首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sperm binding to the zona pellucida is a prerequisite for fertilization, and tests that evaluate this function have been described for several species. When carrying out such tests in the canine species, ovaries or oocytes have to be stored to obtain a sufficient number of oocytes at the time of testing. In the present study, the sperm binding capacities of salt-stored oocytes and oocytes from deep frozen ovaries were measured and compared with that of fresh oocytes. Two different procedures for washing the sperm-oocyte complexes (gentle and tough) were used before evaluating the number of bound spermatozoa. The total number of oocytes that bound spermatozoa was significantly lower for both salt-stored and deep frozen oocytes compared with fresh oocytes. Significantly fewer spermatozoa bound to stored oocytes than to fresh oocytes (P 相似文献   

2.
The objective of this study was to examine the developmental competence of IVM pig oocytes in relation to the pattern of morphologic changes after exposure to hyperosmotic medium to select oocytes of a higher quality. IVM oocytes were treated with a hyperosmotic (593 mOsm) medium containing NaCl, sorbitol, or sucrose. Oocytes that shrunk spherically (SSP oocytes) or in irregular shapes (SIR oocytes) were collected separately, and washed for 15 minutes in an isotonic (297 mOsm) medium for recovery. Irrespective of the chemicals used, hyperosmotic treatment of oocytes for 1 hour or 15 minutes did not alter embryonic development after parthenogenesis (PA) and SCNT. A significantly higher proportion of SSP oocytes developed to the blastocyst stage (34.0%) compared with SIR oocytes (15.8%) after PA. The intracellular glutathione content was significantly higher in SSP oocytes than in SIR oocytes. Conversely, the reactive oxygen species level was significantly higher in SIR oocytes than in SSP oocytes. The maturation promoting factor level as measured by p34cdc2 kinase activity was not influenced by hyperosmotic treatment itself but was 1.3-fold higher (P < 0.05) in SSP oocytes than in SIR oocytes. When IVM oocytes were divided into two groups according to their diameters (large and small), and treated separately in hyperosmotic medium, significantly more SSP oocytes (71.4%) were found in the large oocytes than in the small oocytes (51.4%). Moreover, the proportion of metaphase II oocytes was significantly higher in SSP oocytes than in SIR oocytes in both groups (98.5% vs. 73.1% in large oocytes, and 92.2% vs. 48.0% in small oocytes). After SCNT, a significantly higher proportion of SSP oocytes displayed blastocyst formation (36.4%) than untreated (29.0%) and SIR oocytes (22.1%). Our results demonstrated that SSP oocytes were of a higher quality than SIR oocytes, which was shown by higher intracellular glutathione and maturation promoting factor levels, lower reactive oxygen species levels, and improved embryonic development to the blastocyst stage after PA and SCNT.  相似文献   

