首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA and RNA polymerases have evolved in nature to function in specific environments with specific substrates. Thus, although the commercial availability of these enzymes has revolutionized the biotechnology industry, their applications are limited. The availability of polymerases that have unnatural properties would be of even greater utility. Towards this goal, several activity-based screening and selection approaches have been developed. Using these techniques, polymerases that synthesize a variety of different polymers, including those containing 2'-O-methyl-modified nucleotides or unnatural base pairs, have been evolved. These results suggest that polymerases tailored for any specific application could soon be available.  相似文献   

2.
We chemically synthesized epolactaene, a neuritogenic compound in human neuroblastoma cells, and investigated its biochemical action in vitro. Epolactaene and its derivatives selectively inhibited the activities of mammalian DNA polymerase alpha and beta and human DNA topoisomerase II, with IC(50) values of 25, 94, and 10 microM, respectively. By comparison with its structural derivatives, the long alkyl side chain in epolactaene seemed to have an important role in this inhibitory effect. The compound did not influence the activities of plant or prokaryotic DNA polymerases or of other DNA metabolic enzymes such as telomerase, RNA polymerase, and deoxyribonuclease I. Epolactaene did not intercalate into DNA. These results suggested that the neuritogenic compound epolactaene influences both DNA polymerases and topoisomerase II despite the dissimilarity in both structure and properties of these two enzymes and that inhibition of these enzymes could be related to the neuritogenic effect in human neuroblastoma cells. The relationship between the neuritogenic mechanism and cell cycle regulation by epolactaene was also discussed.  相似文献   

3.
The contributions of human DNA polymerases (pols) alpha, delta and epsilon during S-phase progression were studied in order to elaborate how these enzymes co-ordinate their functions during nuclear DNA replication. Pol delta was three to four times more intensely UV cross-linked to nascent DNA in late compared with early S phase, whereas the cross-linking of pols alpha and epsilon remained nearly constant throughout the S phase. Consistently, the chromatin-bound fraction of pol delta, unlike pols alpha and epsilon, increased in the late S phase. Moreover, pol delta neutralizing antibodies inhibited replicative DNA synthesis most efficiently in late S-phase nuclei, whereas antibodies against pol epsilon were most potent in early S phase. Ultrastructural localization of the pols by immuno-electron microscopy revealed pol epsilon to localize predominantly to ring-shaped clusters at electron-dense regions of the nucleus, whereas pol delta was mainly dispersed on fibrous structures. Pol alpha and proliferating cell nuclear antigen displayed partial colocalization with pol delta and epsilon, despite the very limited colocalization of the latter two pols. These data are consistent with models where pols delta and epsilon pursue their functions at least partly independently during DNA replication.  相似文献   

4.
《Experimental mycology》1981,5(2):89-100
DNA polymerases from the yeast and mycelial phases of a fungus,Histoplasma capsulatum, were partially purified and analyzed. Two classes of enzymes were identified in each morphological form. No significant differences were found among polymerases Ia and Ib from mycelia and I from yeast; similarly, polymerases II from both phases were almost identical. (Numbering refers to the order of elution from phosphocellulose.) However, all of the class I polymerases differed significantly from the class II enzymes. DNA polymerases I (Mr 122,000) were unaffected by 0.2m KCl and resistant to 10 mmN-ethylmaleimide; their levels fluctuated significantly in relation to cell growth, and they showed no nuclease activity. All of the enzymes had similar template dependence and Mg2+ requirements. These results are compared to data on other eucaryotic DNA polymerases. Possible roles for class I and class II polymerases are discussed.  相似文献   

5.
6.
《Gene》1997,185(1):147-152
We report the sequence of a 4.5-kb cDNA clone isolated from a human melanoma library which bears high amino acid sequence identity to the yeast mitochondrial (mt) DNA polymerase (Mip1p). This cDNA contains a 3720-bp open reading frame encoding a predicted 140-kDa polypeptide that is 43% identical to Mip1p. The N-terminal part of the sequence contains a 13 glutamine stretch encoded by a CAG trinucleotide repeat which is not found in the other DNA polymerases γ (Pol γ). Multiple amino acid sequence alignments with Pol γ from Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris, Drosophila melanogaster, Xenopus laevis and Mus musculus show that these DNA polymerases form a family strongly conserved from yeast to man and are only loosely related to the Family A DNA polymerases.  相似文献   

7.
Eukaryotic DNA polymerases, a growing family   总被引:21,自引:0,他引:21  
In eukaryotic cells, DNA polymerases are required to maintain the integrity of the genome during processes, such as DNA replication, various DNA repair events, translesion DNA synthesis, DNA recombination, and also in regulatory events, such as cell cycle control and DNA damage checkpoint function. In the last two years, the number of known DNA polymerases has increased to at least nine (called alpha, beta, gamma, delta, epsilon, zeta, eta, t and iota), and yeast Saccharomyces cerevisiae contains REV1 deoxycytidyl transferase.  相似文献   

