM, 0.66 nM and 0.75 nM for human delta, mu and kappa opioid receptors (hDOR, hMOR and hKOR, respectively). Recombinant receptors of the three subtypes retained selectivity and nanomolar affinity for their specific antagonists. Agonist affinities were decreased by one to three orders of magnitude as compared to values measured for receptors expressed in mammalian cells. The effect of sodium on agonist binding to E. coli-expressed receptors was investigated. Receptor high-affinity state for agonists was reconstituted in the presence of heterotrimeric G proteins. We also report affinity values of endomorphins 1 and 2 for mu opioid receptors expressed both in E. coli and in COS cells. Our results confirm that opioid receptors can be expressed in a functional form in bacteria and point out the advantages of E. coli as an expression system for pharmacological studies.  相似文献   

16.
Recent molecular characterization of new G protein-coupled receptors (GPCR) draw attention to alternative splicing as a source of structural diversity. After a brief overview of characterized GPCR splice variants, we will describe in more detail the functional properties of the PACAP type I receptor splice variants. Some of these variants are positively coupled to both adenylate cyclase (AC) and phospholipase C (PLC) whereas others do not elicit any stimulation of the PLC or display a qualitatively intermediate phenotype. The PACAP type I receptor is therefore one of the few examples in which alternative splicing is clearly linked to functional diversity.  相似文献   

17.
In humans and rat, orexins orchestrate divergent actions through their G protein-coupled receptors, orexin-1 (OX1R) and orexin-2 (OX2R). Orexins also play an important physiological role in mouse, but the receptors through which they function are not characterized. To characterize the physiological role(s) of orexins in the mouse, we cloned and characterized the mouse orexin receptor(s), mOX1R and mOX2R, using rapid amplification of cDNA (mouse brain) ends, RT-PCR, and gene structure analysis. The mOX1R cDNA encodes a 416-amino acid (aa) receptor. We have identified two alternative C terminus splice variants of the mOX2R; mOX2 alpha R (443 aa) and mOX2 beta R (460 aa). Binding studies in human embryonic kidney 293 cells transfected with mOX1R, mOX2 alpha R, and the mOX2 beta R revealed specific, saturable sites for both orexin-A and -B. Activation of these receptors by orexins induced inositol triphosphate (IP(3)) turnover. However, human embryonic kidney 293 cells transfected with mOXRs demonstrated no cAMP response to either orexin-A or orexin-B challenge, although forskolin and GTP gamma S revealed a dose-dependent increase in cAMP. Although, orexin-A and -B showed no difference in binding characteristics between the splice variants; interestingly, orexin-B led to an increase in IP(3) production at all concentrations in the mOX2 beta R variant. Orexin-A, however, showed no difference in IP(3) production between the two variants. Additionally, in the mouse, we demonstrate that these splice variants are distributed in a tissue-specific manner, where OX2 alpha R mRNA was undetectable in skeletal muscle and kidney. Moreover, food deprivation led to a greater increase in hypothalamic mOX2 beta R gene expression, compared with both mOX1R and mOX2 alpha R. This potentially implicates a fundamental physiological role for these splice variants.  相似文献   

18.
The pharmacological actions of morphine and morphine-like drugs, such as heroin, mediate primarily through the mu-opioid receptor (MOR). It has been proposed that the functional diversity of MOR may be related to alternative splicing of the MOR gene. Although a number of MOR mRNA splice variants have been reported, their biological function has been controversial. In this study, two novel splice variants of the human MOR gene were discovered. Splice variants 1 and 2 (here called the SV1 and SV2) retain different portions of intron I. In vitro translation of SV1 and SV2 produced proteins with the predicted molecular weights. The splice variant proteins were identical to the wild-type MOR-1 up to the first transmembrane domains, but were different after the first intracellular loop domains. SV1 and SV2 of hMOR were present in human neuroblastoma NMB cells and human whole brain confirmed by RT-PCR. In a receptor binding assay, cells expressing the SV1 and SV2 do not exhibit binding to [(3)H]diprenorphine. The formations of MOR.SV1 and MOR.SV2 heterodimers were demonstrated by co-immunoprecipitation and bioluminescence resonance energy transfer between MOR and splice variants. Co-transfection of MOR-GFP and SV-DsRed gene showed that MOR and SV protein co-localized at the cytoplasmic membrane. In NMB cells expressing human MOR gene, transfection of SV1 or SV2 reduced binding activity of the endogenous MOR. These data support a potential role of SV1 and SV2 proteins as possible biological modulator of human mu-opioid receptor.  相似文献   

19.
Abstract

Considerable evidence indicates the existence of multiple types of opioid receptors. The three major types have been named mu, delta and kappa. The earlier evidence was based on pharmacological as well as membrane binding experiments. This paper will emphasize more recent studies using solubilized opioid binding sites.

Several laboratories, including our own, have succeeded in separating kappa receptors from other types. A similar separation of mu from delta receptors has not yet been achieved. By crosslinking experiments with 125I- human beta-endorphi we have been able to provide strong evidence for differences in molecular size between the major binding components of mu (65K) and delta (53K) receptors… It is not yet established whether the difference resides in the in the protein or carbohydrate portion of these glycoproteins. These results suggest that the three major types of opioid receptors represent distinct molecular entities.

An active opioid binding protein solubilized from bovine striatal membranes has been purified to apparent homogeneity. The major purification steps involve affinity chromatography and lectin chromatography on immobilized wheat germ agglutinin. The purified material gave a single band of molecular weight 65K Da on SDS-PAGE. Its specific activity for opioid binding was ca. 13000 pmol/mg protein and its properties are those of a component of the mu receptor.  相似文献   

20.
Subtypes of alpha 1- and alpha 2-adrenergic receptors.   总被引:13,自引:0,他引:13  
D B Bylund 《FASEB journal》1992,6(3):832-839
The adrenergic receptors are members of the superfamily of G protein-coupled receptors. There are three major types of adrenergic receptors: alpha 1, alpha 2, and beta. Each of these three major types can be divided into three subtypes. Within the alpha 1-adrenergic receptors, alpha 1A and alpha 1B subtypes have been defined pharmacologically on the basis of reversible antagonists, such as WB4101 and phentolamine, and the irreversible antagonist chloroethylclonidine. In at least some tissues the mechanism of action of the alpha 1A subtype is related to activation of a calcium channel, whereas the alpha 1B receptor exerts its effect through the second messenger inositol trisphosphate. Both of these receptor subtypes as well as a third, the alpha 1C, have been identified by molecular cloning. Three pharmacological subtypes of the alpha 2-adrenergic receptor have also been identified. Prototypic tissues and cell lines in continuous culture have been developed for each of these subtypes, which facilitated their study. The definition of the alpha 2 subtypes has been based on radioligand binding data and more limited functional data. All three subtypes have been shown to inhibit the activation of adenylate cyclase and thus reduce the levels of cAMP. Three alpha 2-adrenergic receptor subtypes have been identified by molecular cloning in both the human and rat species. There is reasonable agreement between the pharmacological identified subtypes and those identified by molecular cloning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号