3.
Recent research has shown that the maternal nucleolus is essential for embryonic development. The morphology of the nucleolus in growing oocytes differs from that in full‐grown oocytes. We determined the ability of nucleoli from growing oocytes to substitute for nucleoli of full‐grown oocytes in terms of supporting embryonic development in this study. Growing (around 100 µm in diameter) and full‐grown porcine oocytes (120 µm) were collected from small (0.6–1.0 mm) and large antral follicles (4–5 mm), respectively. The nucleolus was aspirated from full‐grown oocytes by micromanipulation, and the resulting enucleolated oocytes were matured to metaphase II; the nucleoli originating from full‐grown and growing oocytes were then injected into the oocytes. The Chromatin of growing oocytes was aspirated with the nucleolus during the enucleolation process. Growing oocytes were thus treated with actinomycin D to release the chromatin from their nucleoli, and the nucleoli were collected and transferred to the enucleolated and matured full‐grown oocytes. After activation by electro‐stimulation, nucleoli were formed in pronuclei of sham‐operated oocytes. Enucleolated oocytes that had been injected with nucleoli from either full‐grown or growing, however, did not form any nucleoli in the pronuclei. No enucleolated oocytes developed to blastocysts, whereas enucleolated oocytes injected with nucleoli from full‐grown oocytes (15%) or growing oocytes (18%) developed to blastocysts. These results indicate that the nucleoli from growing oocytes can substitute for nucleoli from full‐grown oocytes during early embryonic development. Mol. Reprod. Dev. 77: 167–173, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
The aim of this study was to evaluate the usefulness of the brilliant cresyl blue (BCB) test in the selection of more competent heifer oocytes for in vitro embryo production (IVEP). IVEP from selected BCB heifer oocytes was compared to IVEP from morphologically selected heifer (control group) and cow oocytes. BCB staining determines the activity of glucose-6-phosphate dehydrogenase (G6PD), an enzyme synthesized in growing oocytes but with less activity in grown oocytes. Six hundred and fifty seven heifer cumulus-oocyte complexes (COC) were classified morphologically as Grade 1-3 and exposed to 26 microM of BCB and classified as: blue (or grown) oocytes (BCB+) or unstained oocytes or growing oocytes (BCB-). Grade 1-3 heifer oocytes showed significantly different percentages of BCB+ oocytes (78.6, 66.2, and 51.1%, respectively; P<0.05). The diameter of BCB+ oocytes was significantly higher than BCB- oocytes (152.6+/-5.8 microm and 147+/-5.9 microm, respectively; P<0.001). The percentage of BCB+ oocytes reaching the blastocyst stage was significantly higher than those of BCB- and control heifer oocytes (12.3, 1.6, and 5.2%, respectively; P<0.05), but lower than those of cow oocytes (30.0%; P<0.05). In conclusion, heifer oocytes selected by the BCB test (BCB+) are larger and more competent for IVEP than control heifer oocytes. However, fewer heifer oocytes selected using the BCB test develop to blastocyst stage compared to cow oocytes.  相似文献   

5.
The purpose of this study was to determine the efficacy of pre-treating mature bovine oocytes with Taxol before vitrification by the open pulled Straw method (OPS). We evaluated the effects of pre-treating the oocytes with 1 microM Taxol on chromosome organization, spindle morphology, cortical granule distribution and the ability of fertilized oocytes to develop to the blastocyst stage. After calf or cow oocyte vitrification without Taxol, significantly higher proportions of spindle abnormalities in the form of abnormal spindle structures or dispersed or decondensed chromosomes were observed compared to fresh control oocytes. In contrast, when we compared calf oocytes pre-treated with Taxol before vitrification with control calf oocytes, similar percentages of oocytes showing a normal spindle morphology were observed. The percentages of oocytes with a peripheral cortical granule (CG) distribution increased when the oocytes were pretreated with Taxol and vitrified, while oocytes vitrified without Taxol pre-treatment gave rise to higher cortical distribution percentages. Cleavage and blastocyst rates were significantly lower for vitrified versus untreated oocytes, both in cow and calf oocytes. Significantly higher cleavage rates were obtained when calf and cow oocytes were vitrified with Taxol. Pre-treatment with Taxol before cow oocyte vitrification yielded significantly higher blastocyst rates. Calf oocytes, however, were unable to develop to the blastocyst stage, irrespective of previous Taxol treatment. These results indicate that the pre-treatment of oocytes with Taxol before vitrification helps to reduce the damage induced by the cryopreservation process, and potentially improves the subsequent development of vitrified bovine oocytes. Summary sentence: Pre-treatment of oocytes with Taxol before vitrification helps to reduce the damage induced by vitrification and potentially improves the development of vitrified bovine oocytes.  相似文献   

6.
The present study was carried out to investigate how the interactions between aging, vitrification and post-warming interval affect the credibility of sheep MII-oocytes for in vitro fertilization (IVF), intracytoplasmic injection (ICSI), and parthenogenetic activation (PA). According to our results, aged oocytes had significantly higher rates of chromosome and spindle abnormalities compared to young oocytes. However after vitrification-warming, the total rates of these abnormalities were not significantly different between aged and young oocytes. Unvitrified-aged, and vitrified young and aged oocytes had comparable ultrastructural characteristics, whereas they were completely dissimilar in compared with unvitrified-young oocytes. Although mRNA abundance was reduced during vitrification-warming in both aged and young oocytes, the post-warming interval could improve the relative mRNA abundance. Aged oocytes had lower capacity for IVF and ICSI in compared with young oocytes, but had similar pattern for PA process. The vitrification process decreased developmental competence of both aged and young oocytes in compared with young ones, particularly when warmed oocytes were rested for 2 h before IVF, ICSI and PA. The results of the present study showed that in vitro aged oocytes had higher capacity to be used for parthenogenetic studies rather than IVF and ICSI. Furthermore, it was shown that vitrified oocytes had a time-dependent decline in quality and developmental potential. Notably, the speed of this decline was higher in vitrified-young oocytes, indicating that the vitrified oocytes do not require to be rested post warming. Conclusively, the results of this study can be useful in preserving in vitro aged oocytes to provide a valuable and easy access source of oocytes for research purposed studies.  相似文献   