8.
栖热菌属热稳定DNA聚合酶   总被引:5,自引:2,他引:5  
DNA聚合酶是能够以DNA或RNA为模板 ,在寡核苷酸或蛋白质引物的引导下催化合成DNA的一类酶 ,已经分离纯化的有上百种 ,其中有半数已经被克隆和测序。它们之间在DNA序列、氨基酸序列、二、三级结构方面有较高的同源性 ,且与RNA聚合酶和反转录酶之间也有不同程度的同源性[1~ 4] 。1 DNA聚合酶的分类DNA聚合酶有许多不同的类群 ,如很小的 (3 9kDa) ,来自哺乳动物的修复性单亚基DNA聚合酶 ,巨大的 (可高达 90 0kDa)、多亚基(可达 2 0多个亚基 )的复制性DNA聚合酶 (如Eco聚合酶Ⅲ )。有些DNA聚合酶则…  相似文献   

9.
The properties of three DNA polymerase species A, B and C, purified from Chlamydomonas reinhardii were compared. DNA polymerases A and B have Km values with respect to deoxyribonucleoside triphosphates of 19 micron and 3 micron respectively. DNA polymerase A is most active with activated DNA, but will also use native DNA and synthetic RNA and DNA templates with DNA primers. DNA polymerase B is also most active with activated DNA, but will use denatured DNA and synthetic DNA templates. It is inactive with RNA templates. DNA polymerase B is completely inactive in the presence of 100 micron-heparin, which has no effect on DNA polymerase A activity. Heparin dissociates DNA polymerase B into subunits that are still catalytically active, but which heparin inhibited. DNA polymerase B possesses deoxyribonuclease activity that is inhibited by 5 micron-heparin, suggesting that the deoxyribonuclease is an integral part of the DNA polymerase moiety. DNA polymerase A is devoid of nuclease activity. DNA polymerase C is similar to DNA polymerase B in all these properties, though it is more active with RNA primers and has greater heat-sensitivity.  相似文献   

10.
11.
Virioplankton have a significant role in marine ecosystems, yet we know little of the predominant biological characteristics of aquatic viruses that influence the flow of nutrients and energy through microbial communities. Family A DNA polymerases, critical to DNA replication and repair in prokaryotes, are found in many tailed bacteriophages. The essential role of DNA polymerase in viral replication makes it a useful target for connecting viral diversity with an important biological feature of viruses. Capturing the full diversity of this polymorphic gene by targeted approaches has been difficult; thus, full-length DNA polymerase genes were assembled out of virioplankton shotgun metagenomic sequence libraries (viromes). Within the viromes novel DNA polymerases were common and found in both double-stranded (ds) DNA and single-stranded (ss) DNA libraries. Finding DNA polymerase genes in ssDNA viral libraries was unexpected, as no such genes have been previously reported from ssDNA phage. Surprisingly, the most common virioplankton DNA polymerases were related to a siphovirus infecting an α-proteobacterial symbiont of a marine sponge and not the podoviral T7-like polymerases seen in many other studies. Amino acids predictive of catalytic efficiency and fidelity linked perfectly to the environmental clades, indicating that most DNA polymerase-carrying virioplankton utilize a lower efficiency, higher fidelity enzyme. Comparisons with previously reported, PCR-amplified DNA polymerase sequences indicated that the most common virioplankton metagenomic DNA polymerases formed a new group that included siphoviruses. These data indicate that slower-replicating, lytic or lysogenic phage populations rather than fast-replicating, highly lytic phages may predominate within the virioplankton.  相似文献   

12.
Previously, we described a novel DNA polymerase, designated as OsPolI-like, from rice. The OsPolI-like showed a high degree of sequence homology with the DNA polymerase I of cyanobacteria and was localized in the plastid. Here, we describe two PolI-like polymerases, designated as AtPolI-like A and AtPolI-like B, from Arabidopsis thaliana. In situ hybridization analysis demonstrated expression of both mRNAs in proliferating tissues such as the shoot apical meristem. Analysis of the localizations of GFP fusion proteins showed that AtPolI-like A and AtPolI-like B were localized to plastids. AtPolI-like B expression could be induced by exposure to the mutagen H(2)O(2). These results suggested that AtPolI-like B has a role in the repair of oxidation-induced DNA damage. Our data indicate that higher plants possess two plastid DNA polymerases that are not found in animals and yeasts.  相似文献   

13.
14.
15.
Mispyric acid is a novel natural triterpene dicarboxylic acid which has inhibitory activity against DNA polymerase beta (pol beta) isolated from the plant, Mischocarpus pyriformis. In this report, we examine the selectivity of the inhibitory activity against mammalian pols and the mode of inhibition in vitro. Natural mispyric acid (compound 1) inhibited the activities of all the mammalian pols tested (pol alpha, beta, gamma, delta and epsilon) with an IC50 value in the range of 3.6-44.5 microM. The inhibition was strongest for pol gamma among these five pols. The enantiomer of mispyric acid (compound 2, ent-mispyric acid) had similar effects to those of the natural compound. However, derivatives of compounds 1 and 2 with hydroxyl groups instead of carboxyl groups (i.e., compounds 3 and 4, respectively) exhibited no inhibitory effect on mammalian pols. The moiety of two carboxylic acids in mispyric acid was important for the inhibition of pols, and the stereoisomers of mispyric acid had no inhibitory effect.  相似文献   

16.
DNA gyrase is a DNA topoisomerase indispensable for cellular functions in bacteria. We describe a novel, hitherto unknown, mechanism of specific inhibition of Mycobacterium smegmatis and Mycobacterium tuberculosis DNA gyrase by a monoclonal antibody (mAb). Binding of the mAb did not affect either GyrA-GyrB or gyrase-DNA interactions. More importantly, the ternary complex of gyrase-DNA-mAb retained the ATPase activity of the enzyme and was competent to catalyse DNA cleavage-religation reactions, implying a new mode of action different from other classes of gyrase inhibitors. DNA gyrase purified from fluoroquinolone-resistant strains of M.tuberculosis and M.smegmatis were inhibited by the mAb. The absence of cross-resistance of the drug-resistant enzymes from two different sources to the antibody-mediated inhibition corroborates the new mechanism of inhibition. We suggest that binding of the mAb in the proximity of the primary dimer interface region of GyrA in the heterotetrameric enzyme appears to block the release of the transported segment after strand passage, leading to enzyme inhibition. The specific inhibition of mycobacterial DNA gyrase with the mAb opens up new avenues for designing novel lead molecules for drug discovery and for probing gyrase mechanism.  相似文献   

17.
Isonucleosides have been attracting a lot of attention in recent years due to the chemical and enzymatic stability and potential anticancer and antiviral activities. We have reported some of the isonucleosides which exhibited significant anticancer activity and found that the oligonucleotide incorporated with isonucleoside could increase the enzymatic stability against the degradation by phosphodiesterase. In this paper, we investigated the recognition of the isonucleoside triphosphates 1-6 by Taq, Vent(exo(-)), DeepVent(exo(-)), 9 degrees Nm, and Therminator DNA polymerases by a non-radioactivity method. We found that most of the isonucleoside triphosphates can be recognized by various DNA polymerase and act as terminators. Isonucleoside triphosphates 2 and 6 can be incorporated as substrates into the primer at 3' terminus to lengthen the chain dependent on a DNA template by Vent(exo(-)) and DeepVent(exo(-)) DNA polymerases.  相似文献   

18.
19.
Despite extensive studies on oligonucleotide-forming triple helices, which were discovered in 1957, their possible relevance in the initiation of DNA replication remains unknown. Using sequences forming triple helices, we have developed a DNA polymerisation assay by using hairpin DNA templates with a 3′ dideoxynucleotide end and an unpaired 5′-end extension to be replicated. The T7 DNA polymerase successfully elongated nucleotides to the expected size of the template from the primers forming triple helices composed of 9–14 deoxyguanosine-rich residues. The triple helix-forming primer required for this reaction has to be oriented parallel to the homologous sequence of the hairpin DNA template. Substitution of the deoxyguanosine residues by N7 deazadeoxyguanosines in the hairpin of the template prevented primer elongation, suggesting that the formation of a triple helix is a prerequisite for primer elongation. Furthermore, DNA sequencing could be achieved with the hairpin template through partial elongation of the third DNA strand forming primer. The T4 DNA polymerase and the Klenow fragment of DNA polymerase I provided similar DNA elongation to the T7 polymerase–thioredoxin complex. On the basis of published crystallographic data, we show that the third DNA strand primer fits within the catalytic centre of the T7 DNA polymerase, thus underlying this new property of several DNA polymerases which may be relevant to genome rearrangements and to the evolution of the genetic apparatus, namely the DNA structure and replication processes.  相似文献   

20.
The affinities of oligothymidylates and of some analogs for the template site, of a set of oligodeoxyribo- and oligoribonucleotides for the primer site, and of dNTPs and some analogs for the substrate sites of DNA polymerase I Klenow fragment and of human placenta DNA polymerase alpha were measured using them either as competitors of affinity modification or as substrates. The data obtained enable us to hypothesize that the Me2+-dependent electrostatic contact and hydrogen bond of a single internucleotide phosphate and the hydrophobic interactions of the other nucleotide units determine the formation of oligonucleotide-template site complexes. Interaction of the primer's 3'-terminal hydroxy group and of the negatively charged adjacent phosphate with the enzyme, and Watson-Crick base pairing with the template are of crucial importance for the formation of the ternary enzyme-template-primer complex. dNTP and dNMP imidazolides inactivate enzymes via an affinity modification mechanism only in the presence of the template-primer complex. dNTP affinities exceed those of dNDPs and dNMPs, the enhancement being most significant for the substrate that is complementary to the template, thus suggesting the participation of the gamma-phosphate of dNTP in the substrate selection step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号