7.
The permeability of the plasma membrane plays a crucial role in the successful cryopreservation of oocytes/embryos. To identify a stage feasible for the cryopreservation of teleost oocytes, we investigated the permeability to water and various cryoprotectants of medaka (Oryzias latipes) oocytes at the germinal vesicle (GV) and metaphase II (MII) stages. In sucrose solutions, the volume changes were greater in GV oocytes than MII oocytes. Estimated values for osmotically inactive volume were 0.41 for GV oocytes and 0.74 for MII oocytes. Water-permeability (microm/min/atm) at 25 degrees C was higher in GV oocytes (0.13+/-0.01) than MII oocytes (0.06+/-0.01). The permeability of MII oocytes to various cryoprotectants (glycerol, propylene glycol, ethylene glycol, and DMSO) was quite low because the oocytes remained shrunken during 2 h of exposure in the cryoprotectant solutions at 25 degrees C. When the chorion of MII oocytes was removed, the volume change was not affected, except in DMSO solution, where dechorionated oocytes shrunk and then regained their volume slowly; the P(DMSO) value was estimated to be 0.14+/-0.01x10(-3) cm/min. On the other hand, the permeability of GV oocytes to cryoprotectants were markedly high, the P(s) values (x10(-3) cm/min) for propylene glycol, ethylene glycol, and DMSO being 2.21+/-0.29, 1.36+/-0.18, and 1.19+/-0.01, respectively. However, the permeability to glycerol was too low to be estimated, because GV oocytes remained shrunken after 2 h of exposure in glycerol solution. These results suggest that, during maturation, medaka oocytes become less permeable to water and to small neutral solutes, probably by acquiring resistance to hypotonic conditions before being spawned in fresh water. Since such changes would make it difficult to cryopreserve mature oocytes, immature oocytes would be more suitable for the cryopreservation of teleosts.  相似文献   

8.
To identify a stage feasible for the cryopreservation of zebrafish oocytes, we investigated the permeability to water and cryoprotectants of immature (stage III) and mature (stage V) oocytes. The permeability to water (microm/min/atm) of immature oocytes at 25 degrees C (0.37) was significantly higher than that of mature oocytes (0.10). The permeability (x10(-3)cm/min) of immature oocytes to ethylene glycol, propylene glycol, and Me(2)SO (1.49-3.03) at 25 degrees C was substantially higher than that of mature oocytes approximately 0. The permeability of immature oocytes to glycerol was also high (1.75), although the permeability could not be measured in mature oocytes. Immature oocytes would be more suitable than mature oocytes for conservation of the zebrafish.  相似文献   

9.
It is essential to enhance the in vitro maturation (IVM) condition for immature oocytes after cryopreservation, particularly if limited numbers of oocytes collected from specific donors. The objective of this study was to determine if quality of vitrified porcine immature oocytes was enhanced by coculturing with fresh oocytes during IVM. To distinguish fresh versus vitrified oocytes, we used two types of coculture systems: (a) transwell two‐chamber coculture; (b) labeling and tracing fresh oocytes with CellTracker? Green CMFDA during conventional culture. Coculture systems significantly accelerated meiotic progression of vitrified oocytes and significantly increased blastocyst formation rates following parthenogenetic activation and somatic cell nuclear transfer. Reactive oxygen species generation in vitrified oocytes was ameliorated by the coculture conditions, with no significant difference between fresh and vitrified oocytes for intracellular glutathione level. Both coculture systems significantly increased rate of normal mitochondrial distribution in vitrified oocytes, but did not affect fluorescence intensity of mitochondria. The percentage of oocytes with normal endoplasmic reticulum (ER) distribution and ER fluorescence intensity were significantly higher in vitrified oocytes cocultured with fresh oocytes. After 20 hr of IVM, mRNA expression of COX2, HAS2, PTX3, and TNFAIP6 remained significantly higher in cumulus cells derived from vitrified oocytes and coculture systems significantly decreased the expression of these genes. Additionally, coculture methods prevented the reduction of mRNA expression for BMP15, ZAR1, POU5F1, and DNMT3A in vitrified oocytes. In conclusion, oocyte quality and subsequent embryo development of vitrified porcine immature oocytes were significantly improved by fresh oocyte coculture during IVM.  相似文献   

10.
Two experiments were designed to assess the effectiveness of cryopreserving bovine MII oocytes using cryotops as the carrier system for vitrification. In the first experiment, we examined the developmental competence of oocytes after: (i) vitrification in open-pulled straws (OPS method); or (ii) vitrification in <0.1 μl medium droplet on the surface of a specially constructed fine polypropylene strip attached to a plastic handle (Cryotop method). In the second experiment, warmed oocytes that had been vitrified in OPS or cryotops were fixed to analyze spindle and chromosome configuration. In all experiments both cow and calf oocytes were used. Significantly different fertilization rates were observed between the vitrification groups: 31.5% and 20.2% for the cow and calf oocytes vitrified in OPS, respectively, versus 46.1% and 46.4% for the oocytes vitrified using cryotops. After in vitro fertilization, 3.8% of the calf oocytes and 5.3% of the cow oocytes developed to the blastocyst stage. All blastocysts from vitrified oocytes resulted from the Cryotop method. A significantly lower percentage of the OPS-vitrified calf oocytes showed a normal spindle configuration (37.8%) compared to control fresh oocytes (69.9%), while normal spindle and chromosome configurations were observed in a significantly higher proportion of the cryotop-vitrified calf oocytes (60.2%). For the cow oocytes, 60.6% in the OPS group and 60.3% in the Cryotop group exhibited a normal morphology after warming. These findings suggest the cryotop system is a more efficient carrier for vitrification than OPS for the cryopreservation of bovine oocytes.  相似文献   

11.
Bovine immature oocytes do not have the ability to block polyspermic penetration. The present study was conducted to determine whether this is correlated to cortical granule (CG) distribution and the competence of oocytes to release CG upon sperm penetration, and whether the ability of bovine oocytes to release CG develops during in vitro maturation. Fluorescein isothiocyanate-conjugated Lens culinaris agglutinin was used for detecting CG in immature and mature oocytes before and after sperm penetration and electric stimulation. The labeled oocytes were examined with laser confocal and fluorescent microscopes. The results show that CG exist as clusters in all immature oocytes. The CG were not released from immature oocytes exposed to electric pulse or penetrated by spermatozoa, resulting in 94% of oocytes being polyspermic. When immature oocytes were cultured for 22h in vitro , 81% extruded the first polar body and reached metaphase II. In mature oocytes, 25% of oocytes showed CG clusters, 42% and 33% of oocytes showed partial and complete CG dispersion, respectively. When mature oocytes were inseminated in vitro , only 15% of oocytes were polyspermic. Cortical granule exocytosis occurred in 97% of oocytes after sperm penetration and 84% of oocytes released all of the CG 18 h after insemination. Electric pulse induced all of the mature oocytes to release CG but only 55% released all of their CG 18 h post stimulation. These results indicate that polyspermy in immature bovine oocytes is the result of the complete failure of the oocyte to release CG after sperm penetration. Bovine oocytes became competent to release CG by sperm penetration and electric stimulation after meiotic maturation. These results provide evidence that CG exocytosis plays an important role(s) in the establishment of the block to polyspermy in bovine oocytes.  相似文献   

12.
The brilliant cresyl blue (BCB) test determines the activity of glucose-6-phosphate dehydrogenase (G6PDH); the activity of this enzyme is greatest in growing oocytes, but it declines as oocytes mature. The objective was to develop and evaluate this test for assessing development of buffalo oocytes (to select developmentally competent oocytes for increased in vitro embryo production). Oocytes were exposed to BCB stain diluted in mDPBS (DPBS with 0.4% BSA) for 90 min at 38.5 degrees C in a humidified air atmosphere; those with or without blue coloration of the cytoplasm were designated as BCB+ and BCB-, respectively. In Experiment 1, oocytes were exposed to 13, 26, or 39 microM BCB. There were fewer BCB+ oocytes after exposure to 13 microM BCB (10%) than after exposure to 26 or 39 microM BCB (57.2 and 61.8%; P<0.05), but there was no significant difference among treatments for blastocyst production rate. In Experiment 2, the diameter of BCB+ oocytes (144.4+/-4.2 microm; mean+/-S.E.M.) was higher (P<0.05) than that of BCB- oocytes (136.8+/-4.6 microm). In Experiment 3, oocytes were allocated into three groups: control (immediately cultured); holding-control (kept in mDPBS for 90 min before cultured); and treatment-incubation (incubated with 26 microM BCB). After IVM, oocytes were fertilized in vitro and cultured on an oviductal monolayer. The nuclear maturation rate was higher (P<0.05) in BCB+ (86.2%), control (83.4%) and holding-control (82.6%) oocytes than BCB- (59.2%) oocytes. The BCB+ oocytes yielded more blastocysts than control or holding-control oocytes (33.4, 20.2, and 21.0%, P<0.05); blastocyst development was lowest in BCB- oocytes (5.2%). In conclusion, staining of buffalo oocytes with BCB before IVM may be used to select developmentally competent oocytes for increased in vitro embryo production.  相似文献   

13.
A liquid crystal polarized light microscope (LC PolScope) was used to examine spindle dynamics in living mouse oocytes. Immature oocytes were cultured for 0-48 h and spindles were imaged with the PolScope at various time points of culture. Oocytes at metaphase I (M-I) and metaphase II (M-II) were also exposed to shifts of temperature from 25 to 41 degrees C to examine the effects of fluctuations of temperature on spindle dynamics. After examination with the PolScope, some oocytes were fixed and examined by immunocytochemical staining and confocal microscopy. After culturing for 6 h, 76% and 2% of the oocytes reached M-I and M-II stages and all oocytes had birefringent spindles. When the oocytes were cultured for 14-16 h, 88% and 6% of oocytes were at M-II and M-I stages respectively and all oocytes had birefringent spindles. However, when the oocytes were cultured for 22-48 h, the proportions of oocytes with birefringent spindles decreased as culture time was increased. Exposure of oocytes to 25 degrees C induced spindle disassembly within 10-20 min in both M-I and M-II oocytes. Most (93-100%) oocytes reassembled spindles after warming at 37 degrees C. Furthermore, exposure of oocytes at M-I stage but not at M-II stage, to 30 degrees C also induced significant microtubule disassembly. However, exposure of oocytes to 38-41 degrees C did not obviously change the quantity of microtubules in the spindles, which was measured by retardance. This study indicates that the PolScope can be used to examine spindle dynamics in living oocytes, and it has the advantage over the routine fluorescence microscope in that images can be obtained in the same individual oocyte and the quantity of microtubules can be measured by retardance in living oocytes. These results also indicate that the M-II spindle in mouse oocytes is sensitive to oocyte ageing and cooling, but not heating, and M-I spindle is more sensitive to temperature decline than M-II spindle.  相似文献   

14.
Studies on Ca2+-channel distribution in maturation arrested mouse oocyte   总被引:1,自引:0,他引:1  
The present study was carried out to identify the existence of voltage-dependent Ca2+-channels (P/Q-, N-, and L-type) and their distributional differences in germinal vesicle (GV) and GV breakdown (GVBD)-arrested mouse oocytes which includes GVBD to telophase I of meiosis I and matured oocytes (MII, metaphase of meiosis II) by using the immunocytochemical method and a confocal laser scanning microscope. (1) Comparison between follicular oocytes (GV) and GV-arrested oocytes after 17 hr of in vitro culture. In follicular oocytes, P/Q-, N-, L (anti-alpha1C anti-alpha1D)-type Ca2+-channels showed both localized and uniform staining. In contrast, GV-arrested oocytes, after in vitro culture for 17 hr, showed no presence of Ca2+-channels in most oocytes. (2) Comparison between GVBD oocytes after culture in vitro for 3 hr and GVBD-arrested oocytes after culture in vitro for 17 hr. In GVBD oocytes, P/Q-, N-, L (anti-1C, anti-alpha1D)-type Ca2+-channels showed both localized and uniform staining. In contrast, in GVBD-arrested oocytes, none of the three types of Ca2+-channels were identified in 72-86% of oocytes. The present study demonstrates that in most GVBD-arrested oocytes that do not mature to MII, there is no Ca2+-channel identified. Therefore, most of the GVBD-arrested oocytes seem to have defects in Ca2+-channel expression/translation. Also, distributional changes of Ca2+-channels take place depending on the maturation progress in GV oocytes and MII stage oocytes (ovulated and 17 hr cultured MII stage oocytes). In addition, we found evidence that a functional voltage-dependent Ca2+-channel (L-type) exists in mouse oocytes (ovulated and cultured MII staged oocytes by a confocal laser scanning microscope).  相似文献   

15.
Experiments were conducted to find an optimal incubation period in a sucrose solution during dilution of cryoprotectants for obtaining a higher level of survival and development of cat oocytes cryopreserved by vitrification method. In the first experiment, in vitro-matured fresh oocytes were exposed to 0.5M sucrose solution for 1 or 5 min before in vitro fertilization (IVF). The percentage of development to the blastocyst stage significantly decreased in oocytes exposed for 5 min, compared with oocytes exposed for 1 min and control oocytes without exposure to sucrose (P<0.05). In the second experiment, oocytes that had been vitrified in 40% ethylene glycol and 0.3M sucrose were liquefied and then incubated in 0.5M sucrose for 0.5, 1 or 5 min to dilute the cryoprotectant. The percentage of cleavage (>or=2-cell stage) of vitrified-liquefied oocytes incubated for 0.5 min was significantly higher (P<0.05) than that of other groups. Development of vitrified-liquefied oocytes to the morula and blastocyst stages after IVF was observed only in oocytes incubated in sucrose for 0.5 min. The present study indicates that the oocytes have sensitivity to the toxic effect of sucrose and that the incubation period during dilution of the cryoprotectant is of critical importance for developmental competence of vitrified-liquefied cat oocytes.  相似文献   

16.
The fertilizability of hamster oocytes matured in vitro was examined along with two factors potentially affecting nuclear maturation in culture. The four amino acids (isoleucine, methionine, phenylalanine, and glutamine) necessary for nuclear maturation of cumulus-free oocytes (Gwatkin and Haidri, '74) were not required if oocytes recovered on the morning of proestrus (day 4) were cultured with intact cumuli. Although follicular oocytes recovered on day 3 of the estrous cycle (late diestrus) had somewhat lower frequencies of maturation in vitro compared to those recovered on day 4 (76 vs. 95%, respectively), they still had a substantial frequency of spontaneous maturation. Follicular oocytes recovered on day 3 and matured in vitro were fertilized at frequencies equivalent to oviducal oocytes (80 vs. 82%, respectively) when incubation of oocytes with precapacitated sperm was continued for 6 h. Penetration of follicular oocytes was lower (37.4%) after only 4 h of sperm/egg incubation, indicating a delay in sperm penetration with follicular oocytes matured in vitro. Incubation for 4 h is sufficient time for penetration of 80% or more of oviducal oocytes. While 98% of penetrated oviducal oocytes were fertilized normally, only 2% of penetrated follicular oocytes were normal. The majority (85%) of follicular oocytes, unlike oviducal oocytes, were unable to cause decondensation of sperm nuclei after 6 h of sperm/egg incubation. Use of a highly defined system for in vitro fertilization of hamster gametes has provided rigorous proof that isolated cumulus-oocyte complexes do not undergo complete maturation in vitro.  相似文献   

17.
18.
Prepubertal goat ovaries obtained from a slaughterhouse were used to study the influence of the oocyte collection technique (dissection, aspiration and slicing) on the number of oocytes recovered and their capacity for maturation and fertilization in vitro. The oocytes were recovered using 3 techniques, were selected for culture and were classified according to the number of cumulus cell layers. The numbers of oocytes selected per ovary were 1.71, 1.27 and 6.05 for dissection, aspiration and slicing, respectively. The percentages of maturation obtained for slicing (56.9%) were lower than those obtained for dissection and aspiration (69.3 and 72.0%, respectively). The proportion of oocytes with the most cumulus cell layers (complete cumulus) was greatest for oocytes recovered by dissection, but this had no influence on their capacity for nuclear maturation. The total percentage of fertilization was similar for oocytes obtained by dissection and by slicing, but the latter yielded a lower percentage of normal fertilization (29.1 vs 18.2%). Of the oocytes obtained by slicing, no difference was observed in the fertilization rate between oocytes with a partial cumulus and a complete cumulus. The decrease in maturation time from 27 to 25.5 and 24 h did not improve the results for fertilization but caused a decrease in the percentage of nuclear maturation. In conclusion, the recovery of oocytes using the slicing technique yielded more oocytes per ovary than dissection or aspiration, although the in vitro fertilization capacity of oocytes obtained by the slicing method was lower than for oocytes obtained by dissection.  相似文献   

19.
In a previous study, we have shown that the cryopreservation of mouse oocytes caused increases in the rates of degeneration and of digynic polyploid embryos, while the fertility of frozen-thawed oocytes was decreased. In this study, we have attempted to determine the different stages in the complete freezing-thawing process which are deleterious for the oocytes and the subsequent zygotes. IVF assays showed that DMSO decreased the fertility of oocytes, whereas cooling to 0°C had no effect. DMSO, used at 0°C, was less deleterious for oocytes. Thus, the prefreezing manipulations seem to be important for the quality and fertility of oocytes. However, neither DMSO nor cooling increased the incidence of chromosomal abnormalities in embryos obtained from inseminated exposed oocytes. Therefore, the increased frequency of polyploidy observed in embryos after the cryopreservation of mouse oocytes must correspond to disruption occurring during the freezing-thawing process.  相似文献   

20.
Selection of prepubertal goat oocytes using the brilliant cresyl blue test   总被引:2,自引:0,他引:2  
Brilliant cresyl blue stain allows us to determine the activity of glucose-6-phosphate dehydrogenase (G6PD), an enzyme synthesized in growing oocytes but with decreased activity in oocytes that have finished their growth phase. The objective of this study was to evaluate the utility of the brilliant cresyl blue (BCB) test as an indirect measure of oocyte growth, in order to select competent prepubertal goat oocytes for in vitro embryo production. Oocytes were exposed to BCB diluted in PBS and were classified according to their cytoplasm coloration: oocytes with a blue cytoplasm or grown oocytes (BCB+) and oocytes without a blue cytoplasm or growing oocytes (BCB-). After exposure to different BCB concentrations, we evaluated in vitro maturation (IVM), in vitro fertilization (IVF) and embryo development parameters. We defined matured oocytes as those oocytes that reached the metaphase II (MII) stage after being cultured for 27 h. Oocytes showing two pronuclei at 20 h post-insemination were classified as normally fertilized oocytes. We assessed embryo development 8 days post-insemination and recorded the percentage of total embryos, morale and blastocysts. The mean percentage of BCB+ oocytes was 29.4%. Mean diameter of BCB+ oocytes (136.6+/-6.3 microm) was higher (P < 0.001) than that of BCB- oocytes (125.5+/-10.2 microm). The percentage of BCB+ oocytes reaching the MII stage (81.4%) was higher (P < 0.05) than that of BCB- (52.5%) and control oocytes (72.4%). Normal fertilization rate of BCB+ oocytes was also higher (23.5%) than that of BCB- (8.2%; P < 0.0001) and control oocytes (11.9%; P < 0.05). The percentages of total embryos undergoing development to >8-cell and the morula plus blastocyst stages were higher (P < 0.05) in the group of BCB+ (41.3 and 12.0%, respectively) than in BCB- oocytes (21.3 and 3.6%, respectively). In conclusion, the BCB test is a useful way to select more competent prepubertal goat oocytes for in vitro embryo production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号